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Abstract
In this paper, a new class of analytic functions called convex univalent functions is introduced. These functions are of the

form
1 +

1
a

log
1 − bz

1 − z
for a > 0, −1 < b < 1,

and they map the open unit disk onto a horizontal semi-infinite strip domain. The paper focuses on function families for which
zf ′/f maps the unit disk to a subset of this strip domain. Several properties of this class of functions are discussed, including
coefficient estimates, extreme points, and growth properties. The paper also explores connections to other classes of functions,
such as starlike functions. There are several applications of this class of functions. They can be used in conformal mapping
problems and problems related to the analysis of complex networks. The results presented in the paper can also be applied in
constructing mathematical models that describe various physical phenomena, such as fluid dynamics and electromagnetism.
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1. Introduction

The Euler dilogarithm or Spence’s function is defined by

Li2(z) = −

∫z
0

log(1 − t)

t
,dt, (1.1)

for complex argument z 6∈ [1,∞), where

log z = ln |z|+ i, Arg, z for z 6= 0,−π < Arg, z < π.

However, the principal branch of the dilogarithm is defined by the integrals in (1.1) as a single-valued
analytic function in the entire z-plane, except for the points on the cut along the real axis from 1 to +∞
(−π < Arg(1 − z) < π).
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The integral (1.1) may, therefore, be used to obtain analytic continuations of the dilogarithm. A survey
of the notations and definitions adopted by different authors may be found in Lewin [19, §1.10, pp. 27-29].

Using the representations (1.1), one may expand the logarithm in powers of z, obtaining the Taylor
series expansion for the dilogarithm, valid for |z| 6 1,

Li2(z) =

∞∑
n=1

zn

n2 .

Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane
except at z = 1, where it has a logarithmic branch point. The standard choice of branch cut is along the
positive real axis (1,∞). However, the function is continuous at the branch point and takes on the value
Li2(1) = π2/6.

The class A consists of functions f that are analytic within the open unit disc D in the complex plane
C and can be represented as:

f(z) = z+ a2z
2 + a3z

3 + · · · for z ∈ D. (1.2)

The subset of A that contains all functions f within D that are univalent is referred to as S.
Assume that F and H are analytic functions within D, the open unit disk in the complex plane C. We

say that F is subordinate to H in D if there exists a self-map function ω that is analytic within D, has the
property ω(0) = 0, and satisfies the inequality |ω(z)| < 1 for all z ∈ D, such that F(z) = H(ω(z)) for all
z ∈ D. If the function H is univalent within D, then F ≺ H if and only if F(0) = H(0) and F(D) ⊂ H(D).
This notation and definition can be found, for example, in [7].

Ma and Minda [20] used subordination to introduce the class of starlike functions given by:

ST(φ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z)

}
, (1.3)

where φ is an analytic function whose real part is positive, and whose range in the open unit disk is
symmetric about the real axis and starlike with respect to φ(0) = 1 and φ ′(0) > 0.

For −1 6 B < A 6 1, the subclass ST[A,B] of S consists of Janowski starlike functions, defined
as ST((1 + Az)/(1 + Bz)). The special case ST(β) := ST[1 − 2β,−1] is the well-known class of starlike
functions of order 0 6 β < 1, as noted in [28]. When β = 0, i.e., A = 1 and B = −1, it results in the usual
class ST of starlike functions. Similarly, SThpl := ST((1 − z)s) is the subclass of ST introduced by Kanas
et al. [14] (see also, [22]), consisting of functions f ∈ A such that zf(z)/f(z) lies in the domain bounded by
a right branch of a hyperbola 1

ρ =
(
2 cos ϕs

)s, where 0 < s 6 1 and |ϕ| < (πs)/2. In the similar fashion,
it is easily seen that is the subclass of S∗L(λ);= ST((1 + z)λ) introduced by Masih et al. [21] (see also,
[17, 23]), consisting of functions f ∈ A such that zf ′(z)/f(z) lies in the region bounded by the right-half of
the lemniscate of Bernoulli given by ρ =

(
2 cos ϕλ

)λ, where 0 < λ 6 1 and |ϕ| < (πλ)/2. Moreover, several
results were obtained when φ(z) = qk(z) which is of the form:

qk(z) =


1 + 2

1−k2 sinh2
{( 2
π arccosk

)
tanh−1√z

}
, 0 6 k < 1,

1 + 2
π

(
log 1+

√
z

1−
√
z

)2
, k = 1

1 + 1
k2−1 sin

(
π

2R(t)

∫u(z)
0

dt√
1−x2
√

1−(tx)2

)
, k > 1,

where u(z) = z−
√
t√

t(1−
√
tz)

, z ∈ D, and t ∈ (0, 1) is chosen such that

k = cosh
(
πR(

√
1 − t2)/R(t)

)
,
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R(t) is the Legendre’s complete elliptic integral of the first kind, see for details [15, 16] (see also [30]). The
class ST(qk) is called a class of k-uniformly starlike functions. Note that for k > 0, the region qk(D) is
associated with the conic domain in the positive half-plane. In fact, the region qk(D) is the positive half
plane and for 0 < k < 1, the region qk(D) is associated with a parabolic domain, and is associated with a
hyperbolic domain if k > 1.

Many subclasses of ST were considered in the past, for an appropriate choice of φ in (1.3). For instance,
the interesting regions represented by the functions 1 + z− z3/3, 1/(1 − (1 + b)z+ bz2) (−1 < b < 1), ez,
and 2/(1 + e−z) were considered in place of ϕ(z) by Wani and Swaminathan [33], Sokół [32], Mendiratta
et al. [24], and Goel and Kumar [8] respectively, and others [3–6, 11–13, 18].

1.1. Main contribution and motivation
The authors of the aforementioned papers introduced and analyzed different classes of starlike func-

tions. In this work, we focus on a subfamily of starlike functions, denoted by STsis(a,b), for which the
function zf ′(z)/f(z) is contained within a domain bounded by the horizontal semi-infinite strip

Da,b =

{
u+ iv : u > 1 +

1
a

ln
1 + b

2 cosav
, |v| <

π

2a

}
.

In order to present the main theorem of this work, we introduce a family of univalent analytic functions,
denoted by La,b(·), in Section 2.

The rest of this work is structured as follows. In Section 2 we introduce and study the functions
La,b(·). In Section 3 we introduce the class STsis(a,b) and then examine the geometric properties of this
class.

2. A family of functions

In this section, we consider the family of analytic functions La,b(z) defined as:

La,b(z) = 1 +
1
a

log
1 − bz

1 − z
= 1 +

∞∑
n=1

Bnz
n for a > 0, −1 < b < 1, (2.1)

where Bn = (1 − bn)/(an). Here, the branch of the logarithm is chosen such that log 1 := 0 and maps the
unit circle ∂D onto a domain ∂Da,b defined by

∂Da,b =

{
u+ iv : u = 1 +

1
a

ln
1 + b

2 cosav
, −

π

2a
< v <

π

2a

}
. (2.2)

We assert that the function La,b(z) defined by equation (2.1) maps the open unit disk D onto a region
bounded by the curve ∂Da,b given by (2.2). To see why, suppose w = u+ iv is a point on ∂Da,b and
consider the pre-image z under the function La,b(z) such that La,b(z) = w. Then, we have

a(w− 1) = log
1 − bz

1 − z
for z ∈ D.

For z ∈ D and −1 < b < 1, we have <{(1 − bz)/(1 − z)} > 0, which is equivalent to a|v| = |={a(w− 1)}| <
π/2. Since the exponential function et is univalent in the strip |= t| < π/2, we can conclude that∣∣1 − ea(w−1)

∣∣ = ∣∣b− ea(w−1)
∣∣ (|z| = 1, z 6= 1), and hence < ea(w−1) = (1 + b)/2, which further implies

that La,b(∂D) = ∂Da,b.
In the rest of the section, we use z = eiθ (0 < θ < 2π), and we have the following expression for

La,b
(
eiθ
)
:

La,b
(
eiθ
)
= 1 +

1
a

ln
∣∣∣∣1 − beiθ

1 − eiθ

∣∣∣∣+ i

a
Arg

1 − beiθ

1 − eiθ

= 1 +
1

2a
ln

1 + b2 − 2b cos θ
2(1 − cos θ)

+
i

a
tan−1

(
1 − b

1 + b
cos

θ

2

)
.

(2.3)
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Moreover, using equation (2.3), we can obtain more precise inequalities for the real and imaginary parts
of La,b

(
eiθ
)

such as:

<
{
La,b

(
eiθ
)}

> 1 +
1
a

ln
1 + b

2
and −

π

2a
< =
{
La,b

(
eiθ
)}
<
π

2a
.

Let

g(z) :=
a

1 − b
(La,b(z) − 1) =

∞∑
n=1

1 − bn

1 − b
· z
n

n
for z ∈ D.

It can be shown by simple calculations that,

1 +
zg ′′(z)

g ′(z)
=

1 − bz2

(1 − z)(1 − bz)
for z ∈ D.

Hence, we get

<

{
1 +

zg ′′(z)

g ′(z)

}
= <

{
1 − bz2

(1 − z)(1 − bz)

}
>

1 − b

2(1 + b)
for z ∈ D.

This implies that the function g is convex of order 1−b
2(1+b) . Consequently, the function La,b is univalent

and convex, but not normalized in the usual sense. A visual representation of this result is illustrated in
Figure 2.
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Figure 1: The image of D under La,b(z).
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1
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Figure 2: The image of ∂D under La,b for a = 1,b = 0.

Since the bilinear transformation q(z) := (1 − bz)/(1 − z) maps |z| = r < 1 onto the disk∣∣∣∣q(z) − 1 − br2

1 − r2

∣∣∣∣ 6 (1 − b)r

1 − r2 , (2.4)
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then by simple calculation, we have

1 + br

1 + r
6

∣∣∣∣1 − bz

1 − z

∣∣∣∣ 6 1 − br

1 − r
for z ∈ D.

To consider the previous inequality and the increasing property of the function ln on (0,+∞), we get
La,b(−r) 6 <{La,b(z)} 6 La,b(r). Furthermore, we have = {La,b(z)} =

1
a arg 1−bz

1−z . Using relationship

(2.4), we can deduce that |= {La,b(z)}| 6
1
a arcsin (1−b)r

1−br2 .
For −1 < t 6 1, the function − log(1 − tz) is convex in D, and we have the property ln(1 + |t|r) 6

|log(1 − tz)| 6 − ln(1 − |t|r) for |z| = r < 1. Hence, we can conclude that

1 +
1
a

ln ((1 − r)(1 + |b|r)) 6 |La,b(z)| 6 1 −
1
a

ln ((1 − r)(1 − |b|r)) .

To conclude this section, we can state the following theorem.

Theorem 2.1. Let La,b be the function defined by (2.1). Then La,b is univalent and convex. Also,

1. for z ∈ D,
|= {La,b(z)}| <

π

2a
;

2. for z ∈ D,

<{La,b(z)} > 1 +
1
a

ln
1 + b

2
=: m(a,b);

3. for 0 < r < 1, let Dr := {z ∈ D : |z| 6 r}, then

La,b(Dr) =

{
u+ iv :

1
a

ln
1 + br

1 + r

1
cosav

6 u− 1 6
1
a

ln
1 − br

1 − r

1
2 cosav

, |v| <
π

2a

}
;

4. for z ∈ D,

La,b(D) =

{
u+ iv : u > 1 +

1
a

ln
1 + b

2 cosav
, |v| <

π

2a

}
=: Da,b;

5. for z ∈ D,
La,b(−|z|) 6 <{La,b(z)} 6 La,b(|z|);

6. for z ∈ D,

|= {La,b(z)}| 6
1
a

arcsin
(1 − b)|z|

1 − b|z|2
;

7. for z ∈ D,

1 +
1
a

ln ((1 − |z|)(1 + |bz|)) 6 |La,b(z)| 6 1 −
1
a

ln ((1 − |z|)(1 − |bz|)) .

Lemma 2.2 ([25]). Let h be convex in D, with h(0) = 1. If p(z) = 1 + p1z+ · · · satisfies

p(z) + zp ′(z) = (zp(z)) ′ ≺ h(z) for z ∈ D,

then
p(z) ≺ q(z) ≺ h(z) for z ∈ D,

where
q(z) =

1
z

∫z
0
h(t)dt for z ∈ D.

Additionally, q(z) is convex and is the best dominant.

By considering Lemma 2.2 and Theorem 2.1, we obtain the following results.
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Corollary 2.3. Suppose that f ∈ A satisfies the condition f ′(z) + zf ′′(z) ≺ La,b(z), where La,b(·) given by (2.1).
Then

f ′(z) ≺ qa,b(z) for z ∈ D,

where qa,b given by (2.5) and the function qa,b is convex and the best dominant. Suppose that f ∈ A satisfies the
condition f ′(z) ≺ La,b(z), where La,b(·) given by (2.1). Then

f(z)

z
≺ qa,b(z) for z ∈ D,

where qa,b (see Fig. 3) is given by (2.5) and the function qa,b is convex and the best dominant.

qa,b(z) =

{
1 + 1

az

[
(1 − z) log(1 − z) − 1−bz

b log(1 − bz)
]

, for b 6= 0,

1 + 1
az

[z+ (1 − z) log(1 − z)] , for b = 0.
(2.5)
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Figure 3: The image of D under qa,b(z).

3. The class STsis(α) and its properties

Definition 3.1. For −1 < b < 1 and a > 0, the subclass STsis(a,b) of A consists of functions f that satisfy
the condition

zf ′(z)

f(z)
≺ 1 +

1
a

log
1 − bz

1 − z
for z ∈ D.

Geometrically, this condition means that the expression zf ′(z)/f(z) lies within a semi-infinite strip defined
by u > 1+(1/a) ln[(1+b)/2] and |v| < π/(2a). By the properties ofm(a,b) given in Theorem 2.1, it follows
that for f ∈ STsis(a,b), the real part of zf ′(z)/f(z) is greater than m(a,b) for all z ∈ D.

According to the theorem, the functions La,b have a symmetric domain with respect to the real axis
and are starlike with respect to La,b(0) = 1, L ′

a,b(0) = (1−b)/a > 0, and for z ∈ D, <{La,b(z)} > m(a,b).
It is assumed that m(a,b) > 0 or a > ln(2/(1 + b)), unless stated otherwise. Thus,

STsis

(
a,

2
ea

− 1
)
⊂ ST, STsis(a,b) ⊂ ST(β) for 0 6 β 6 1 +

1
a

ln
1 + b

2
.

Also,
STsis(a1,b1) ⊂ STsis(a2,b2)⇐⇒ b2 6 b1, a2 > a1.

Especially, let b > 0 and a > ln 2, we have

STsis(a,b) ⊂ STsis(a, 0).



V. S. Masih, R. Saadeh, M. Fardi, A. Qazza, J. Math. Computer Sci., 33 (2024), 238–249 244

Additionally, we have STsis(a,b) ⊂ N for e−a 6 (1 + b)/2 (Fig. 4), where N is the family of functions that
are univalent, starlike in one direction (see [26]), and satisfying,

−
1
2
< <

(
zf ′(z)

f(z)

)
.

By Theorem 2.1, it can be clearly seen that the largest disk with center (1, 0) that contains La,b(z) (see
Fig. 5) is {w ∈ C : |w− 1| < R}, where R := 1

a ln 2
1+b . Thus∣∣∣∣zf ′(z)f(z)

− 1
∣∣∣∣ < 1

a
ln

2
1 + b

= 1 −m(a,b) =⇒ f ∈ STsis(a,b) for z ∈ D. (3.1)

ln2
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Figure 4: The range of the parameters a and b.
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Figure 5: The image of D under La,b(z),
(

1
a ln 2
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)
z+ 1 for a = 1,b = 0.5, 2

e − 1.

A function g is in the class STsis(a,b) if and only if there exist an analytic function q; q ≺ La,b, such
that

g(z) = z exp
(∫z

0

q(t) − 1
t

dt
)

for z ∈ D.
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For q(t) = La,b (t
n) with n = 1, 2, . . . and t ∈ D, we have (see Fig. 6)

ha,b,n(z) = z exp

(
1
a

∫z
0

log 1−btn
1−tn

t
dt

)
.
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Figure 6: The image of D under ha,b,n(z) for n = 8.

Since <{1 − z} and <{1 − bz} are positive for all z ∈ D and a > ln 2
1+b , then we can write the previous

relationship as follows,

ha,b,n(z) = z exp
(

1
a

∫z
0

log(1 − btn)

t
dt−

1
a

∫z
0

log(1 − tn)

t
dt
)

= z exp
(

Li2(zn) − Li2(bzn)
an

)
= z+

1 − b

an
zn+1 +

(1 − b) [an+ 2 + (an− 2)b]
4a2n2 z2n+1 + · · · .

(3.2)

These are extremal functions for several problems in the class STsis(a,b). Especially for n = 1 we obtain
(see Fig. 7)

ha,b(z) := ha,b,1(z) = z exp
(

Li2(z) − Li2(bz)

a

)
. (3.3)
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Figure 7: The image of D under ha,b(z).
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Corollary 3.2. The class STsis(a,b) is nonempty. The following functions are the examples of their members.

1. Let an ∈ C with n = 2, 3, . . .. Then h(z) = z+ anzn ∈ STsis(a,b)⇐⇒ |an| 6
1−m(a,b)
n−m(a,b) .

2. Let A ∈ C. Then h(z) = z/(1 −Az)2 ∈ STsis(a,b)⇐⇒ |A| 6 1−m(a,b)
3−m(a,b) .

Proof.

1. The function h(z) = z+ anz
n is univalent, if and only if |an| 6 1/n. Logarithmic differentiation of

non-zero univalent function h(z)/z in D yields:

zh ′(z)

h(z)
− 1 =

(n− 1)anzn−1

1 + anzn−1 for z ∈ D.

Thus ∣∣∣∣zh ′(z)h(z)
− 1
∣∣∣∣ = ∣∣∣∣(n− 1)anzn−1

1 + anzn−1

∣∣∣∣ < (n− 1)|an|
1 − |an|

for z ∈ D.

From (3.1), the function z+ anzn is in STsis(a,b) if and only if

(n− 1)|an|
1 − |an|

6 1 −m(a,b).

Thus the Case 1 is obtained.

2. The proof is very similar to that of part 1. Therefore, we only sketch the proof. Obviously, the rotated
Koebe function z/(1 − Az)2 with A, a complex number with absolute value 1, is not the element of
STsis(a,b). Since STsis(a,b) ⊂ ST, we conclude that |A| < 1. Therefore∣∣∣∣zh ′(z)h(z)

− 1
∣∣∣∣ = ∣∣∣∣ 2Az

1 −Az

∣∣∣∣ < 2|A|
1 − |A|

for z ∈ D.

From (3.1), the function z/(1 −Az)2 is in STsis(a,b) if and only if

2|A|
1 − |A|

6 1 −m(a,b).

Thus the Case 2 is obtained.

The following corollary is the consequence of Theorems in [20].

Corollary 3.3. Let f ∈ STsis(a,b) and |z| = r < 1. Then

1. −ha,b(−r) 6 |f(z)| 6 ha,b(r);

2.
∣∣∣Arg

(
f(z)
z

)∣∣∣ 6 max|z|=rArg
(
ha,b(z)
z

)
, equality holds at a given point other than 0 for functions µha,b(µz)

with |µ| = 1;

3. f(z)z ≺
ha,b(z)
z

(z ∈ D);
4. if f ∈ STsis(a,b), then either f is a rotation of ha,b given by (3.3) or{

w ∈ C : |w| 6 −ha,b(−1)
}
⊂ f(D),

where ha,b(−1) = limr→1+ ha,b(−r).
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The bound for the Fekete-Szegö inequality for the class STsis(a,b) can be estimated as in [20, Theorem
1, p.38]. If f ∈ STsis(a,b) be given by (1.2), then for complex number λ ∈ C,

∣∣a3 − λa
2
2
∣∣ 6 1 − b

2a
max

{
1,
∣∣∣∣λ2(1 − b)

a
−

1 − b

a
−

1 + b

2

∣∣∣∣} .

The inequalities are sharp for the functions ha,b,2 and ha,b where are given by (3.2) and (3.3). Let f ∈
STsis(a,b) be given by (1.2). Then

∣∣a3 − a
2
2
∣∣ 6 1 − b

2a
, |a2| 6

1 − b

a
,

and

|a3| 6
1 − b

2a

{
1, for a > 2,
a(1+b)+2(1−b)

2a , for a 6 2.

These inequalities are sharp.
If f ∈ S, then the function f(z)/z is analytic and does not vanish in D. Furthermore, for such f ∈ S, the

logarithmic function as given by equation

log
f(z)

z
=

∞∑
n=1

2γn(f)zn (3.4)

is well-defined for z ∈ D, where γn(f) denotes the nth coefficient in the Laurent expansion of f around
z = 0.

Theorem 3.4 ([29]). Let g(z) =
∑∞
n=1 gnz

n be analytic and convex univalent in D. If h(z) =
∑∞
n=1 hnz

n is
analytic in D and satisfies the subordination h(z) ≺ g(z) in D, then

|hn| 6 |g1| for n = 1, 2, . . . .

Theorem 3.5. Let f ∈ A belongs to the class STsis(a,b). Then the logarithmic coefficients of f satisfy the inequality

|γn(f)| 6
1 − b

2a
· 1
n

for n = 1, 2, . . . . (3.5)

The inequality is sharp. Equality holds for functions ha,b,n(z) given by (3.2).

Proof. Let f ∈ STsis(a,b). Then we have

z

(
log

f(z)

z

) ′
≺ 1
a

log
1 − bz

1 − z
for z ∈ D.

The subordination relation (3.4) implies that

∞∑
n=1

2nγn(f)zn ≺
∞∑
n=1

Bnz
n,

where Bn = (1 − bn)/(an) is defined in (2.1). Applying Theorem 3.4, we obtain the inequality 2n |γn(f)|

6 |B1| = (1 − b)/a, and this completes inequality (3.5). The inequality is sharp when f(z) = ha,b,n(z),
which is given by (3.2).
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4. Conclusions

The paper presented a thorough examination of the subset horizontal semi-infinite strip domain curve,
exploring various parameters and their effects. The authors investigated families of starlike and convex
functions that were situated within the regions bounded by the curve, providing examples and highlight-
ing the properties of extremal functions within these families. The study also established both upper and
lower bounds for the real and imaginary components of these functions, identifying key features of these
bounds. Furthermore, the paper investigated logarithmic coefficients. Overall, this research provided
valuable insights into the nature of the subset horizontal semi-infinite strip domain curve and its associ-
ated function. In the future we intend to study more inequalities [9, 10, 27] and new results related to
improper integrals as in [1, 2, 31].
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[21] V. S. Masih, A. Ebadian, J. Sokół, On strongly starlike functions related to the Bernoulli lemniscate, Tamkang J. Math.,

53 (2022), 187–199. 1
[22] V. S. Masih, S. Kanas, Subclasses of starlike and convex functions associated with the limaçon domain, Symmetry, 12
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