Available online at www.isr-publications.com/jmcs J. Math. Computer Sci. 16 (2016), 412–418 Research Article

Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

The reverse order law for EP modular operators

Javad Farokhi-Ostad^{a,*}, Mehdi Mohammadzadeh Karizaki^b

^aDepartment of Basic Sciences, Birjand University of Technology, Birjand, Iran. ^bUniversity of Torbat Heydarieh, Torbat Heydariyeh, Iran.

Abstract

In this paper, we present new conditions that reverse order law holds for EP modular operators. ©2016 All rights reserved.

Keywords: EP operator, reverse order law, Moore-Penrose inverse, Hilbert C^* -module, closed range.

2010 MSC: 47A05, 46L08, 15A09.

1. Introduction and preliminaries

It is a classical result of Greville [8], that $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$ if and only if $\operatorname{ran}(T^*TS) \subset \operatorname{ran}(S)$ and $\operatorname{ran}(SS^*T^*) \subset \operatorname{ran}(T^*)$, in the case when T and S are complex (possibly rectangular) matrices. This result is extended for bounded linear operators on Hilbert spaces, by Bouldin [2, 3], and Izumino [9]. Then, in [5], the reverse order law for the Moore-Penrose inverse is obtained as a consequence of some set equalities. Recently, Sharifi [13] and Mohammadzadeh Karizaki [11, 12] studied Moore -Penrose inverse of product of the operators with closed range in Hilbert C^* -modules.

In this paper, we state new conditions that reverse order law for the Moore-Penrose inverse holds. A bounded linear operator T with closed range on a complex Hilbert space H is called an EP operator if T and T^* have the same range. Djordjević [4] gave necessary and sufficient conditions for a product of two EP operators with closed ranges to be an EP operator with a closed range. In addition, we state new conditions that if $T, S \in \mathcal{L}(\mathcal{X})$ are EP operators with closed ranges and $TS = ST^* = S^*T$, then TS has closed range and $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

^{*}Corresponding author

Email addresses: javadfarrokhi900gmail.com, j.farrokhi@birjandut.ac.ir (Javad Farokhi-Ostad), mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki)

Hilbert C^* -modules are objects like Hilbert spaces, except that the inner product takes its values in a C^* -algebra, instead of being complex-valued. Throughout the paper, \mathcal{A} is a C^* -algebra (not necessarily unital). A (right) pre-Hilbert module over a C^* -algebra \mathcal{A} is a complex linear space \mathcal{X} , which is an algebraic right \mathcal{A} -module and $\lambda(xa) = (\lambda x)a = x(\lambda a)$ equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ satisfying,

- (i) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ iff x = 0,
- (ii) $\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle$,
- (iii) $\langle x, ya \rangle = \langle x, y \rangle a$,

(iv)
$$\langle y, x \rangle = \langle x, y \rangle^*$$

for each $x, y, z \in \mathcal{X}, \lambda \in \mathbb{C}, a \in \mathcal{A}$. A pre-Hilbert \mathcal{A} -module \mathcal{X} is called a Hilbert \mathcal{A} -module if it is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. Left Hilbert \mathcal{A} -modules are defined in a similar way. For example, every C^* -algebra \mathcal{A} is a Hilbert \mathcal{A} -module with respect to inner product $\langle x, y \rangle = x^*y$, and every inner product space is a left Hilbert \mathbb{C} -module.

Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A} -modules, then, $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is the set of all maps $T : \mathcal{X} \to \mathcal{Y}$ for which there is a map $T^* : \mathcal{Y} \to \mathcal{X}$, the so-called adjoint of T such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for each $x \in \mathcal{X}, y \in \mathcal{Y}$. It is known that any element T of $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ must be a bounded linear operator, which is also \mathcal{A} -linear in the sense that T(xa) = (Tx)a for $x \in \mathcal{X}$ and $a \in \mathcal{A}$ [10, Page 8]. We use the notations $\mathcal{L}(\mathcal{X})$ in place of $\mathcal{L}(\mathcal{X}, \mathcal{X})$, and ker(\cdot) and ran(\cdot) for the kernel and the range of operators, respectively. The identity operator on \mathcal{X} is denoted by $1_{\mathcal{X}}$ or 1 if there is no ambiguity.

Suppose that \mathcal{X} is a Hilbert \mathcal{A} -module and \mathcal{Y} is a closed submodule of \mathcal{X} . We say that \mathcal{Y} is orthogonally complemented if $\mathcal{X} = \mathcal{Y} \oplus \mathcal{Y}^{\perp}$, where $\mathcal{Y}^{\perp} := \{y \in \mathcal{X} : \langle x, y \rangle = 0 \text{ for all } x \in \mathcal{Y} \}$ denotes the orthogonal complement of \mathcal{Y} in \mathcal{X} . The reader is referred to [6, 7, 10] and the references cited therein for more details.

Throughout this paper, \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A} -modules. Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented, however, Lance [10] proved that certain submodules are orthogonally complemented as follows:

Theorem 1.1 ([10]). Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- ker(T) is orthogonally complemented in \mathcal{X} , with complement ran(T^*);
- ran(T) is orthogonally complemented in \mathcal{Y} , with complement ker (T^*) ;
- The map $T^* \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Xu and Sheng [16] have shown that a bounded adjointable operator between two Hilbert C^* modules admits a bounded Moore-Penrose inverse if and only if the operator has closed range.

Definition 1.2. Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. The Moore-Penrose inverse T^{\dagger} of T (if it exists) is an element in $X \in L(\mathcal{Y}, \mathcal{X})$ which satisfies:

- 1. TXT = T;
- 2. XTX = X;
- 3. $(TX)^* = TX;$
- 4. $(XT)^* = XT$.

If $\theta \subseteq \{1, 2, 3, 4\}$, and X satisfies the equations (i) for all $i \in \theta$, then X is a θ -inverse of T. The set of all θ -inverses of T is denoted by $T\{\theta\}$. If $\operatorname{ran}(T)$ is closed, then $T\{1, 2, 3, 4\} = \{T^{\dagger}\}$. An operator X is an inner inverse of T if $X \in T\{1\}$. In this case, T is inner invertible, or relatively regular. It is well-known that T is inner invertible if and only if $\operatorname{ran}(T)$ is closed.

Motivated by these conditions, T^{\dagger} is unique and $T^{\dagger}T$ and TT^{\dagger} are orthogonal projections, in the sense that they are self-adjoint idempotent operators. Clearly, T is Moore-Penrose invertible if and only if T^* is Moore-Penrose invertible, and in this case $(T^*)^{\dagger} = (T^{\dagger})^*$.

By Definition 1.2, we have

$$\operatorname{ran}(T) = \operatorname{ran}(TT^{\dagger}), \qquad \operatorname{ran}(T^{\dagger}) = \operatorname{ran}(T^{\dagger}T) = \operatorname{ran}(T^{\ast}), \\ \operatorname{ker}(T) = \operatorname{ker}(T^{\dagger}T), \qquad \operatorname{ker}(T^{\dagger}) = \operatorname{ker}(TT^{\dagger}) = \operatorname{ker}(T^{\ast}),$$

and by Theorem 1.1, we obtain

$$\mathcal{X} = \ker(T) \oplus \operatorname{ran}(T^{\dagger}) = \ker(T^{\dagger}T) \oplus \operatorname{ran}(T^{\dagger}T),$$
$$\mathcal{Y} = \ker(T^{\dagger}) \oplus \operatorname{ran}(T) = \ker(TT^{\dagger}) \oplus \operatorname{ran}(TT^{\dagger}).$$

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert C^* -modules. Indeed, if \mathcal{M} and \mathcal{N} are closed orthogonally complemented submodules of \mathcal{X} and \mathcal{Y} , respectively, and $\mathcal{X} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, $\mathcal{Y} = \mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$T = \left[\begin{array}{cc} T_1 & T_2 \\ T_3 & T_4 \end{array} \right],$$

where, $T_1 \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_2 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}), T_3 \in \mathcal{L}(\mathcal{M}, \mathcal{N}^{\perp})$ and $T_4 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M} .

In fact $T_1 = P_N T P_M$, $T_2 = P_N T (1 - P_M)$, $T_3 = (1 - P_N) T P_M$, $T_4 = (1 - P_N) T (1 - P_M)$.

Definition 1.3 ([14]). Let \mathcal{X} be a Hilbert \mathcal{A} -modules. An operator $T \in \mathcal{L}(\mathcal{X})$ is called EP if ran(T) and ran (T^*) have the same closure.

Lemma 1.4 ([14]). Let \mathcal{X} be a Hilbert \mathcal{A} -module and $T \in \mathcal{L}(\mathcal{X})$ with closed range. Then T is EP if and only if it is of the matrix form

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T) \end{bmatrix}$$

for some invertible operator $T_1 \in \mathcal{L}(\operatorname{ran}(T), \operatorname{ran}(T))$.

2. The reverse order law

In this section, we state some new conditions that reverse order law holds for EP modular operators.

Theorem 2.1. Suppose that \mathcal{X} is a Hilbert \mathcal{A} -module and $T, S \in \mathcal{L}(\mathcal{X})$ are EP operators with closed ranges and $TS = ST^*$. Then TS has closed range and $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS$.

Moreover, if $P_{ran(S)}T = P_{ran(S)}TP_{ran(S)}$, then

- (i) $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$,
- (ii) $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Proof. Since T is EP operator with closed range, then by Lemma 1.4, operators S and T have the following matrix representations

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T) \end{bmatrix},$$
(2.1)

J. Farokhi-Ostad, M. Mohammadzadeh Karizaki, J. Math. Computer Sci. 16 (2016), 412–418 415

$$S = \begin{bmatrix} S_1 & S_2 \\ S_3 & S_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T) \end{bmatrix}.$$
(2.2)

Since $TS = ST^*$, then

$$\begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1 & S_2 \\ S_3 & S_4 \end{bmatrix} = \begin{bmatrix} S_1 & S_2 \\ S_3 & S_4 \end{bmatrix} \begin{bmatrix} T_1^* & 0 \\ 0 & 0 \end{bmatrix},$$

or equivalently,

$$\begin{bmatrix} T_1 S_1 & T_1 S_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1 T_1 & 0 \\ S_3 T_1 & 0 \end{bmatrix}.$$
 (2.3)

Equation (2.3) shows that $T_1S_2 = S_3T_1 = 0$, by invertibility of T_1 we conclude that $S_2 = S_3 = 0$. Since ran(S) is closed, then ran(S_1) and ran(S_4) are closed. We let $\{y_n = z_n \oplus x_n\}$ be a sequence chosen in ran(T) \oplus ker(T), $\{z_n\}, \{x_n\}$ be sequences chosen in ran(T) and ker(T), respectively, such that $S(z_n \oplus x_n) \to y$. Since ran(S) is assumed to be closed, then $y \in \text{ran}(S)$. On the other hand, y = z + x for some $z \in \text{ran}(T)$ and $x \in \text{ker}(T)$. By direct sum property, $S(z_n \oplus x_n) = (S_1 \oplus S_4)(z_n \oplus x_n) = S_1(z_n) \oplus S_4(x_n) \to z + x$, that is $S_1(z_n) \to z$ and $S_4(x_n) \to x$. Since $S = S_1 \oplus S_4$, then $z \in \text{ran}(S_1)$ and $x \in \text{ran}(S_4)$. This is implies that $\text{ran}(S_1)$ and $\text{ran}(S_4)$ are closed.

Therefore, obviously $S^{\dagger} = \begin{bmatrix} S_1^{\dagger} & 0 \\ 0 & S_4^{\dagger} \end{bmatrix}$ is Moore-Penrose inverse of $S = \begin{bmatrix} S_1 & 0 \\ 0 & S_4 \end{bmatrix}$. Hence, we have

$$TS = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & S_4 \end{bmatrix} = \begin{bmatrix} T_1 S_1 & 0 \\ 0 & 0 \end{bmatrix},$$
(2.4)

$$S^{\dagger}T^{\dagger} = \begin{bmatrix} S_{1}^{\dagger} & 0\\ 0 & S_{4}^{\dagger} \end{bmatrix} \begin{bmatrix} T_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_{1}^{\dagger}T_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix}.$$
 (2.5)

Since

$$\begin{split} TSS^{\dagger}T^{\dagger}TS &= \begin{bmatrix} (T_{1}S_{1})S_{1}^{\dagger}T_{1}^{-1}(T_{1}S_{1}) & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_{1}S_{1} & 0\\ 0 & 0 \end{bmatrix},\\ S^{\dagger}T^{\dagger}TSS^{\dagger}T^{\dagger} &= \begin{bmatrix} S_{1}^{\dagger}T^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_{1}S_{1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{1}^{\dagger}T^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{1}^{\dagger}T^{-1} & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_{1}^{\dagger}T_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix}\\ (S^{\dagger}T^{\dagger}TS)^{*} &= \begin{bmatrix} S_{1}^{\dagger}T^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_{1}S_{1} & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_{1}^{\dagger}S_{1} & 0\\ 0 & 0 \end{bmatrix} = S^{\dagger}T^{\dagger}TS. \end{split}$$

Then $S^{\dagger}T^{\dagger} \in (TS)\{1, 2, 4\}$. By using [1, Lemma 2.1.] we conclude that TS has closed range and [15, Theorem 2.2] implies that $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS$.

(i) Since S is EP operator with closed range, then by Lemma 1.4 operators S and T have the following matrix representations

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S) \end{bmatrix},$$
(2.6)

,

$$T = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S) \end{bmatrix}.$$
(2.7)

Since $TS = ST^*$, then

$$\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_1^* & T_3^* \\ T_2^* & T_4^* \end{bmatrix}$$

or equivalently,

$$\begin{bmatrix} T_1 S_1 & 0 \\ T_3 S_1 & 0 \end{bmatrix} = \begin{bmatrix} S_1 T_1^* & S_1^* T_3^* \\ 0 & 0 \end{bmatrix}.$$
 (2.8)

By using (2.8) we have $T_3S_1 = 0$, therefore by the invertibility of S_1 , we conclude that $T_3 = 0$. On the other hand, since $P_{\text{ran}(S)}T = P_{\text{ran}(S)}TP_{\text{ran}(S)}$, then $P_{\text{ran}(S)}T - P_{\text{ran}(S)}TP_{\text{ran}(S)} = P_{\text{ran}(S)}T(1 - P_{\text{ran}(S)}) = 0$, that is, $T_2 = 0$. Hence

$$TS = \begin{bmatrix} T_1 & 0 \\ 0 & T_4 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_1S_1 & 0 \\ 0 & 0 \end{bmatrix}.$$

By using a similar argument for the closedness of the range of S_1 and S_4 in this proof we imply that, since T has closed range, then T_1 and T_4 have closed ranges and $T^{\dagger} = \begin{bmatrix} T_1^{\dagger} & 0 \\ 0 & T_4^{\dagger} \end{bmatrix}$. On the other hand, since $(T_1S_1)S_1^{-1}T_1^{\dagger}(T_1S_1) = T_1S_1$ and $S_1^{-1}T_1^{\dagger}(T_1S_1)S_1^{-1}T_1^{\dagger} = S_1^{-1}T_1^{\dagger}$ and $((T_1S_1)S_1^{-1}T_1^{\dagger})^* = (T_1T_1^{\dagger})^* = T_1T_1^{\dagger}$, then $S^{\dagger}T^{\dagger} \in (TS)\{1,2,3\}$. Therefore, [15, Theorem 2.1] implies that $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$.

(ii) Since $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$ and $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS$, then by [15, Corollary 2.3] we have $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Theorem 2.2. Suppose that \mathcal{X} is a Hilbert \mathcal{A} -module and $T, S \in \mathcal{L}(\mathcal{X})$ are EP operators with closed ranges and $TS = S^*T$. Then TS has closed range and $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$. Moreover, if $P_{\text{ran}(S)}T = P_{\text{ran}(S)}TP_{\text{ran}(S)}$, then

- (i) $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS;$
- (ii) $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Proof. Since S is EP operator with closed range, then operators T, S have the same matrix representations (2.6) and (2.7), respectively. Since $TS = S^*T$, then

$$\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1^* & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix},$$

or equivalently,

$$\left[\begin{array}{cc} T_1S_1 & 0\\ T_3S_1 & 0 \end{array}\right] = \left[\begin{array}{cc} S_1^*T_1 & S_1^*T_2\\ 0 & 0 \end{array}\right].$$

Then $S_1^*T_2 = T_3S_1 = 0$. By the invertibility of S_1 we conclude that $T_2 = T_3 = 0$. Hence

$$TS = \begin{bmatrix} T_1 & 0 \\ 0 & T_4 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_1S_1 & 0 \\ 0 & 0 \end{bmatrix}.$$

A similar argument as in the proof of the previous theorem shows that we have

$$S^{\dagger}T^{\dagger} = \begin{bmatrix} S_1^{-1}T_1^{\dagger} & 0\\ 0 & 0 \end{bmatrix} \in (TS)\{1, 2, 3\}.$$

By using [1, Lemma 2.1], we conclude that TS has closed range and [15, Theorem 2.1] implies that $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$.

(i) Since T is EP operator with closed range, therefore the operators T and S have the matrix representations (2.1) and (2.2), respectively. Since $TS = S^*T$, then

$$\begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1 & S_2 \\ S_3 & S_4 \end{bmatrix} = \begin{bmatrix} S_1^* & S_3^* \\ S_2^* & S_4^* \end{bmatrix} \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix},$$

or equivalently,

$$\begin{bmatrix} T_1 S_1 & T_1 S_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1^* T_1 & 0 \\ S_2^* T_1^* & 0 \end{bmatrix}.$$

Hence $T_1S_2 = 0$, by invertibility of T_1 we conclude that $S_2 = 0$. On the other hand, since $SP_{ran}(T) = P_{ran(T)}SP_{ran}(T)$, then $S_3 = 0$. Similar argument for (2.4) and (2.5) in the previous theorem, implies that $S^{\dagger}T^{\dagger} = \begin{bmatrix} S_1^{\dagger}T_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} \in (TS)\{1, 2, 4\}$. Therefore [15, Theorem 2.2] implies that $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS$.

(ii) Since $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$ and $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS$, then by [15, Corollary 2.3] we have $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Theorem 2.3. Suppose that \mathcal{X} is a Hilbert \mathcal{A} -module and $T, S \in \mathcal{L}(\mathcal{X})$ are EP operators with closed ranges and $TS = ST^* = S^*T$. Then TS has closed range and $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Proof. Since $TS = ST^*$, then Theorem 2.1 implies that TS has closed range and $(TS)^{\dagger}TS = S^{\dagger}T^{\dagger}TS$. On the other hand, since $TS = S^*T$, then Theorem 2.2 shows that $TS(TS)^{\dagger} = TSS^{\dagger}T^{\dagger}$. Therefore [15, Corollary 2.3] implies that $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

References

- T. Aghasizadeh, S. Hejazian, Maps preserving semi-Fredholm operators on Hilbert C^{*}-modules, J. Math. Anal. Appl., 354 (2009), 625–629. 2, 2
- [2] R. Bouldin, The product of operators with closed range, Tôhoku Math. J., 25 (1973), 359–363. 1
- [3] R. Bouldin, Closed range and relative regularity for products, J. Math. Anal. Appl., 61 (1977), 397–403.
 1
- [4] D. S. Djordjević, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc., 129 (2001), 1727–1731.
- [5] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl., 29 (2007), 1242–1246. 1
- [6] M. Frank, Self-duality and C^{*}-reflexivity of Hilbert C^{*}-moduli, Z. Anal. Anwendungen, 9 (1990), 165–176. 1
- [7] M. Frank, Geometrical aspects of Hilbert C^{*}-modules, Positivity, 3 (1999), 215–243. 1

- [8] T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev., 8 (1966), 518–521.
 1
- [9] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tôhoku Math. J., 34 (1982), 43–52.
- [10] E. C. Lance, *Hilbert C^{*}-modules*, A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, (1995). 1, 1.1
- [11] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari, Moore-Penrose inverse of product operators in Hilbert C^{*}-modules, Filomat, (To appear). 1
- [12] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari, M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C^{*}-modules, Colloq. Math., 140 (2015), 171–182 1
- [13] K. Sharifi, The product of operators with closed range in Hilbert C*-modules, Linear Algebra Appl., 435 (2011), 1122–1130.
- [14] K. Sharifi, EP modular operators and their products, J. Math. Anal. Appl., 419 (2014), 870–877. 1.3, 1.4
- [15] K. Sharifi, B. A. Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C^{*}-modules, Bull. Iranian Math. Soc., 42 (2016), 53–60. 2, 2, 2, 2
- [16] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^{*}-modules, Linear Algebra Appl., 428 (2008), 992–1000. 1