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Abstract

In this paper by using the idea of Gegenbauer polynomials, we introduced certain new subclasses of analytic and bi-
univalent functions. Additionally, we determined the estimates for first two Taylor-Maclaurin coefficients and the Fekete-Szego
functional problems for each of the function classes we defined. In the concluding part, we recall the curious readers attention to
the possibility of analyzing the result’s q-generalizations presented in this article. Moreover, according to the proposed extension,
the (p, q)-extension will only be comparatively small and inconsequently change, as the additional parameter p is redundant.
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1. Introduction and motivation

Letif ={z:z € ¢, |z| < 1}, be a unit disk and 2 be the class of analytical functions of the form

f(z) =z+ Z b.z", (ze ), (1.1)
r=2
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normalized by the condition
f(0)=0 and f'(0)=1.

Consider a class, 8§ C 2 of holomorphic and univalent functions in 4. Let 8* stand for the class of starlike
functions in &(, which consists of normalized functions f € 2 that satisfy the following inequality:

R <Z:/(S)> >0, (Vzed),

and let by €, we identify the class of convex functions in { that meet the inequality by having normalized

functions f € 2, )
%<M> >0, (Vzed).
' (z)

Lewin [18] introduced this class of bi-univalent functions as a sub-class of 2l and noted certain coeffi-
cient bounds for the class. He proved that: [n;| < 1.15. Moreover, the Koebe 1/4 theorem (see [9]) specifies
that the disk do, = {w : |w| < 0.25} is contained in every function’s range f € 8, hence, Vf € & with its
inverse 1, such that

lf(z) =z (zey)

and
f(f (w) =w, (w:lwl<To(f);To(f) > 0.25)

where f~1(w) is expressed as
G(w) = w —baw? + (2b3 — bz)w? — (5b3 — 5bybs + by)w* + - - - . (1.2)

So, the function f € 2( is said to be bi-univalent in {l if f(z) and G(z) are univalent in (. Let X stand for
the class of holomorphic and bi-univalent functions in [. We are aware, some well-known functions f € §
like the Koebe function

k(z) =z/(1—2)?,

its rotation function .
Ko(z) =2/(1—e'92)?, f(z) =z—2%/2,

and
f(z) =z/(1—2%),

don’t belong to X. For more details see [1, 2, 6-8, 12, 13, 29].

The groundbreaking research of Srivastava et al. [27] in fact, in recent years, revitalized the study of
bi-univalent functions. Following the study of Srivastava et al. [27], numerous unique subclasses of the bi-
univalent function class were presented and similarly explored by numerous authors. The function classes
Hs (v, ¢, n.0;) and Hy(y, €, n.0;3) as an illustration, were defined and Srivastava et al. [25] produced
estimates for the Taylor-Maclaurin coefficients |ay| and |a3|. Caglar et al. [23] were able to determine
the upper bounds for the second Hankel determinant for specific subclasses of analytic and bi-univalent
functions. By Tang et al. [24] and Srivastava et al. [26] several new subclasses of the class of m-fold
symmetric bi-univalent functions were introduced, and the initial estimates of the Taylor-Maclaurin series
as well as some Fekete-Szeg6 functional problems for each of their defined function classes were obtained.
Several more prominent mathematicians provided their research on this topic see for example [5, 14-16].

From [9], let s(z) and S(z) belongs to class 2, then

s(z) < S(z) (zey),
suppose w holomorphic in 4, such that

w(0)=0, Jw(z)l<1l, and s(z)=S(w(z)).
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Consequently, if the function S(z) is univalent in 4,
s(z) <S(z) = s(0)=S(0) and s(Y) C S(U).

This conclusion is known as the subordination principle.
Amourah et al. [4] have lately studied the Gegenbauer polynomials H (t,z), which are determined
by the recurrence relation. A generating function of Gegenbauer polynomials is defined by for nonzero

real constant ¢,
1

Ho(tz) = (1 —2tz+z2)%’

where —1 < t = 1 and z € 4. Applying Taylor series expansion, the holomorphic function H¢ can be
express in the following form

Heltz) =) &P(1)z,
=0

where t is fixed and & (t) is Gegenbauer polynomials of degree r. When ¢ = 0, Hg obviously produces
nothing. As a result, the Gegenbauer polynomial’s generating function is set to

BP(t) = % {Zt(r—i— b —1)6% (1) — (r+24 —2)@53’_1(t)},
using the starting values
6P (t) =1, 6P (t) =2¢t, and &P (t) =2d(1 + P)t> — . (1.3)

Remark 1.1. First of all, if in polynomial 05? (t), we put ¢ = 1, then we have the Chebyshev polynomial.
Secondly, for ¢ = 1, polynomials &P (t), we have the Legendre polynomial.

In recent years, many researchers have been studying how orthogonal polynomials and bi-univalent
functions interact including for example in [11, 19, 30] the second derivative sequences of Fibonacci
and Lucas polynomials have been studied. Also in [17, 20] some properties of the (p, q)-Fibonacci and
(p, q)-Lucas polynomials have been studied. On the other hand, in [3, 28], the classes of Lucas-Lehmer
polynomials have been introduced. Since, there is little work in the literature’s related to bi-univalent
functions for the Gegenbauer polynomial. The primary goal of this study is to launch an investigation
into the properties of bi-univalent functions linked with Gegenbauer polynomial.

2. Coefficient bounds and Fekete-Szego inequalities for the class Sz (§,t, P)

Definition 2.1. Let 0 < 6 S, % <t £ 1. A function f € X given by (1.1) is said to be in the class &5 (5, t, $)
if the following subordinations are fulfilled:

z2f'(2)\° 2f"(z)\ 1 ° - 1
( f(z) ) <1+ (z) > < Hy(tz) = 1—2tz+2)% (2.1)
and . .
zG'(w) wG”(w)\'™ B 1
< G(LU) > <1 + G/((,U)> < J—fd) (t,Z) = (1 “otw + w2)¢, (22)

where the function G(w) is defined by (1.2) and 0 # ¢ is a real constant.

The initial Taylor coefficients |by| and |bs| and the Fekete-Szego inequality for the function class
Sx(5,t,¢) are determined by the following theorem.
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Theorem 2.2. Let f € Sx(5,t,d). Then

20t

4p%t? ot
bl < 2'¢|t\/2¢2t2(52 —35+4)— (2—8)262(1+ p)2—1) bl <

T (2-6)2 +3—25’

and for x € R,

ot x—1/ < D]

2 3=25[” X = 7

|d3 —xd3| < { 83 3/1—| x—1]= Dl
2652 (52-35+4)—(2-8) 2 21+ p)2—1)7 X = Yl

where
_ 20x2(82 —35+4) — (2—08)2(2(1 + ¢)t> —1)

b 8pt2(3 — 20)

Proof. Let f € &5(5,1, ). From (2.1) and (2.2), we have

Zf’(z) 5 Zf//(Z) 1-6 o . , .
< f(z) ) <1 + (2) ) =1+ 67 (t)s1z+ [&1 (t)s2 + &5 (t)s7lz" + - - 2.3)

and . »
<Z§(E§;)> (1+ (UGG,(L(U(;))) =146 (hw + 6 (Db + &7 (Yw’ + - (2.4)

for some holomorphic functions
u(z) =siz+ 22 +832° +--,  v(w)=how+bho?+ w4,

such that
u(0) =v(0) =0, Is(z)l<1, and p(w)l<1l (z,w e l).

Therefore, we have
Isi/ =1 and [lk| = 1.

When the equivalent coefficients in (2.3) and (2.4) are compared, we get

(2—8)by = &P (t)sy, (2.5)
2(3—25)bs + (62+56—8)b2% = &P (t)so + 6P (1), (2.6)
—(2—8)by = &P (1)L, 2.7)
(62— 115 + 16)132% —2(3-28)bs = 6P ()L + BP (1)1, (2.8)
From (2.5) and (2.7), we have
s1=—l,

Summation of (2.6) and (2.8) gives

(2.10)

_ SY21K12
(82 =35 +4)b3 = & (1)(s2 +12) + &7 (1) (s] + 1) = &7 () (s2 + 1) + B (1) [W] :

(B2 ()2
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Applying (2.9) in (2.10), yields
[(8% — 36 +4) (6 (1)]12 — 2(2 — 8)262 (1)103 = [6P (1) (52 + L) (2.11)

and
422 (82 — 35 +4) —2(2— 8)2P(2(1 + p)t* — 1)]b% = [ (1) (s2 + L),

which gives

26t
. 2|d)|t\/2d)2t2(52 —3514)— (2 82p(2(1 + $)2 1)

Hence, (2.8) minus (2.6) gives us
4(3—28)bs —4(3 —28)b3 = &P (t)(s2 — L) + & (t)(s3 —12). (2.12)
Then, using (1.3), (2.9), and (2.12), we get

&Pt (s2a—l) BPOR(I4+13) 6P (t)(s2— L)

_ 12 _
b3 = by + 1B3-20) — 22-87 ' Tas—2) - (2.13)
Applying (1.3), yields
4p2t? Pt
< .

From (2.13), for x € R, we have

&P (t)(s2— L)

b2 — (1 — v h2 1
by —xb3 = (1-X)b3 + ~1 g5 (2.14)
By substituting (2.11) in (2.14), we have
; (1=x) 87 (1) (s2 + L) &7 (t)(s2 — o)
b3 =xbz = P P
(82 —35 +4)[&7 (1)]2 —2(2 — 5)2&5 (t) 4(3 —23)
— v (G + ) s+ (G0 — ——— )1
— ™1 XT3 25y ) X TG —25)) 2
where
(1—x)[&F (1)
G(x) = ) )
(62 —36+4)[®7 (1) —2(2—5)?67(t)
Thus, according to (1.3), we have
vl 021600 £ g5y
‘b3_xb%‘ < { 2062w o = |bIX :14(3,25),
21G0)ISL (1), 16X 2 griasy
hence, after some calculations, gives
o) x—1 £ D|
3251’ X = ’
|bs — xb3]| < { e 833 1—x| 1>1D m
27273574 —(2—s)2e T ere—1) X1 =Dl
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3. Coefficient bounds and Fekete-Szego inequalities for the class Ms (@, t, P)

Definition 3.1. Let ¢ € [0,1], 1/2 < t £ 1. A function f € Ms (@, t, d), if the following subordinations are
fulfilled:

zf" (z) zf'(z) B 1
) <1+ z) ) +(1— ) 2 < Hy(tz) = W (3.1)
and G"(z) G'(z) 1
wG”(z wG’(z
@ <1+ o) )+(1—(p) G " Telbd =g e (3-2)

where the function G(w) is defined by (1.2) and ¢ # 0 is a real constant.

The initial Taylor coefficients |b,| and [bs] and Fekete-Szego inequality for the function class Ms (o, t, )
are determined by the following theorem.

Theorem 3.2. Let f € Mys(@,t, ). Then

20t 4p%t? ot
by < 2|t , |bsl < ,
ool <20 \/ 120+ o)— (+ e+ e —1 S Trer T1r20
and for 9 € R
bl 9 —1/ < IN|
2 [1+2¢]” = 7
|b3 _ﬂbz‘ < { ® 8¢3t3|1_19‘ |19 1| > |N|
40267 (1+0)—(1+9)?p 2(1+ ) 2—1)” C =
where

_ 41+ @) — (1+ @) (2(1 + )t —1)
B 8dt2(1+2¢) ’

Proof. Let f € Ms (@, t, ). From (3.1) and (3.2), we have

N

¢ (1 + Z::Ei?)) +(1— @)Z:Eij) =1+ @f) (t)s1z+ [@f)(t)Sz + Qﬁgj (t)s%]ZZ + ... (3.3)
and , /
¢ (1 + chi(if)) +(1—-o) wGG(X) =1+ 6P MLw+ B ()L + &P (13w + - (3.4)

for some holomorphic functions
_ 2 3 _ 2 3
u(z) =s1z+sz°+s3z7+---, viw)=Lhw+Lhw +Lw’+---,

such that

and
Is(z)] <1 and p(w)|<1 (z,w € y).

Therefore, we have
st/ £1 and 1] 1 (VkeM).

When the equivalent coefficients in (3.3) and (3.4) are compared, we get
(1+ )by = B (t)s1, (3.5)
2(1+2¢)bs — (1+3¢)b3 = & (t)s2 + L (t)s?, (3.6)
—(14@)b2 = & (D)L, (3.7)
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(3+5@)b3 —2(1+2¢)bs = &P (1)1, + & (1)12. (3.8)
From (3.5) and (3.7),
s1=—,
(&P (1)]2(s2 +12) 2(1 + ¢)?b?
b = —1 S, sl =2 3.9
P 21+ ) T e 42)
Summation of (3.6) and (3.8) gives
2(1 b3
21+ @)b2 = &P (1)(s2+ o) + P (1)(s2 +13) = 6L (1) (s + o) + BL(t) ([61("3]22 . (3.10)
1
Applying (3.9) in (3.10), yields
201+ @)[&F (1) —2(1 + ¢)*6F (1)]63 = (&7 ()P (52 + 1) (3.11)
and
BH™X*(1+ @) —2(1+ @)*b(2(1 + )t — 1)Ib3 = [ (1) P(s2 + L),
which gives
24t
byl < 2/0lt )
o2l < 210 \/ 47201+ ¢) — (1 + 02201 + $)2—1)|
Hence, (3.8) minus (3.6) gives us
4(1+2¢)bs —4(1+2¢)b3 = &P (t)(s2 — L) + BP (1) (s? — 12).
Then, using (1.3) and (3.9), we get
¢ _ C)2(s24+12)  BP(t)(sp -1
by = b%—i— (’51 (t)(s2 ]-2)’ by = [61 (t)] (51 + 1) 1 (t)(s2 2) (3.12)
4(1+42¢) 2(1+ ¢)? 4(1+2¢)
Applying (1.3), yields
4p2t? ot
b3 < .
b T+e2 120
From (3.12), for ® € R, we have
$t)(sp—1
b3 —9b3 = (1—9)b3 + w. (3.13)

4(1+2¢)

By substituting (3.11) in (3.13), we have

(1—x)[BP (1) (s2 + L) &P (t)(s2— L)
2(14 @)[6L(1)12—2(1 + ¢)262 (1) 4(1+2¢)

b 1 B 1
-t {(o L) (601 )

(1—x) B2
G = 5 Y
2(1+ @)GL (02 —2(1+ 0)262 (1)

b3 — b3 =

where
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Thus, according to (1.3), we have

|6 (1)] 1
‘b3—8b%‘ < 2(11—#72@)’ 0=IGE) = I(1+29)’
2AGMN&L (1), 166! 2 griasy

hence, after some calculations, gives

26T PN
2 [1+2¢]” = 7
122 (1)~ (T+ )2 b 2(1+)2-1)” =

4. Coefficient bounds and Fekete-Szego inequalities for the class 5 (), t, d)

Definition 4.1. Let p = 0, 1/2 < t = 1. A function f € H5 (P, t, d), if the following subordinations are
fulfilled:

22"(z)  zf'(2) B 1
Yo T S Melbd = o 4.1)
and 2G//( ) G/( ) 1
w z w z
P G'(z) + G2 < g'be(t;Z) = (1—2tw+ w?)®’ (4.2)

where the function G(w) is defined by (1.2) and ¢ # 0 is a real constant.

The initial Taylor coefficients |b,| and |bs| and Fekete-Szego inequality for the function class s (V, t, )
are determined by the following theorem.

Theorem 4.2. Let f € M5 (@,t, ). Then

20t
b2l < 2|¢|t\/|4¢2t2(1 E) — (11202621 ¢ 1)’

422 t
¢ n |pt]

bs| < ,
b (1+r2v)? 1430

and for P € R,

[Pt —1 <
e Bt ne c—1/Z R
4022 (1449 ) — (14292 d (2(1+ ) t2—-1) 7 =

where
_ 4pt2(1+4P) — (14+29)2(2(1 + p)t2 —1)

8dpt2(1+ 31)
Proof. Let f € 95z (P, t, $). From (4.1) and (4.2), we have

R

22f"(z)  zf'(z)

Y T T — 1+ 68 [W)s12+ (6P (Vsy + 6P (D)2 + - -
and
21 /
wwG(f(Z()z) + wGG(Z()Z) =1+ 6P ML+ B ()L + 6P (H13w? +

for some holomorphic functions
u(z) =siz+ 522 +532° +---,  v(w) =Lhw+Lhw?+lwd+,

such that

E
=
I
<
=
I
e

s(z)l <1, and pv(w)l <1 (z,weld).
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Therefore, we have
Isi] £1 and |l <1, forall k € 9.
When the equivalent coefficients in (3.3) and (3.4) are compared, we get
(1+2)bz = &P (t)sy, (4.3)
2(1+30)bs — (1+2W)b3 = &P (t)s2 + B8P (1)s2, (4.4)
—(1+2¢)by = &P (1)1, (4.5)
(3+10Y)b3 —2(1 +3P)bs = Gﬁf(t)lz—kQSz (t)13. (4.6)
From (4.3) and (4.5),
s1=—l,
, BPORE+1) 5, 2(1+2¢)%b3
%= g 0 1T BP)2 47
Summation of (4.4) and (4.6) gives
21,2
2(1+40)bd = &L (1) (s2 + ) + B (1) (2 +13) = &P (1) (s2 + L) + BP(t) 20+ 24)"; (4.8)
Applying (4.7) in (4.8), yields
2(1+49)[6F (1)1 —2(1+21)?6F (1)]b3 = (&} (1)P(s2 + L) (4.9)
and
BH™ (1 +4p) —2(1+ 202 d(2(1+ §)t* — 1Ib3 = [} (0P (52 + L),
which gives
2¢t
b2l < 2|Cb|t\/|4d>2t2(1+41b) — 2P0+ 12— 1]
Hence, (4.6) minus (4.4) gives us
4(1+30)bs — 4(1+3W)b3 = &P (1) (s2 — L) + &P (1) (s7 — 1B). (4.10)
Then, using (1.3) and (4.7), we get
e p2 g ST (2= 1) BPOP(T 1) | &P (1)(s— o)
ST A1+ 3y) 2(1+2)2 4(1+30)
Applying (1.3), yields
49%t? |Pt]
bs| < (1+2¢)2+1+3¢.
From (4.10), for ¢ € R, we have
Q5¢(t)(82 — 1)
_ 2 — 2
By substituting (4.9) in (4.11), we have
(1- Q&P (VP(s2 + L) &P (t)(s2 — L)

by — (b3 =

1
2(1+40) [P ()12 —2(1 + 20)26P (1) T4 y)
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—e? ! ot

_ (1—x)&F (1)
2(1+40) [P ()12 —2(1 + 20262 (1)

where

G()

Thus, according to (1.3), we have

|69 (1)) < <
‘bS_Cb%‘ g { 2(1+3)” O = |G(C)| = 4(1+3))’

2G(Ql87 (1), 1601 2 gy

hence, after some calculations, gives

[Pt _11<
e kg =12 R
4212 (1+40)— (142 )2 (2(1+ ) t2—1)” ="

5. Coefficient bounds and Fekete-Szego inequalities for the class BO5(B,t, d)

Definition 5.1. Let p € [0,1], 1/2 <t < 1. A function f € BO5(f,t, ), if the following subordinations
are fulfilled:

zf""(z)  zf'(z) Rz (z) + zf'(z) B 1
) T o) B+ a—pye et = gy ©-1)
and " / 201 /
G"(w) wG'(w) Bw-G"(w)+ wG'(w) 1< Helt2) = 1 (52)

G'(w) ~ G(z)  BwG(w)+(1-B)G(w)
where the function G(w) is defined by (1.2) and 0 # ¢ is a real constant.

(1—2tw + w?2)®’

The initial Taylor coefficients [by| and |b3| and Fekete-Szeg6 inequality for the function class
BOs (B,t,d) are determined by the following theorem.

Theorem 5.2. Let f € BOs(B,t, ). Then

2¢t
o2l < 2|¢t\/4cb2t2(1 +(B-19)— 2 BRI+ )T 1)’

and form € R,

[dlt _11 <
oy g < { P n—1< W,
BB+ (B—1) - (2-p1eR+z—1 M~ H =1

where

401+ (B 1)) - (2B (A+ )t —1)
B 8¢pt*(3 —2p) '

Proof. Let f € &5(5,1, ). From (5.1) and (5.2), we have

w

zf"(z)  zf'(z) Bz*f"(z) + zf'(z)

_ _ ¢ ¢ ¢ 21,2 .
2] f2) Bzf () + (1— P)f(2) +1 =146 (t)s1z+ [&] (t)s2 + &, (t)s7]z” + (5.3)
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and
G’ w) wG'(w) Bw?G" (W) + wG'(w) B & ® Grvi2r2
S + Gz  BwG ()t (1_BIG(w) +1=14+&7(t)hw+ [B7 (1) + &, (t)17]w” + (5.4)
for some holomorphic functions
wz) =s1z4+ 22 +832° +-++, v(w)=Lw+Lhw?+lLwd+---,
such that
u(0) =v(0) =0, Is(z)]<1, and p(w)l <1 (z,w e ).
Now therefore
st/ £1 and [l <1 (keM).
When the equivalent coefficients in (5.3) and (5.4) are compared, we get
(2—B)b2 = & (t)s1, (5.5)
2(3—2B)bs + (5— (B +1)%)b3 = &L (t)s2 + &F ()57 (5.6)
(B—2)bs = &F (1)L, (5.7)
(7— 8B+ (1+ B)2)b3 —2(3—2B)bs = & (1)1o + &F (V1 (5.8)
From (5.5) and (5.7)
s1=—ly,
&P (02 (s3 + 1) 2(2—B)*b3
b2 — 1 1 1 , 2 12 — 2‘ 5.9
2 2(2_[5)2 s1+ 4 [(’5?’(’()]2 ( )
Summation of (5.6) and (5.8) gives
21,2 ® G (2 112 ® b | 2(2—B)?b3
21+ (B —1))by =& (t)(s2 + o) + &, (t)(s7+ 1) = & (t)(s2 + o) + &, () P (1) (5.10)
1
Applying (5.9) in (5.10), yields
(14 (B — 1))@ ()] —2(2— BYSF (1)Ib3 = (67 ()] (s2 + L) (5.11)
BPHA(1+ (B —1)%) —2(2— B2 b(2(1 + p)t? — 1)]b3 = [&F (1) (s2 + o),
which gives
20t
o2l 2'¢'t\/4¢2t2(1 B -2 PRI+ P 1)
Hence, (5.8) minus (5.6) gives us
4(3—2B)(bs — b3) = &} (1)(s2— L) + &7 (1) (s7 — ). (5.12)
Then, using (1.3), (5.9), and (5.12), we get
2 OP (s L)
b3 =b5+ 13— 2p) (5.13)

or
PR32 +13)  &P(t)(s2— L)
2(2—B)2 4(3—2p)

b3 =
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Applying (1.3), yields

From (5.13), for n € R, we have

2 — (1 — k2
bs—nb3 = (1—m)b3 + — = (5.14)
By substituting (5.11) in (5.14), we have
by b2 (1) (0P (52 + ) LB W2~ )
P21+ (B-1)6P (W2 22 p2eg() 4(3-2p)
1 1
_x® _
= o {(G(”) * 4(3—26)) 2t <G(”) 4(3—25)) 12}’
where
Sl = (1-n)[&P (1)
2(1+ (B —1)2)[6F (1) —2(2— B)26F (1)
Thus, according to (1.3), we have
&P ()] 1
‘bg—ﬂb%‘ < 2(31,2[54))/ 0 é |G(T])| g 453,2[3)1
2A6mI6P M), 16MI = 15ap,
hence, after some calculations, we have
It m—1] < W
2 3—2B1” n— =1
2+ (B - (2-B) e+ e—1 M~ H =
O]

6. Conclusion

Recently, there are many researchers in the world, who have been investigating bi-univalent functions
connecting with orthogonal polynomials. Since, there is not much research in the literature on bi-univalent
functions for the Gegenbauer polynomial.

In the present work, we have first defined certain new subclasses of analytic and bi-univalent functions
linked with Gegenbauer polynomial. Then, we have determined some useful results like estimation for
first two Taylor-Maclaurin coefficients and the Fekete-Szegd functional problems for every one of our
defined function classes.

Moreover, we draw the attention of the interested readers to the potential for examining the g-
generalizations of findings in this article, which were influenced by a recently published survey-cum-
expository review article by Srivastava [21]. Furthermore, according to the proposed extension, the (p, q)-
extension will only be minor and inconsequently change, as the additional parameter p is redundant (see,
for details, Srivastava [21, p.340]). Furthermore, the reader’s curiosity is drawn to future research into the
(k, s)-extension of the Riemann-Liouville fractional integral in light of Srivastava’s recent work [22].
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