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Abstract
As a new area of study in pure mathematics, the theory of soft sets is expanding by redefining fundamental ideas as

algebraic structures, such as soft groups, soft rings, and soft fields. It also finds applications in other domains, regarding
data analysis and decision-making. This study manipulates soft members and soft elements to explore soft structures from a
traditional point of view, making it easier to comprehend soft algebraic structures. The soft inverse of a soft member and the
soft identity member are generalized for any soft group, and a method to count the number of possible soft subgroups of a soft
group is also provided.
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1. Introduction

Set theory was first developed by Cantor in the 1870s, with the assistance of Dedekind [14]. Numerous
significant real-world applications demonstrated its significance [23]. Sets can be used to symbolize an
assortment of boys or girls in a class or a group of odd-numbered book chapters. There are just a few
membership variations in these sets, where a member can either belong to a set or not. In 1965, Zadeh
[37] constructed fuzzy sets by extending this fundamental idea to handle cases when each element of
a set has a partially specified membership. Fuzzy sets, for instance, are used to show the area that
each piece of furniture takes up in a room. Molodstove [24] generalized fuzzy set as soft set (SSt).
Through data analysis and decision-making computations, this generalization enables the handling of
uncertainties in a variety of domains, including engineering, medical science, economics, social sciences,
and environmental science [21, 30, 32]. Soft subset (SSbS) and soft superset, equivalent SSts, null and
absolute SSts, as well as some set operations like union, intersection, complement, binary operations AND
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and OR, were defined by Maji et al. [20] in 2003. They also verified some results, such as De Morgan’s
laws for SSts. Later in 2009, Ali et al. [3] defined a few additional operations, such as restricted and
extended intersection, restricted and extended union, and restricted difference. In 2010, a few important
entities over SSts appeared as Çağman and Enginoğlu [12] introduced matrices, Babitha and Sunil [10, 11]
introduced relations and functions over SSts, followed by anti-symmetric, ordering, transitive closure,
and Yang and Guo [35] presented the closure and kernel of soft mappings and soft relations. More
contributions towards the operations (extended version) and verification of some properties with respect
to these operations were made by different mathematicians [7, 15, 17, 18, 25, 26, 33, 34, 38]. While set
theory was developing by defining algebraic entities as operations, matrices, relations, and functions, as
discussed above, on the other side, mathematicians were trying to develop its connection with algebraic
structures as well. As a result of these efforts, in 2007, Aktaş and Çağman [2] made it possible to define a
soft group (SGp). In 2010, Acar et al. [1] established the definition of soft ring (SRg). Later in 2012, Aslam
and Qurashi [9] progressed the idea presented by Aktaş and Çağman and defined some sub-concepts
of groups concerning SGp as normal, abelian, cyclic, factor, and maximal normal SGps as well as soft
subgroup (SSbGp). Das and Samantha [13] introduced soft real numbers that motivated other researchers
such as Goldar and Ray, and they discussed SSts, SGps [27], and soft topological axioms [16] with the help
of soft elements (SEt). There is always scope for improvement, which helps researchers work toward new
findings and the development of previous concepts. The contributions of scholars [4–6, 8, 22, 28, 29, 36]
regarding the introduction of algebraic structures based on generalized hybrid set structures are worth
noting and acknowledgeable. Saeed et al. [31] introduced a new way to discuss soft algebraic structures
using soft members (SMb) and SEt. They have also defined the Cartesian soft product, SSt relation, and
soft binary operations that played a vital role in observing the SGp as a classical algebraic group and
made it easy to discuss its properties using Cayley’s table. This approach gave rise to a new horizon and
created a lot of space for new research, e.g., observing the soft algebraic structures in comparison to the
classical algebraic structures, including SSbGp, SRg, and soft field, etc. It motivated us to present the
SSbGp, SRg, and soft field in the form of a classical algebraic subgroup, ring, and field. Soft set theory
demonstrated its value by solving numerous practical issues that conventional sets were unable to handle.
Soft sets, together with their various hybrids and generalizations, offered up new possibilities and allowed
for the modeling of various scenarios, particularly those involving uncertainty. The definition of several
soft algebraic structures in an abstract manner led to the establishment of soft set theory. Soft elements
and soft members could be used to analyze these soft structures traditionally. The contribution of Saeed
et al. [31] have been extended in this paper. By using soft elements and soft members, we have developed
soft subgroups, soft rings, and soft fields, which enable us to examine the features of these soft structures
from a classical perspective. The salient contributions are as follows.

1. The existing works of literature on soft sets, soft elements, soft members, and soft groups have been
modified.

2. To investigate soft structures from a conventional perspective, the soft members and soft elements
have been adjusted, which facilitates the understanding of soft algebraic structures.

3. A refinement of the soft inverse of a soft member and the soft identity member for any soft group
has been communicated, along with a technique to enumerate all potential soft subgroups of a given
soft group.

The rest of the paper is organized as follows. Section 2 provides foundational definitions to support the
key conclusions of this research. In the upcoming sections, SSbGp, SRg, and soft field are redefined using
SMbs in light of classical algebraic structures. Constructing examples helps to clarify the ideas, and the
new notations are used to verify some of the associated pre-defined theorems. A formula for determining
the number of potential SSbGps in an SGp is given in Section 3. A theorem for SRg that is comparable
to the one defined for classical rings and given in Section 4 can be defined because of the suggested
definition. Soft algebraic structures parallel to the field are presented in Section 5. The last section wraps
up the work and inspires more research.
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2. Preliminaries

In order to comprehend the paper’s primary findings, some basic definitions, mainly following Saeed
et al. [31], are presented in this section. Let’s define few notations that we have used for this paper.
The set of alternatives and its power set are represented as U and P(U), respectively. X,Y, and Z are
representing the subsets of E, the collection of parameters or attributes. The mappings from subsets of E
to P(U) are denoted by symbols θ,φ, and ψ, whereas α̃, β̃, γ̃ have been used to represent the mappings
from subsets of E to U.

In 1999, Molodtsov [24] put forward idea of SSt to make the existing structures dealing with vagueness
compatible with parameterization.

Definition 2.1 ([24]). The pair (θ,E) = {θ(ρ̃) ∈ P(U) : ρ̃ ∈ E} is named as SSt, where θ : E→ P(U).

Definition 2.2 ([20]). The SSt (θ,E) is named as relative null SSt if θ(ρ̃) = ∅, for all ρ̃ ∈ X.

Definition 2.3 ([20]). Let (θ,X) and (φ,Y) are SSts over U, then (θ,X) is SSbS of (φ,Y) if

1. X ⊆ Y;
2. θ(ρ̃) and φ(ρ̃) are identical approximations for all ρ̃ ∈ X.

Saeed et al. [31] conducted a thorough analysis of the idea of SEts and SMbs in SSts in 2020.

Definition 2.4 ([31]). Let (θ,X) be a SSt and α̃ : X→ U be a mapping such that α̃(ρ̃) ∈ θ(ρ̃) where ρ̃ ∈ X.
Then the SMb of (θ,X) be termed as q̃ = {(ρ̃, α̃(ρ̃)) : ρ̃ ∈ X, α̃(ρ̃) ∈ θ(ρ̃) 6= ∅} and (ρ̃, α̃(ρ̃)), ρ̃ ∈ X is named
as SEt. Clearly, the cardinality of each SMb of (θ,X) equals the cardinality of X and by multiplying the
cardinality of θ(ρ̃), for all ρ̃ ∈ X, number of SMbs in (θ,X) is obtained.

Definition 2.5 ([31]). Let (θ,X) be a SSt, its SMb q̃ is given as q̃ = {(ρ̃, α̃(ρ̃)) : α̃(ρ̃) /∈ θ(ρ̃), for all ρ̃ ∈ X}.
In this definition, α̃(ρ̃) and θ(ρ̃) are same as discussed in Definition 2.4.

Definition 2.6 ([31]). Let (θ,X) and (φ,Y) are SSts over U and q̃, ỹ be two SMbs of (θ,X) and (φ,Y),
respectively. Then q̃ is referred to be a sub-SMb of ỹ if

1. X ⊆ Y;
2. for all ρ̃ ∈ X each SEt (ρ̃, α̃(ρ̃)) of q̃ is a SEt of ỹ.

Definition 2.7 ([31]). The SSt using SMbs takes the form (θ,X) = {q̃ : q̃ = {(ρ̃, α̃(ρ̃)), α̃ : X → U, α̃(ρ̃) ∈
θ(ρ̃) 6= ∅, for all ρ̃ ∈ X}}.

Definition 2.8 ([31]). A SSt (θ,X) is regarded as non-null SSt if it has non-empty support where
supp((θ,X)) = {ρ̃ ∈ X : θ(ρ̃) 6= ∅}.

Definition 2.9 ([31]). Let (θ,X) and (φ,Y) are SSts over U, then (θ,X) is SSbS of (φ,Y) if (i) X ⊆ Y; (ii) each
SMb q̃ of (θ,X) is a sub-SMb of at least one SMb ỹ of (φ,Y).

Let (θ,X) and (φ,Y) are SSts over U, then following are some of the SSt operations recalled from Ali
et al. [3].

Definition 2.10. (θ,X)∪̃R(φ,Y), the restricted union of (θ,X) and (φ,Y) is termed as a SSt (ψ,Z) = {z̃ : z̃ =
(ρ̃, γ̃(ρ̃)), γ̃(ρ̃) ∈ α̃(ρ̃)∪ β̃(ρ̃), for all ρ̃ ∈ Z}, where Z = X∩ Y.

Definition 2.11. (θ,X)∩̃R(φ,Y), the restricted intersection of (θ,X) and (φ,Y) is termed as a SSt (ψ,Z) =
{z̃ : z̃ = (ρ̃, γ̃(ρ̃)), γ̃(ρ̃) ∈ α̃(ρ̃)∩ β̃(ρ̃), for all ρ̃ ∈ Z}, where Z = X∩ Y.

Definition 2.12. (θ,X)∩̃R(φ,Y), the extended intersection of (θ,X) and (φ,Y) is termed as a SSt (ψ,Z) =
{z̃ : z̃ = (ρ̃, γ̃(ρ̃)), for all ρ̃ ∈ Z}, where Z = X∪ Y and

γ̃(ρ̃) ∈


θ(ρ̃), ρ̃ ∈ X, ρ̃ /∈ Y,
φ(ρ̃), ρ̃ ∈ Y, ρ̃ /∈ X,
θ(ρ̃)∩φ(ρ̃), ρ̃ ∈ X∩ Y.
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The following definitions are recalled from Aslam et al. [9] and Goldar & Ray [27].

Definition 2.13. Let (θ,X) be a non-null SSt and ∗ be a binary operation from U×U to U then correspond-
ing soft binary operation ∗̃ from (θ,X)× (θ,X) to (θ,X) is termed as for any (q̃i, q̃j) ∈ (θ,X)× (θ,X),
q̃i∗̃q̃j = {(ρ̃, θk(ρ̃) ∗ θl(ρ̃)), ρ̃ ∈ X}.

Definition 2.14. A SMb q̃e is named as identity element with reference to the soft binary operation ∗̃ if
q̃e∗̃q̃ = q̃∗̃q̃e, for all q̃ ∈ (θ,X).

Definition 2.15. A soft binary operation ∗̃ from (θ,X)× (θ,X) to (θ,X) is referred to be softly commutative
if q̃i∗̃q̃j = q̃j∗̃q̃i, for all (q̃i, q̃j) ∈ (θ,X)× (θ,X).

Definition 2.16. A non-null SSt (θ,X) is named as SGp if (i) the set of alternatives U is a group; (ii) for
every ρ̃ ∈ X, θ(ρ̃) is a subgroup of U.

Definition 2.17. A non-null SSt (θ,X) is regarded as SGp denoted by ((θ,X), ∗̃) if the set of alternatives
(U, ∗) is a group, θ is mapping elements of X to its subgroups and following properties are satisfied.

1. For all q̃i, q̃j ∈ (θ,X), q̃i∗̃q̃j ∈ (θ,X).
2. For all q̃i, q̃j, q̃k ∈ (θ,X), q̃i∗̃(q̃j∗̃q̃k) = (q̃i∗̃q̃j)∗̃q̃k.
3. Soft identity element q̃e exists in (θ,X).
4. For each q̃i ∈ (θ,X) there exist q̃−1

i ∈ (θ,X) such that q̃−1
i ∗̃q̃i = q̃e = q̃i∗̃q̃−1

i .

Moreover, ((θ,X), ∗̃) is named as abelian SGp if the soft binary operation ∗̃ is softly commutative.

In the following sections, the soft structures are defined using SMbs to present a ground work for
detailed discussion of soft algebraic structures parallel to classical algebraic structures.

3. Soft algebraic structure parallel to subgroup

Let (θ,X) as well as (φ,Y) be the SGps over (U, ∗), a group over the binary operation ∗ then (θ,X) is
named as a SSbGp of (φ,Y) if (i) X ⊆ Y; (ii) θ(ρ̃) ⊆ φ(ρ̃) for all ρ̃ ∈ X. The following section explains the
SSbGp using SMbs and SEts.

Definition 3.1. Let ((θ,X), ∗̃) as well as ((φ,Y), ∗̃) be the SGps over an algebraic group (U, ∗), then
((θ,X), ∗̃) is named as SSbGp of ((φ,Y), ∗̃) if (i) X ⊆ Y; (ii) for each SMb q̃ there exists atleast one SMb ỹ
such that for all ρ̃ ∈ X, each SEt (ρ̃, α̃(ρ̃)) of q̃ is a SEt of ỹ, that is each SMb of (θ,X) is a sub-SMb of at
least one SMb of (φ,Y).

Example 3.2. Let the set of alternatives (U, ·) be the Klein’s four group that is U = {e,a,b, c} with the
Cayley’s table given in Table 1, and E = {ρ̃i, i = 1, 2, . . . , 10} be a set of attributes.

Table 1: Cayley’s table for Klein’s four group.

· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Let X = {ρ̃1, ρ̃2, ρ̃5} be a subset of E and θ : X → P(U) such that θ(ρ̃1) = {e,a}, θ(ρ̃2) = {e,b} and
θ(ρ̃5) = {e, c}. Clearly ((θ,X), ·̃) is SGp with following SMbs,
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q̃1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}, q̃2 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, c)}, q̃3 = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, e)},
q̃4 = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, c)}, q̃5 = {(ρ̃1,a), (ρ̃2, e), (ρ̃5, e)}, q̃6 = {(ρ̃1,a), (ρ̃2, e), (ρ̃5, c)},
q̃7 = {(ρ̃1,a), (ρ̃2,b), (ρ̃5, e)}, q̃8 = {(ρ̃1,a), (ρ̃2,b), (ρ̃5, c)}.

and Cayley’s table as Table 2 (Table is completed using soft binary operation definition as q̃2 ·̃q̃3 = {(ρ̃1, e ·
e), (ρ̃2, e · b), (ρ̃5, c · e)} = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, c)} = q̃4).

Table 2: Cayley’s table for SGp ((θ,X), ·̃).

·̃ q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8

q̃1 q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8
q̃2 q̃2 q̃1 q̃4 q̃3 q̃6 q̃5 q̃8 q̃7
q̃3 q̃3 q̃4 q̃1 q̃2 q̃7 q̃8 q̃5 q̃6
q̃4 q̃4 q̃3 q̃2 q̃1 q̃8 q̃7 q̃6 q̃5
q̃5 q̃5 q̃6 q̃7 q̃8 q̃1 q̃2 q̃3 q̃4
q̃6 q̃6 q̃5 q̃8 q̃7 q̃2 q̃1 q̃4 q̃3
q̃7 q̃7 q̃8 q̃5 q̃6 q̃3 q̃4 q̃1 q̃2
q̃8 q̃8 q̃7 q̃6 q̃5 q̃4 q̃3 q̃2 q̃1

Now, we will discuss all possible SSbGps of this SGp. As we know that there are 6 non-trivial subsets
of X that along with X itself, will serve as set of attributes for the SSbGps of ((θ,X), ·̃). All possible SSbGps
of ((θ,X), ·̃) are defined below:

1. Over the same set of alternatives, let ((φ1,Y1), ·̃) be another SGp with Y1 = {ρ̃1, ρ̃5} be a subset of
X and φ1 : Y1 → P(U) such that φ1(ρ̃1) = {e,a}, φ1(ρ̃5) = {e} and SMbs, ỹ1

1 = {(ρ̃1, e), (ρ̃5, e)}, ỹ1
2 =

{(ρ̃1,a), (ρ̃5, e)}. The axioms of SGp for ((φ1,Y1), ·̃) are satisfied as shown by Cayley’s table in
Table 3. Here Y1 ⊆ X. Now consider ỹ1 = {(ρ̃1, e), (ρ̃5, e)}, q̃1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)} and

Table 3: Cayley’s table for SGp ((φ1,Y1), ·̃).

·̃ ỹ1
1 ỹ1

2

ỹ1
1 ỹ1

1 ỹ1
2

ỹ1
2 ỹ1

2 ỹ1
1

q̃3 = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, e)}. Clearly, each SEt of ỹ1 is a SEt of q̃1 as well as q̃3 so, ỹ1 is a sub-
SMb of q̃1 and q̃3. Similarly, ỹ2 is a sub SMb of q̃5 and q̃7. Hence by Definition 3.1, ((φ1,Y1), ·̃) is a
SSbGp of ((θ,X), ·̃).

2. Over the same set of alternatives, let ((φ2,Y1), ·̃) be a SGp with Y1 = {ρ̃1, ρ̃5}, φ2 : Y1 → P(U) defined
by φ2(ρ̃1) = {e}, φ2(ρ̃5) = {e, c} and SMbs, ỹ2

1 = {(ρ̃1, e), (ρ̃5, e)}, ỹ2
2 = {(ρ̃1, e), (ρ̃5, c)}. The axioms of

SGp for ((φ2,Y1), ·̃) are satisfied as shown by Cayley’s table in Table 4.

Table 4: Cayley’s table for SGp ((φ2,Y1), ·̃).

·̃ ỹ2
1 ỹ2

2

ỹ2
1 ỹ2

1 ỹ2
2

ỹ2
2 ỹ2

2 ỹ2
1

Clearly, ((φ2,Y1), ·̃) is a SSbGp of ((θ,X), ·̃).

3. Over the same set of alternatives, let ((φ3,Y1), ·̃) be a SGp with Y1 = {ρ̃1, ρ̃5}, φ3 : Y1 → P(U)
defined by φ3(ρ̃1) = {e,a}, φ3(ρ̃5) = {e, c} and SMbs, ỹ3

1 = {(ρ̃1, e), (ρ̃5, e)}, ỹ3
2 = {(ρ̃1, e), (ρ̃5, c)}, ỹ3

3 =
{(ρ̃1,a), (ρ̃5, e)}, ỹ3

4 = {(ρ̃1,a), (ρ̃5, c)}. The axioms of SGp for ((φ3,Y1), ·̃) are satisfied as shown by
Cayley’s table in Table 5.
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Table 5: Cayley’s table for SGp ((φ3,Y1), ·̃).

·̃ ỹ3
1 ỹ3

2 ỹ3
3 ỹ3

4

ỹ3
1 ỹ3

1 ỹ3
2 ỹ3

3 ỹ3
4

ỹ3
2 ỹ3

2 ỹ3
1 ỹ3

4 ỹ3
3

ỹ3
3 ỹ3

3 ỹ3
4 ỹ3

1 ỹ3
2

ỹ3
4 ỹ3

4 ỹ3
3 ỹ3

2 ỹ3
1

Clearly, ((φ3,Y1), ·̃) is a SSbGp of ((θ,X), ·̃).
4. ((φ4,Y1), ·̃) is another subgroup of ((θ,X), ·̃) where Y1 = {ρ̃1, ρ̃5}, φ4 : Y1 → P(U) defined by
φ4(ρ̃1) = {e}, φ4(ρ̃5) = {e}. It is a singleton set consisting of following soft identity element,
ỹ4 = {(ρ̃1, e), (ρ̃5, e)}.

The remaining possible SSbGps of ((θ,X), ·̃) are shown in the Tables 6, 7, 8, 9, 10, and 11.

Table 6: Possible SSbGps of ((θ,X), ·̃)-I.
Remaining pos-
sibilities

Subsets of X Function SMbs

V: ((φ5,Y2), ·̃) Y2 = {ρ̃1, ρ̃2} φ5 : Y2 → P(U) defined by
φ5(ρ̃1) = {e,a}, φ5(ρ̃2) = {e}

ỹ5
1 = {(ρ̃1, e), (ρ̃2, e)}; ỹ5

2 = {(ρ̃1,a), (ρ̃2, e)}

VI: ((φ6,Y2), ·̃) Y2 = {ρ̃1, ρ̃2} φ6 : Y2 → P(U) defined by
φ6(ρ̃1) = {e}, φ6(ρ̃2) = {e,b}

ỹ6
1 = {(ρ̃1, e), (ρ̃2, e)}; ỹ6

2 = {(ρ̃1, e), (ρ̃2,b)}

VII: ((φ7,Y2), ·̃) Y2 = {ρ̃1, ρ̃2} φ7 : Y2 → P(U) defined by
φ7(ρ̃1) = {e,a}, φ7(ρ̃2) = {e,b}

ỹ7
1 = {(ρ̃1, e), (ρ̃2, e)}; ỹ7

2 = {(ρ̃1, e), (ρ̃2,b)};
ỹ7

3 = {(ρ̃1,a), (ρ̃2, e)}; ỹ7
4 = {(ρ̃1,a), (ρ̃2,b)}

Table 7: Possible SSbGps of ((θ,X), ·̃)-II.
Remaining pos-
sibilities

Subsets of X Function SMbs

VIII: ((φ8,Y2), ·̃) Y2 = {ρ̃1, ρ̃2} φ8 : Y2 → P(U) defined by
φ8(ρ̃1) = {e}, φ8(ρ̃2) = {e}

ỹ8 = {(ρ̃1, e), (ρ̃2, e)}

IX: ((φ9,Y3), ·̃) Y3 = {ρ̃2, ρ̃5} φ9 : Y3 → P(U) defined by
φ9(ρ̃2) = {e,b}, φ9(ρ̃5) = {e}

ỹ9
1 = {(ρ̃2, e), (ρ̃5, e)}; ỹ9

2 = {(ρ̃2,b), (ρ̃5, e)}

X: ((φ10,Y3), ·̃) Y3 = {ρ̃2, ρ̃5} φ10 : Y3 → P(U) defined by
φ9(ρ̃2) = {e}, φ9(ρ̃5) = {e, c}

ỹ10
1 = {(ρ̃2, e), (ρ̃5, e)}; ỹ10

2 = {(ρ̃2, e), (ρ̃5, c)}

XI: ((φ11,Y3), ·̃) Y3 = {ρ̃2, ρ̃5} φ11 : Y3 → P(U) defined by
φ11(ρ̃2) = {e}, φ11(ρ̃5) = {e}

ỹ11 = {(ρ̃2, e), (ρ̃5, e)}

Table 8: Possible SSbGps of ((θ,X), ·̃)-III.
Remaining pos-
sibilities

Subsets of X Function SMbs

XII: ((φ12,Y3), ·̃) Y3 = {ρ̃2, ρ̃5} φ12 : Y3 → P(U) defined by
φ12(ρ̃2) = {e,b}, φ12(ρ̃5) =
{e, c}

ỹ12
1 = {(ρ̃2, e), (ρ̃5, e)}; ỹ12

2 = {(ρ̃2, e), (ρ̃5, c)};
ỹ12

3 = {(ρ̃2,b), (ρ̃5, e)}; ỹ12
4 = {(ρ̃2,b), (ρ̃5, c)}

XIII: ((φ13,Y4), ·̃) Y4 = {ρ̃1} φ13 : Y4 → P(U) defined by
φ13(ρ̃1) = {e,a}

ỹ13
1 = {(ρ̃1, e)}; ỹ13

2 = {(ρ̃1,a)}

XIV: ((φ14,Y4), ·̃) Y4 = {ρ̃1} φ14 : Y4 → P(U) defined by
φ14(ρ̃1) = {e}

ỹ14 = {(ρ̃1, e)}

XV: ((φ15,Y5), ·̃) Y5 = {ρ̃2} φ15 : Y5 → P(U) defined by
φ15(ρ̃2) = {e,b}

ỹ15
1 = {(ρ̃2, e)}; ỹ15

2 = {(ρ̃2,b)}
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Table 9: Possible SSbGps of ((θ,X), ·̃)-IV.

Remaining Possibilities Subsets of X Function SMbs

XVI: ((φ16,Y5), ·̃) Y5 = {ρ̃2} φ16 : Y5 → P(U) defined by ỹ16 = {(ρ̃2, e)}
φ16(ρ̃2) = {e}

XVII: ((φ17,Y6), ·̃) Y6 = {ρ̃5} φ17 : Y6 → P(U) defined by ỹ17
1 = {(ρ̃5, e)}

φ17(ρ̃5) = {e, c} ỹ17
2 = {(ρ̃5, c)}

XVIII: ((φ18,Y6), ·̃) Y6 = {ρ̃5} φ18 : Y6 → P(U) defined by ỹ18 = {(ρ̃5, e)}
φ18(ρ̃5) = {e}

XIX: ((φ19,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ19 : Y7 → P(U) defined by ỹ19
1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}

φ19(ρ̃1) = {e}, φ19(ρ̃2) = {e,b} ỹ19
2 = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, e)}

φ19(ρ̃5) = {e}

Table 10: Possible SSbGps of ((θ,X), ·̃)-V.

Remaining Possibilities Subsets of X Function SMbs

XX: ((φ20,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ20 : Y7 → P(U) defined by ỹ20
1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}

φ20(ρ̃1) = {e,a}, φ20(ρ̃2) = {e} ỹ20
2 = {(ρ̃1,a), (ρ̃2, e), (ρ̃5, e)}

φ20(ρ̃5) = {e}

XXI: ((φ21,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ21 : Y7 → P(U) defined by ỹ21
1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}

φ21(ρ̃1) = {e,a}, φ21(ρ̃2) = {e} ỹ21
2 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, c)}

φ21(ρ̃5) = {e, c} ỹ21
3 = {(ρ̃1,a), (ρ̃2, e), (ρ̃5, e)}
ỹ21

4 = {(ρ̃1,a), (ρ̃2, e), (ρ̃5, c)}
XXII: ((φ22,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ22 : Y7 → P(U) defined by ỹ22

1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}
φ22(ρ̃1) = {e,a}, φ22(ρ̃2) = {e,b} ỹ22

2 = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, e)}
φ22(ρ̃5) = {e} ỹ22

3 = {(ρ̃1,a), (ρ̃2, e), (ρ̃5, e)}
ỹ22

4 = {(ρ̃1,a), (ρ̃2,b), (ρ̃5, e)}
XXIII: ((φ23,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ23 : Y7 → P(U) defined by ỹ23 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}

φ23(ρ̃1) = {e}, φ23(ρ̃2) = {e}

φ23(ρ̃5) = {e}

Table 11: Possible SSbGps of ((θ,X), ·̃)-VI.

Remaining possibilities Subsets of X Function SMbs

XXIV: ((φ24,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ24 : Y7 → P(U) defined by ỹ24
1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}

φ24(ρ̃1) = {e}, φ24(ρ̃2) = {e} ỹ24
2 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, c)}

φ24(ρ̃5) = {e, c}
XXV: ((φ25,Y7), ·̃) Y7 = {ρ̃1, ρ̃2, ρ̃5} φ25 : Y7 → P(U) defined by ỹ25

1 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, e)}
φ25(ρ̃1) = {e}, φ25(ρ̃2) = {e,b} ỹ25

2 = {(ρ̃1, e), (ρ̃2, e), (ρ̃5, c)}
φ25(ρ̃5) = {e, c} ỹ25

3 = {(ρ̃1, e), (ρ̃2,b), (ρ̃5, e)}
ỹ25

4 = {(ρ̃1,a), (ρ̃2,b), (ρ̃5, c)}
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3.1. SGp entities parallel to classical group

In the light of above example, we are able to generalize following few important SMbs in a SGp
parallel to the classical group. Let ((θ,X), ∗̃) be a SGp over (U, ∗) and q̃ be its SMb, then by definition
q̃ = {(ρ̃, α̃(ρ̃)) : ρ̃ ∈ X, α̃(ρ̃) ∈ θ(ρ̃) 6= ∅}, where θ(ρ̃) is subgroup of (U, ∗).

Definition 3.3. The soft identity member q̃e of a SGp is given as q̃e = {(ρ̃, e) : ρ̃ ∈ X, e is the corresponding
identity in group (U, ∗)}.

Definition 3.4. Let a = α̃(ρ̃), then as defined above, the SMb of ((θ,X), ∗̃) take the form, q̃ = {(ρ̃,a) :
ρ̃ ∈ X,a ∈ θ(ρ̃)} then its soft inverse will be q̃−1 = {(ρ̃,a−1) : ρ̃ ∈ X,a−1 is the inverse of a in group
(U, ∗)}. The existence of soft inverse member is justified by the presence of inverse element a−1 for each
a in θ(ρ̃) as θ(ρ̃) is a subgroup of (U, ∗). More precisely, the soft additive inverse of q̃ is termed as
−q̃ = {(ρ̃,−a) : ρ̃ ∈ A,−a is the additive inverse of a in group (U, ∗)}.

In above example, each SSbGp is containing an identity element, e.g., ỹ1
1 = {(ρ̃1, e), (ρ̃5, e)}, ỹ12

1 =
{(ρ̃2, e), (ρ̃5, e)} are the identity elements in ((φ1,Y1), ·̃) and ((φ12,Y3), ·̃), respectively.

3.2. Formula for evaluating the number of SSbGps

We are able to generalize the number of SSbGps of a considered SGp as follows. Let ((θ,X), ·̃) be SGp
over set of alternatives (U, ∗) which is a group itself. Let the cardinality of X is n and for each ρ̃s in X, the
number of subgroups of θ(ρ̃s) is ms, for all s = 1, 2, . . . ,n. Then, the total number of SSbGps of ((θ,X), ·̃)
is

n∑
s=1

ms +

n∑
s=1

n∑
t=s+1

msmt +

n∑
s=1

n∑
t=s+1

n∑
l=t+1

msmtml + · · ·+m1m2 · · ·mn − 1.

We know that the number of non-null subsets of X is 2n − 1 and there are nCk,k = 1, 2, . . . ,n subsets of
cardinality k, i.e., there are nC1 = n singleton subsets, nC2 subsets of cardinality 2 and nCn = 1 subset
of cardinality n. Consider the singleton subsets of X having ms possibilities for each ρ̃s, s = 1, 2, . . . ,n.
Hence the number of SSbGps in this case is

∑n
s=1ms = m1 +m2 + · · ·+mn. A detailed description to

the number of SSbGps for all possibilities is presented in Table 12.

Table 12: Number of possible SSbGps of a SGp.

Type of subsets
of X

Number of subsets of
X

Number of possibilities for
image of each element in
subset

The number of SSbGps

Singleton set nC1 = n ρ̃s → ms, for all s =
1, 2, . . . ,n

n∑
s=1

ms

Subsets with
cardinality 2

nC2 =
n(n−1)

2 ρ̃s → ms, ρ̃t → mt, for
all s = 1, 2, . . . ,n; t = s +
1, . . . ,n

n∑
s=1

n∑
t=s+1

msmt

Subsets with
cardinality 3

nC3 =
n(n−1)(n−2)

6 ρ̃s → ms, ρ̃t → mt, ρ̃l → ml

for all s = 1, 2, . . . ,n; t = s+
1, . . . ,n, l = s+ 2, . . . ,n

n∑
s=1

n∑
t=s+1

n∑
l=t+1

msmtml

...
...

...
...

Subsets with
cardinality n

nCn = 1 ρ̃s → ms for all s =
1, 2, . . . ,n,

m1m2 · · ·mn − 1
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Hence total number of SSbGps of SGp ((θ,X), ·̃) is

n∑
s=1

ms +

n∑
s=1

n∑
t=s+1

msmt +

n∑
s=1

n∑
t=s+1

n∑
l=s+1

msmtml + · · ·+m1m2 · · ·mn − 1,

which could be verified using above example for which n = 3,m1 = m2 = m3 = 2 then by using the
proposed formula, the number of SSbGps of considered SGp will be,

3∑
s=1

ms +

3∑
s=1

3∑
t=s+1

msmt +m1m2m3 − 1 = m1 +m2 +m3 +m1m2 +m1m3 +m2m3 +m1m2m3 − 1 = 25.

As we have presented the SSbGp in an innovative way, so in the following subsections, we have proved
pre-defined theorems using the presented notations.

3.3. Justifying the existence of SSbGps

To validate the existence of SSbGps, the basic theorems from classical group theory are presented that
are satisfied by SSbGps.

Theorem 3.5 ([9]). Let ((θ,X), ∗̃) be a SGp over (U, ∗) and {((φi,Yi), ∗̃) : i ∈ I}, where I is representing the set
of indices, is representing collection of SSbGps of ((θ,X), ∗̃). Then their restricted intersection is also a SSbGp of
((θ,X), ∗̃) over (U, ∗).

Proof. Let {((φi,Yi), ∗̃) : i ∈ I} be a collection of SSbGps of ((θ,X), ∗̃). Therefore, by definition, for each i ∈
I, (i) Yi ⊆ X; (ii) each SMb of ((φi,Yi), ∗̃) is a sub-SMb of ((θ,X), ∗̃). Let (ψ,Z) be the restricted intersection
of SSbGps {((φi,Yi), ∗̃) : i ∈ I} = {{(ρ̃, β̃i(ρ̃)) : β̃i : Yi → U, β̃i(ρ̃) ∈ φi(ρ̃), for all ρ̃ ∈ Yi}, i ∈ I}, then by
definition, Z = ∩iYi and (ψ,Z) = {z̃ : z̃ = (ρ̃, γ̃(ρ̃)), γ̃(ρ̃) ∈ ∩iβ̃i(ρ̃), for all ρ̃ ∈ Z}. Clearly, (i) Z ⊆ Yi, for
all i ∈ I and Yi ⊆ X, for all i ∈ I that leads to Z ⊆ X; (ii) for all ρ̃ ∈ Z, γ̃(ρ̃) ∈ ∩iβ̃i(ρ̃) =⇒ γ̃(ρ̃) ∈ β̃i(ρ̃),
for all i ∈ I, ρ̃ ∈ Z, which shows that each SMb of (ψ,Z) is sub SMb of at least one of the SMbs of each of
(φi,Yi), for all i ∈ I and hence a sub-SMb of at least one of the SMbs of (θ,X) which shows that ((ψ,Z), ∗̃)
is a SSbGp of ((θ,X), ∗̃). Hence the statement is proved.

In the following subsection, the theorem stated above is verified through example.

Example 3.6.

(i) In Example 3.2, consider the SSbGps ((φ1,Y1), ∗̃), ((φ2,Y1), ∗̃) and ((φ12,Y3), ∗̃) of ((θ,X), ∗̃). Their
restricted intersection is a SSbGp of ((θ,X), ∗̃) namely ((φ18,Y6), ∗̃).

(ii) Consider the collection of subgroups {((φi,Y3), ∗̃) : i = 9, 10, 11, 12} of ((θ,X), ∗̃). The restricted
intersection of this collection is again a SSbGp of ((θ,X), ∗̃) namely ((φ12,Y3), ∗̃). Hence the theorem
is verified.

Theorem 3.7 ([9]). Let ((θ,X), ∗̃) be a SGp over (U, ∗) and {(φi,Yi) : i ∈ I)}, where I is representing the set of
indices, be the class of SSbGps of ((θ,X), ∗̃). Then the SSt obtained by their extended intersection is also a SSbGp
of ((θ,X), ∗̃).

Proof. Could be proved on similar lines.

Definition 3.8. A non-null SSt (θ,X) is regarded as soft semi group denoted by ((θ,X), ∗̃) if the set of alter-
natives (U, ∗) is a group, θ is mapping elements of X to its subgroups and (i) for all q̃i, q̃j ∈ (θ,X), q̃i∗̃q̃j ∈
(θ,X); (ii) for all q̃i, q̃j, q̃k ∈ (θ,X), q̃i∗̃(q̃j∗̃q̃k) = (q̃i∗̃q̃j)∗̃q̃k, that is the soft binary operation ∗̃ satisfies
only closure and associative property.
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4. Soft algebraic structure parallel to ring

The SSt (θ,X) is named as SRg if the set of alternatives U is a ring itself and θ maps the attributes in
X to the subrings of U [1]. The following definition enables us to represent SRg as classical algebraic ring.

Definition 4.1. Let (θ,X) be a SSt over a ring (U,+, ·) and θ is mapping the attributes in X to the subrings
of (U,+, ·). Assuming the soft binary operations +̃ and ·̃ are defined on (θ,X), then (θ,X) is named as
SRg, denoted by ((θ,X), +̃, ·̃), if

1. ((θ,X), +̃) is an abelian SGp;
2. ((θ,X), ·̃) is soft semi group;
3. distributive property of ·̃ over +̃ holds, i.e., for any SMbs q̃i, q̃j, q̃k of (θ,X),

q̃i ·̃(q̃j+̃q̃k) = (q̃i ·̃q̃j)+̃(q̃i ·̃q̃k) (left distributive property),
(q̃i+̃q̃j)·̃q̃k = (q̃i ·̃q̃k)+̃(q̃j ·̃q̃k) (right distributive property).

In the following section, an example is presented to show that how proposed definition of SRg enables
one to deal with SRg in the similar manner as classical ring.

Example 4.2. Let the set of alternatives (U,+, ·) be the ring Z6 under modulo addition and multiplica-
tion, that is U = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} and E = {ρ̃i, i = 1, 2, . . . , 5} be a set of attributes. Let X = {ρ̃1, ρ̃2} be a
subset of E and θ : X → P(U) such that θ(ρ̃1) = {0̄, 2̄, 4̄} and θ(ρ̃2) = {0̄, 3̄}. Clearly, ((θ,X), +̃, ·̃) is SRg
with the SMbs, q̃o = {(ρ̃1, 0̄), (ρ̃2, 0̄)}, q̃1 = {(ρ̃1, 0̄), (ρ̃2, 3̄)}, q̃2 = {(ρ̃1, 2̄), (ρ̃2, 0̄)}, q̃3 = {(ρ̃1, 2̄), (ρ̃2, 3̄)}, q̃4 =
{(ρ̃1, 4̄), (ρ̃2, 0̄)}, q̃5 = {(ρ̃1, 4̄), (ρ̃2, 3̄)}, and cayley’s table as in Table 13.

Table 13: Cayley’s table for SRg ((θ,X), +̃, ·̃) over soft addition +̃.

+̃ q̃o q̃1 q̃2 q̃3 q̃4 q̃5

q̃o q̃o q̃1 q̃2 q̃3 q̃4 q̃5
q̃1 q̃1 q̃o q̃3 q̃2 q̃5 q̃4
q̃2 q̃2 q̃3 q̃4 q̃5 q̃o q̃1
q̃3 q̃3 q̃2 q̃5 q̃4 q̃1 q̃o
q̃4 q̃4 q̃5 q̃o q̃1 q̃2 q̃3
q̃5 q̃5 q̃4 q̃1 q̃o q̃3 q̃2

Associative and distributive properties could be easily verified, e.g., for q̃1, q̃3, and q̃4 in ((θ,X), +̃, ·̃),

q̃1 ·̃(q̃3 ·̃q̃4) = q̃o = (q̃1 ·̃q̃3)·̃q̃4 (associative property),
q̃1 ·̃(q̃3+̃q̃4) = q̃1 = (q̃1 ·̃q̃3)+̃(q̃1 ·̃q̃4) (left distributive property),
(q̃1+̃q̃3)·̃q̃4 = q̃2 = (q̃1 ·̃q̃4)+̃(q̃3 ·̃q̃4) (right distributive property).

Consider the following theorem defined for elements of a ring. For ring (R,+, ·) with additive identity
0, a,b ∈ R, (i) a · 0 = 0 = 0 · a; (ii) a(−b) = (−a)b = −(ab); and (iii) (−a)(−b) = ab. With the reference of
above definition, we are able to define similar theorem using the SMbs of a SRg.

Theorem 4.3. Let ((θ,X), +̃, ·̃) be a SRg with soft additive identity q̃o and −q̃ being soft additive inverse of q̃.
Then for any q̃1, q̃2 ∈ ((θ,X), +̃, ·̃),

1. q̃o ·̃q̃1 = q̃o = q̃1 ·̃q̃o;
2. q̃1 ·̃(−q̃2) = (−q̃1)·̃q̃2 = −(q̃1 ·̃q̃2);
3. (−q̃1)·̃(−q̃2) = (q̃1)·̃(q̃2).
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Proof. Now, let ((θ,X), +̃, ·̃) be a SRg over set of alternatives (U,+, ·) and q̃1 = {(ρ̃,a) : ρ̃ ∈ X,a ∈ α̃(ρ̃)},
q̃2 = {(ρ̃,b) : ρ̃ ∈ X,b ∈ α̃(ρ̃)} be two SMbs and q̃o = {(ρ̃, 0) : ρ̃ ∈ X, 0 is representing additive identity of
(U,+, ·)} be the soft additive identity. Then their additive inverses will be −q̃1 = {(ρ̃,−a) : ρ̃ ∈ X,a ∈ α̃(ρ̃)}
and −q̃2 = {(ρ̃,−b) : ρ̃ ∈ X,b ∈ α̃(ρ̃)}, respectively.

1. q̃o ·̃q̃1 = {(ρ̃, 0 · a) : ρ̃ ∈ X} = {(ρ̃, 0) : ρ̃ ∈ X} = q̃o, and q̃1 ·̃q̃o = {(ρ̃,a · 0) : ρ̃ ∈ X} = {(ρ̃, 0) : ρ̃ ∈ X} =
q̃o. Hence q̃o ·̃q̃1 = q̃o = q̃1 ·̃q̃o.

2. q̃1 ·̃(−q̃2) = {(ρ̃,a · (−b)) : ρ̃ ∈ X} = {(ρ̃,−(ab)) : ρ̃ ∈ X} −(q̃1)·̃q̃2 = {(ρ̃, (−a) · b) : ρ̃ ∈ X} =
{(ρ̃,−(ab)) : ρ̃ ∈ X} q̃1 ·̃q̃2 = {(ρ̃,a · b) : ρ̃ ∈ X} = {(ρ̃,ab) : ρ̃ ∈ X}. =⇒ −(q̃1 ·̃q̃2) = {(ρ̃,−(ab)) : ρ̃ ∈
X}. Hence q̃1 ·̃(−q̃2) = (−q̃1)·̃q̃2 = −(q̃1 ·̃q̃2).

3. (−q̃1)·̃(−q̃2) = {(ρ̃, (−a) · (−b)) : ρ̃ ∈ X} = {(ρ̃,a · b) : ρ̃ ∈ X} = (q̃1)·̃(q̃2), which completes the proof.

In Example 4.2, q̃o is the soft additive identity member with soft additive inverses, −q̃1 = q̃1, −q̃2 = q̃4,
−q̃3 = q̃5, −q̃4 = q̃2, and −q̃5 = q̃3.

1. q̃o ·̃q̃1 = q̃o, q̃o ·̃q̃2 = q̃o.
2. (−q̃2)·̃(q̃1) = q̃o = (q̃2)·̃(−q̃1), (−q̃1)·̃(q̃5) = q̃1 = (q̃1)·̃(−q̃5).
3. (−q̃2)·̃(−q̃3) = q̃4 = q̃2 ·̃q̃3, (−q̃3)·̃(−q̃5) = q̃3 = q̃3 ·̃q̃5.

Theorem 4.4. Let ((θ,X), +̃, ·̃) and ((φ,Y), +̃, ·̃) be two non-null SRgs. Then,

1. ((θ,X), +̃, ·̃) ∧̃ ((φ,Y), +̃, ·̃) is a SRg over E;
2. ((θ,X), +̃, ·̃) ∩̃R ((φ,Y), +̃, ·̃) is a SRg over E.

Proof. The proof is straightforward.

5. Soft algebraic structures parallel to field

The SSt (θ,X) is named as soft field if the set of alternatives U is a field itself and θ maps the attributes
in X to the subfields of U [19]. The following definition enables us to represent soft field as classical
algebraic field.

Definition 5.1. Let (θ,X) be a SSt over a field (U,+, ·) and θ is mapping the attributes in X to the subfields
of (U,+, ·). Assuming the soft binary operations defined on (θ,X) are +̃ and ·̃, it is named as soft field,
denoted by ((θ,X), +̃, ·̃) if

1. ((θ,X), +̃) is an abelian SGp;
2. ((φ,X), ·̃) is an abelian group, where φ : X→ P(U) such that φ(ρ̃) = θ(ρ̃) − {0}, for all ρ̃ ∈ X and 0 is

the additive identity of the field (U,+, ·);
3. distributive property of ·̃ over +̃ holds, i.e., for any SMbs q̃i, q̃j, q̃k of (θ,X),

q̃i ·̃(q̃j+̃q̃k) = (q̃i·q̃j)+̃(q̃i ·̃q̃k) (left distributive property),
(q̃i+̃q̃j)·̃q̃k = (q̃i ·̃q̃k)+̃(q̃j ·̃q̃k) (right distributive property).

An example is provided in the next part to help the reader understand how the definition of soft field
as it is presented permits them to discuss the attributes of soft fields as classical fields.

Example 5.2. Let the set of alternatives (U,+, ·) be the field Z3 under modulo addition and multiplication,
that is U = {0̄, 1̄, 2̄} and E = {ρ̃i, i = 1, 2, . . . , 5} be a set of attributes. Let X = {ρ̃1, ρ̃2} be a subset of E and
θ : X→ P(U) such that θ(ρ̃1) = {0̄, 1̄, 2̄} = θ(ρ̃2). Clearly, ((θ,X), +̃, ·̃) is soft field with following SMbs, q̃o =
{(ρ̃1, 0̄), (ρ̃2, 0̄)}, q̃1 = {(ρ̃1, 0̄), (ρ̃2, 1̄)}, q̃2 = {(ρ̃1, 0̄), (ρ̃2, 2̄)}, q̃3 = {(ρ̃1, 1̄), (ρ̃2, 0̄)}, q̃4 = {(ρ̃1, 1̄), (ρ̃2, 1̄)}, q̃5 =
{(ρ̃1, 1̄), (ρ̃2, 2̄)}, q̃6 = {(ρ̃1, 2̄), (ρ̃2, 0̄)}, q̃7 = {(ρ̃1, 2̄), (ρ̃2, 1̄)}, q̃8 = {(ρ̃1, 2̄), (ρ̃2, 2̄)}.

1. ((θ,X), +̃) is an abelian group with Cayley’s table given in Table 14.
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Table 14: Cayley’s table for soft filed ((θ,X), +̃, ·̃) over soft addition +̃.

+̃ q̃o q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8

q̃o q̃o q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8
q̃1 q̃1 q̃2 q̃o q̃4 q̃5 q̃3 q̃7 q̃8 q̃6
q̃2 q̃2 q̃o q̃1 q̃5 q̃3 q̃4 q̃8 q̃6 q̃7
q̃3 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8 q̃o q̃1 q̃2
q̃4 q̃4 q̃5 q̃3 q̃7 q̃8 q̃6 q̃1 q̃2 q̃o
q̃5 q̃5 q̃3 q̃4 q̃8 q̃6 q̃7 q̃2 q̃o q̃1
q̃6 q̃6 q̃7 q̃8 q̃o q̃1 q̃2 q̃3 q̃4 q̃5
q̃7 q̃7 q̃8 q̃6 q̃1 q̃2 q̃o q̃4 q̃5 q̃3
q̃8 q̃8 q̃6 q̃7 q̃2 q̃o q̃1 q̃5 q̃3 q̃4

2. ((φ,X), ·̃) is an abelian group where φ : X→ P(U) such that φ(ρ̃1) = {1̄, 2̄},φ(ρ̃2) = {1̄, 2̄}. Table 15 is
representing the corresponding Cayley’s table.

Table 15: Cayley’s table for soft filed ((θ,X), +̃, ·̃) over soft multiplication .̃.

·̃ q̃4 q̃5 q̃7 q̃8

q̃4 q̃4 q̃5 q̃7 q̃8
q̃5 q̃5 q̃4 q̃8 q̃7
q̃7 q̃7 q̃8 q̃4 q̃5
q̃8 q̃8 q̃7 q̃5 q̃4

3. Distributive properties hold.

6. Conclusion

The key objective of this work is to study various properties of soft algebraic structures and define
them in terms of traditional algebraic structures. This study uses SMbs and SEts to define several soft
algebraic structures. To guarantee understanding, an SSbGp is developed, and every possible SSbGp
of the examined SGp is carefully examined using examples. Two essential elements of SGps, the soft
inverse element and the soft identity element, are generalized in this study. Moreover, a generalized
formula for determining how many possible SSbGps there could be for a specific SGp is given. It is
observed that when an SGp is constructed, its number of SSbGps is larger than the number of subgroups
of the corresponding classical group. The soft semigroup is also defined. Examples are provided for the
definitions of SRg and soft field. Additionally, each of these definitions is confirmed by demonstrating
a few of the associated preset theorems. Additionally, an SRg theorem analogous to the classical ring
definition is offered with the aid of the suggested definition. The basis for the construction of soft algebraic
structures, such as soft vector spaces, soft subfields, and soft subrings, is given in this study. It also offers
a basis for extending the theory of soft sets to algebra, topology, and functional analysis, among other
branches of mathematics. Since soft sets are more adaptable than classical sets and can be used to solve
a wide range of real-world issues, this paper could be expanded to include more real-world problem
modeling.
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