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In this paper, we present new conditions that reverse order law holds for EP modular operators.
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1. Introduction and preliminaries

It is a classical result of Greville [8], that (TS)† = S†T † if and only if ran(T ∗TS) ⊂ ran(S) and
ran(SS∗T ∗) ⊂ ran(T ∗), in the case when T and S are complex (possibly rectangular) matrices. This
result is extended for bounded linear operators on Hilbert spaces, by Bouldin [2, 3], and Izumino
[9]. Then, in [5], the reverse order law for the Moore-Penrose inverse is obtained as a consequence
of some set equalities. Recently, Sharifi [13] and Mohammadzadeh Karizaki [11, 12] studied Moore
-Penrose inverse of product of the operators with closed range in Hilbert C∗-modules.

In this paper, we state new conditions that reverse order law for the Moore-Penrose inverse holds.
A bounded linear operator T with closed range on a complex Hilbert space H is called an EP operator
if T and T ∗ have the same range. Djordjević [4] gave necessary and sufficient conditions for a product
of two EP operators with closed ranges to be an EP operator with a closed range. In addition, we
state new conditions that if T, S ∈ L(X ) are EP operators with closed ranges and TS = ST ∗ = S∗T ,
then TS has closed range and (TS)† = S†T †.

∗Corresponding author
Email addresses: javadfarrokhi90@gmail.com, j.farrokhi@birjandut.ac.ir (Javad Farokhi-Ostad),

mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki)

Received 2016-01-10



J. Farokhi-Ostad, M. Mohammadzadeh Karizaki, J. Math. Computer Sci. 16 (2016), 412–418 413

Hilbert C∗-modules are objects like Hilbert spaces, except that the inner product takes its values
in a C∗-algebra, instead of being complex-valued. Throughout the paper, A is a C∗-algebra (not
necessarily unital). A (right) pre-Hilbert module over a C∗-algebra A is a complex linear space X ,
which is an algebraic right A-module and λ(xa) = (λx)a = x(λa) equipped with an A-valued inner
product 〈., .〉 : X × X → A satisfying,

(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 iff x = 0,

(ii) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉,
(iii) 〈x, ya〉 = 〈x, y〉a,
(iv) 〈y, x〉 = 〈x, y〉∗

for each x, y, z ∈ X , λ ∈ C, a ∈ A. A pre-Hilbert A-module X is called a Hilbert A-module if

it is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖
1
2 . Left Hilbert A-modules are defined in a

similar way. For example, every C∗-algebra A is a Hilbert A-module with respect to inner product
〈x, y〉 = x∗y, and every inner product space is a left Hilbert C-module.

Suppose that X and Y are Hilbert A-modules, then, L(X ,Y) is the set of all maps T : X → Y
for which there is a map T ∗ : Y → X , the so-called adjoint of T such that 〈Tx, y〉 = 〈x, T ∗y〉 for
each x ∈ X , y ∈ Y . It is known that any element T of L(X ,Y) must be a bounded linear operator,
which is also A-linear in the sense that T (xa) = (Tx)a for x ∈ X and a ∈ A [10, Page 8]. We use the
notations L(X ) in place of L(X ,X ), and ker(·) and ran(·) for the kernel and the range of operators,
respectively. The identity operator on X is denoted by 1X or 1 if there is no ambiguity.

Suppose that X is a Hilbert A-module and Y is a closed submodule of X . We say that Y is
orthogonally complemented if X = Y ⊕ Y⊥, where Y⊥ := {y ∈ X : 〈x, y〉 = 0 for all x ∈ Y}
denotes the orthogonal complement of Y in X . The reader is referred to [6, 7, 10] and the references
cited therein for more details.

Throughout this paper, X and Y are Hilbert A-modules. Recall that a closed submodule in
a Hilbert module is not necessarily orthogonally complemented, however, Lance [10] proved that
certain submodules are orthogonally complemented as follows:

Theorem 1.1 ([10]). Suppose that T ∈ L(X ,Y) has closed range. Then

• ker(T ) is orthogonally complemented in X , with complement ran(T ∗);

• ran(T ) is orthogonally complemented in Y, with complement ker(T ∗);

• The map T ∗ ∈ L(Y ,X ) has closed range.

Xu and Sheng [16] have shown that a bounded adjointable operator between two Hilbert C∗-
modules admits a bounded Moore-Penrose inverse if and only if the operator has closed range.

Definition 1.2. Let T ∈ L(X ,Y). The Moore-Penrose inverse T † of T (if it exists) is an element in
X ∈ L(Y ,X ) which satisfies:

1. TXT = T ;

2. XTX = X;

3. (TX)∗ = TX;

4. (XT )∗ = XT .

If θ ⊆ {1, 2, 3, 4}, and X satisfies the equations (i) for all i ∈ θ, then X is a θ-inverse of T . The set
of all θ-inverses of T is denoted by T{θ}. If ran(T ) is closed, then T{1, 2, 3, 4} = {T †}. An operator
X is an inner inverse of T if X ∈ T{1}. In this case, T is inner invertible, or relatively regular. It is
well-known that T is inner invertible if and only if ran(T ) is closed.
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Motivated by these conditions, T † is unique and T †T and T T † are orthogonal projections, in the
sense that they are self-adjoint idempotent operators. Clearly, T is Moore-Penrose invertible if and
only if T ∗ is Moore-Penrose invertible, and in this case (T ∗)† = (T †)∗.

By Definition 1.2, we have

ran(T ) = ran(TT †), ran(T †) = ran(T †T ) = ran(T ∗),
ker(T ) = ker(T †T ), ker(T †) = ker(T T †) = ker(T ∗),

and by Theorem 1.1, we obtain

X = ker(T )⊕ ran(T †) = ker(T †T )⊕ ran(T †T ),

Y = ker(T †)⊕ ran(T ) = ker(TT †)⊕ ran(TT †).

A matrix form of a bounded adjointable operator T ∈ L(X ,Y) can be induced by some natural
decompositions of Hilbert C∗-modules. Indeed, if M and N are closed orthogonally complemented
submodules of X and Y , respectively, and X =M⊕M⊥, Y = N ⊕N⊥, then T can be written as
the following 2× 2 matrix

T =

[
T1 T2
T3 T4

]
,

where, T1 ∈ L(M,N ), T2 ∈ L(M⊥,N ), T3 ∈ L(M,N⊥) and T4 ∈ L(M⊥,N⊥). Note that PM
denotes the projection corresponding to M.

In fact T1 = PNTPM, T2 = PNT (1− PM), T3 = (1− PN )TPM, T4 = (1− PN )T (1− PM).

Definition 1.3 ([14]). Let X be a Hilbert A-modules. An operator T ∈ L(X ) is called EP if ran(T )
and ran(T ∗) have the same closure.

Lemma 1.4 ([14]). Let X be a Hilbert A-module and T ∈ L(X ) with closed range. Then T is EP if
and only if it is of the matrix form

T =

[
T1 0
0 0

]
:

[
ran(T )
ker(T )

]
→

[
ran(T )
ker(T )

]
for some invertible operator T1 ∈ L(ran(T ), ran(T )).

2. The reverse order law

In this section, we state some new conditions that reverse order law holds for EP modular oper-
ators.

Theorem 2.1. Suppose that X is a Hilbert A-module and T, S ∈ L(X ) are EP operators with closed
ranges and TS = ST ∗. Then TS has closed range and (TS)†TS = S†T †TS.

Moreover, if Pran(S)T = Pran(S)TPran(S), then

(i) TS(TS)† = TSS†T †,
(ii) (TS)† = S†T †.

Proof. Since T is EP operator with closed range, then by Lemma 1.4, operators S and T have the
following matrix representations

T =

[
T1 0
0 0

]
:

[
ran(T )
ker(T )

]
→

[
ran(T )
ker(T )

]
, (2.1)
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S =

[
S1 S2

S3 S4

]
:

[
ran(T )
ker(T )

]
→

[
ran(T )
ker(T )

]
. (2.2)

Since TS = ST ∗, then [
T1 0
0 0

] [
S1 S2

S3 S4

]
=

[
S1 S2

S3 S4

] [
T ∗1 0
0 0

]
,

or equivalently, [
T1S1 T1S2

0 0

]
=

[
S1T1 0
S3T1 0

]
. (2.3)

Equation (2.3) shows that T1S2 = S3T1 = 0, by invertibility of T1 we conclude that S2 = S3 = 0. Since
ran(S) is closed, then ran(S1) and ran(S4) are closed. We let {yn = zn ⊕ xn} be a sequence chosen
in ran(T ) ⊕ ker(T ), {zn}, {xn} be sequences chosen in ran(T ) and ker(T ), respectively, such that
S(zn⊕xn)→ y. Since ran(S) is assumed to be closed, then y ∈ ran(S). On the other hand, y = z+x
for some z ∈ ran(T ) and x ∈ ker(T ). By direct sum property, S(zn ⊕ xn) = (S1 ⊕ S4)(zn ⊕ xn) =
S1(zn)⊕ S4(xn)→ z + x, that is S1(zn)→ z and S4(xn)→ x. Since S = S1 ⊕ S4, then z ∈ ran(S1)
and x ∈ ran(S4). This is implies that ran(S1) and ran(S4) are closed.

Therefore, obviously S† =

[
S†1 0

0 S†4

]
is Moore-Penrose inverse of S =

[
S1 0
0 S4

]
. Hence, we

have

TS =

[
T1 0
0 0

] [
S1 0
0 S4

]
=

[
T1S1 0

0 0

]
, (2.4)

S†T † =

[
S†1 0

0 S†4

] [
T−11 0

0 0

]
=

[
S†1T

−1
1 0

0 0

]
. (2.5)

Since

TSS†T †TS =

[
(T1S1)S

†
1T
−1
1 (T1S1) 0

0 0

]
=

[
T1S1 0

0 0

]
,

S†T †TSS†T † =

[
S†1T

−1 0
0 0

] [
T1S1 0

0 0

] [
S†1T

−1 0
0 0

]
=

[
S†1T

−1
1 0

0 0

]
,

(S†T †TS)∗ =

[
S†1T

−1 0
0 0

] [
T1S1 0

0 0

]
=

[
S†1S1 0

0 0

]
= S†T †TS.

Then S†T † ∈ (TS){1, 2, 4}. By using [1, Lemma 2.1.] we conclude that TS has closed range and
[15, Theorem 2.2] implies that (TS)†TS = S†T †TS.

(i) Since S is EP operator with closed range, then by Lemma 1.4 operators S and T have the
following matrix representations

S =

[
S1 0
0 0

]
:

[
ran(S)
ker(S)

]
→

[
ran(S)
ker(S)

]
, (2.6)

T =

[
T1 T2
T3 T4

]
:

[
ran(S)
ker(S)

]
→

[
ran(S)
ker(S)

]
. (2.7)
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Since TS = ST ∗, then [
T1 T2
T3 T4

] [
S1 0
0 0

]
=

[
S1 0
0 0

] [
T ∗1 T ∗3
T ∗2 T ∗4

]
,

or equivalently, [
T1S1 0
T3S1 0

]
=

[
S1T

∗
1 S∗1T

∗
3

0 0

]
. (2.8)

By using (2.8) we have T3S1 = 0, therefore by the invertibility of S1, we conclude that T3 = 0.
On the other hand, since Pran(S)T = Pran(S)TPran(S), then Pran(S)T−Pran(S)TPran(S) = Pran(S)T (1−
Pran(S)) = 0, that is, T2 = 0. Hence

TS =

[
T1 0
0 T4

] [
S1 0
0 0

]
=

[
T1S1 0

0 0

]
.

By using a similar argument for the closedness of the range of S1 and S4 in this proof we

imply that, since T has closed range, then T1 and T4 have closed ranges and T † =

[
T †1 0

0 T †4

]
.

On the other hand, since (T1S1)S
−1
1 T †1 (T1S1) = T1S1 and S−11 T †1 (T1S1)S

−1
1 T †1 = S−11 T †1 and

((T1S1)S
−1
1 T †1 )∗ = (T1T

†
1 )∗ = T1T

†
1 , then S†T † ∈ (TS){1, 2, 3}. Therefore, [15, Theorem 2.1]

implies that TS(TS)† = TSS†T †.

(ii) Since TS(TS)† = TSS†T † and (TS)†TS = S†T †TS, then by [15, Corollary 2.3] we have
(TS)† = S†T †.

Theorem 2.2. Suppose that X is a Hilbert A-module and T, S ∈ L(X ) are EP operators with closed
ranges and TS = S∗T . Then TS has closed range and TS(TS)† = TSS†T †.

Moreover, if Pran(S)T = Pran(S)TPran(S), then

(i) (TS)†TS = S†T †TS;

(ii) (TS)† = S†T †.

Proof. Since S is EP operator with closed range, then operators T, S have the same matrix repre-
sentations (2.6) and (2.7), respectively. Since TS = S∗T , then[

T1 T2
T3 T4

] [
S1 0
0 0

]
=

[
S∗1 0
0 0

] [
T1 T2
T3 T4

]
,

or equivalently, [
T1S1 0
T3S1 0

]
=

[
S∗1T1 S∗1T2

0 0

]
.

Then S∗1T2 = T3S1 = 0. By the invertibility of S1 we conclude that T2 = T3 = 0. Hence

TS =

[
T1 0
0 T4

] [
S1 0
0 0

]
=

[
T1S1 0

0 0

]
.
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A similar argument as in the proof of the previous theorem shows that we have

S†T † =

[
S−11 T †1 0

0 0

]
∈ (TS){1, 2, 3}.

By using [1, Lemma 2.1], we conclude that TS has closed range and [15, Theorem 2.1] implies that
TS(TS)† = TSS†T †.

(i) Since T is EP operator with closed range, therefore the operators T and S have the matrix
representations (2.1) and (2.2), respectively. Since TS = S∗T , then[

T1 0
0 0

] [
S1 S2

S3 S4

]
=

[
S∗1 S∗3
S∗2 S∗4

] [
T1 0
0 0

]
,

or equivalently, [
T1S1 T1S2

0 0

]
=

[
S∗1T1 0
S∗2T

∗
1 0

]
.

Hence T1S2 = 0, by invertibility of T1 we conclude that S2 = 0. On the other hand, since
SPran(T ) = Pran(T)SPran(T ), then S3 = 0. Similar argument for (2.4) and (2.5) in the previous

theorem, implies that S†T † =

[
S†1T

−1
1 0

0 0

]
∈ (TS){1, 2, 4}. Therefore [15, Theorem 2.2]

implies that (TS)†TS = S†T †TS.

(ii) Since TS(TS)† = TSS†T † and (TS)†TS = S†T †TS, then by [15, Corollary 2.3] we have
(TS)† = S†T †.

Theorem 2.3. Suppose that X is a Hilbert A-module and T, S ∈ L(X ) are EP operators with closed
ranges and TS = ST ∗ = S∗T . Then TS has closed range and (TS)† = S†T †.

Proof. Since TS = ST ∗, then Theorem 2.1 implies that TS has closed range and (TS)†TS = S†T †TS.
On the other hand, since TS = S∗T , then Theorem 2.2 shows that TS(TS)† = TSS†T †. Therefore
[15, Corollary 2.3] implies that (TS)† = S†T †.
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