Taylor-Maclaurin coefficients and the Fekete-Szegö inequalities for certain subclasses of bi-univalent functions involving the Gegenbauer polynomials

Muhammad Younis ${ }^{\text {a }}$, Bilal Khan ${ }^{\text {a }}$, Zabidin Salleh ${ }^{\text {b,* }}$, Musthafa Ibrahim ${ }^{\text {c }}$, Ferdous M. O. Tawfiq ${ }^{\text {d }}$, Fairouz Tchier ${ }^{\text {d }}$, Timilehin G. Shaba ${ }^{\mathrm{e}}$
${ }^{\text {a S School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, } 500 \text { Dongchuan Road, }}$ Shanghai 200241, Peoples Republic of China.
${ }^{\text {b }}$ Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
${ }^{c}$ College of Engineering, University of Buraimi, Al Buraimi, Sultanate of Oman.
${ }^{d}$ Mathematics Department, College of Science, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia.
${ }^{e}$ Department of Mathematics, Landmark University, Omu-Aran 251103, Nigeria.

Abstract

In this paper by using the idea of Gegenbauer polynomials, we introduced certain new subclasses of analytic and biunivalent functions. Additionally, we determined the estimates for first two Taylor-Maclaurin coefficients and the Fekete-Szegö functional problems for each of the function classes we defined. In the concluding part, we recall the curious readers attention to the possibility of analyzing the result's q-generalizations presented in this article. Moreover, according to the proposed extension, the $(\mathfrak{p}, \mathfrak{q})$-extension will only be comparatively small and inconsequently change, as the additional parameter \mathfrak{p} is redundant.

Keywords: Analytic function, bi-univalent function, Gegenbauer polynomials, coefficient estimates, subordination, Fekete-Szegö functional problems.

2020 MSC: 30C45, 30D30.
©2024 All rights reserved.

1. Introduction and motivation

Let $\mathfrak{U}=\{z: z \in \mathfrak{C},|z|<1\}$, be a unit disk and \mathfrak{A} be the class of analytical functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{r=2}^{\infty} b_{r} z^{r}, \quad(z \in \mathfrak{U}) \tag{1.1}
\end{equation*}
$$

[^0]normalized by the condition
$$
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=1
$$

Consider a class, $\mathcal{S} \subset \mathfrak{A}$ of holomorphic and univalent functions in \mathfrak{U}. Let \mathcal{S}^{*} stand for the class of starlike functions in \mathfrak{U}, which consists of normalized functions $f \in \mathfrak{A}$ that satisfy the following inequality:

$$
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad(\forall z \in \mathfrak{U})
$$

and let by \mathcal{C}, we identify the class of convex functions in \mathfrak{U} that meet the inequality by having normalized functions $\mathfrak{f} \in \mathfrak{A}$,

$$
\mathfrak{R}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)>0, \quad(\forall z \in \mathfrak{U}) .
$$

Lewin [18] introduced this class of bi-univalent functions as a sub-class of \mathfrak{A} and noted certain coefficient bounds for the class. He proved that: $\left|\mathfrak{n}_{2}\right| \leqslant 1.15$. Moreover, the Koebe $1 / 4$ theorem (see [9]) specifies that the disk $d_{\omega}=\{\omega:|\omega|<0.25\}$ is contained in every function's range $f \in \mathcal{S}$, hence, $\forall f \in \mathcal{S}$ with its inverse f^{-1}, such that

$$
\mathfrak{f}^{-1}(f(z))=z \quad(z \in \mathfrak{U})
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega, \quad\left(\omega:|\omega|<r_{0}(f) ; r_{0}(f) \geqslant 0.25\right)
$$

where $f^{-1}(\boldsymbol{\omega})$ is expressed as

$$
\begin{equation*}
\mathrm{G}(\omega)=\omega-\mathrm{b}_{2} \omega^{2}+\left(2 b_{2}^{2}-\mathrm{b}_{3}\right) \omega^{3}-\left(5 b_{2}^{3}-5 \mathrm{~b}_{2} \mathrm{~b}_{3}+\mathrm{b}_{4}\right) \omega^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

So, the function $f \in \mathfrak{A}$ is said to be bi-univalent in \mathfrak{U} if $f(z)$ and $G(z)$ are univalent in \mathfrak{U}. Let Σ stand for the class of holomorphic and bi-univalent functions in \mathfrak{U}. We are aware, some well-known functions $f \in \mathcal{S}$ like the Koebe function

$$
\kappa(z)=z /(1-z)^{2}
$$

its rotation function

$$
\mathrm{k}_{\sigma}(z)=z /\left(1-e^{i \sigma} z\right)^{2}, \quad \mathrm{f}(z)=z-z^{2} / 2
$$

and

$$
f(z)=z /\left(1-z^{2}\right),
$$

don't belong to Σ. For more details see [1, 2, 6-8, 12, 13, 29].
The groundbreaking research of Srivastava et al. [27] in fact, in recent years, revitalized the study of bi-univalent functions. Following the study of Srivastava et al. [27], numerous unique subclasses of the biunivalent function class were presented and similarly explored by numerous authors. The function classes $\mathrm{H}_{\Sigma}(\gamma, \varepsilon, \mu . \sigma ; \alpha)$ and $\mathrm{H}_{\Sigma}(\gamma, \varepsilon, \mu . \sigma ; \beta)$ as an illustration, were defined and Srivastava et al. [25] produced estimates for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Caglar et al. [23] were able to determine the upper bounds for the second Hankel determinant for specific subclasses of analytic and bi-univalent functions. By Tang et al. [24] and Srivastava et al. [26] several new subclasses of the class of m-fold symmetric bi-univalent functions were introduced, and the initial estimates of the Taylor-Maclaurin series as well as some Fekete-Szegö functional problems for each of their defined function classes were obtained. Several more prominent mathematicians provided their research on this topic see for example [5, 14-16].

From [9], let $s(z)$ and $S(z)$ belongs to class \mathfrak{A}, then

$$
s(z) \prec S(z) \quad(z \in \mathfrak{U}),
$$

suppose ω holomorphic in \mathfrak{U}, such that

$$
\omega(0)=0, \quad|\omega(z)|<1, \quad \text { and } \quad s(z)=S(\omega(z)) .
$$

Consequently, if the function $S(z)$ is univalent in \mathfrak{U},

$$
s(z) \prec S(z) \Rightarrow s(0)=S(0) \quad \text { and } \quad s(\mathfrak{U}) \subset S(\mathfrak{U}) .
$$

This conclusion is known as the subordination principle.
Amourah et al. [4] have lately studied the Gegenbauer polynomials $\mathcal{H}_{\phi}(\mathrm{t}, z)$, which are determined by the recurrence relation. A generating function of Gegenbauer polynomials is defined by for nonzero real constant ϕ,

$$
\mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} z+z^{2}\right)^{\phi}}
$$

where $-1 \leqq \mathrm{t} \leqq 1$ and $z \in \mathfrak{U}$. Applying Taylor series expansion, the holomorphic function \mathcal{H}_{ϕ} can be express in the following form

$$
\mathcal{H}_{\phi}(\mathrm{t}, z)=\sum_{\mathrm{r}=0}^{\infty} \mathfrak{G}_{r}^{\phi}(\mathrm{t}) z^{\mathrm{r}},
$$

where t is fixed and $\mathfrak{G}_{\mathrm{r}}^{\phi}(\mathrm{t})$ is Gegenbauer polynomials of degree r . When $\phi=0, \mathcal{H}_{\phi}$ obviously produces nothing. As a result, the Gegenbauer polynomial's generating function is set to

$$
\mathfrak{G}_{r}^{\phi}(\mathrm{t})=\frac{1}{\mathrm{r}}\left\{2 \mathrm{t}(\mathrm{r}+\phi-1) \mathfrak{G}_{r-1}^{\phi}(\mathrm{t})-(\mathrm{r}+2 \phi-2) \mathfrak{G}_{\mathrm{r}-1}^{\phi}(\mathrm{t})\right\}
$$

using the starting values

$$
\begin{equation*}
\mathfrak{G}_{0}^{\phi}(\mathrm{t})=1, \mathfrak{G}_{1}^{\phi}(\mathrm{t})=2 \phi \mathrm{t}, \text { and } \mathfrak{G}_{2}^{\phi}(\mathrm{t})=2 \phi(1+\phi) \mathrm{t}^{2}-\phi . \tag{1.3}
\end{equation*}
$$

Remark 1.1. First of all, if in polynomial $\mathfrak{G}_{\mathrm{r}}^{\phi}(\mathrm{t})$, we put $\phi=1$, then we have the Chebyshev polynomial. Secondly, for $\phi=\frac{1}{2}$, polynomials $\mathfrak{G}_{r}^{\phi}(\mathrm{t})$, we have the Legendre polynomial.

In recent years, many researchers have been studying how orthogonal polynomials and bi-univalent functions interact including for example in [11, 19, 30] the second derivative sequences of Fibonacci and Lucas polynomials have been studied. Also in [17, 20] some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials have been studied. On the other hand, in [3, 28], the classes of Lucas-Lehmer polynomials have been introduced. Since, there is little work in the literature's related to bi-univalent functions for the Gegenbauer polynomial. The primary goal of this study is to launch an investigation into the properties of bi-univalent functions linked with Gegenbauer polynomial.

2. Coefficient bounds and Fekete-Szegö inequalities for the class $\mathfrak{S}_{\Sigma}(\mathcal{\delta}, \mathrm{t}, \boldsymbol{\phi})$

Definition 2.1. Let $0 \leqq \delta \leqq, \frac{1}{2}<\mathrm{t} \leqq 1$. A function $\mathrm{f} \in \Sigma$ given by (1.1) is said to be in the class $\mathfrak{S}_{\Sigma}(\delta, \mathrm{t}, \phi)$ if the following subordinations are fulfilled:

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\delta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\delta} \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} z+z^{2}\right)^{\phi}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{z \mathrm{G}^{\prime}(\omega)}{\mathrm{G}(\omega)}\right)^{\delta}\left(1+\frac{\omega \mathrm{G}^{\prime \prime}(\omega)}{\mathrm{G}^{\prime}(\omega)}\right)^{1-\delta} \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} \omega+\omega^{2}\right)^{\phi}}, \tag{2.2}
\end{equation*}
$$

where the function $G(\omega)$ is defined by (1.2) and $0 \neq \phi$ is a real constant.
The initial Taylor coefficients $\left|b_{2}\right|$ and $\left|b_{3}\right|$ and the Fekete-Szegö inequality for the function class $\mathfrak{S}_{\Sigma}(\delta, t, \phi)$ are determined by the following theorem.

Theorem 2.2. Let $\mathrm{f} \in \mathfrak{S}_{\Sigma}(\delta, \mathrm{t}, \phi)$. Then

$$
\left|b_{2}\right| \leqslant 2|\phi| t \sqrt{\frac{2 \phi t}{2 \phi^{2} t^{2}\left(\delta^{2}-3 \delta+4\right)-(2-\delta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)^{\prime}}}, \quad\left|b_{3}\right| \leqslant \frac{4 \phi^{2} t^{2}}{(2-\delta)^{2}}+\frac{\phi t}{3-2 \delta^{\prime}},
$$

and for $\chi \in \mathcal{R}$,

$$
\left|d_{3}-x d_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| t}{|3-2 \delta|}, & |x-1| \leqq|D|, \\ \frac{2 \phi^{3} t^{3}|1-\chi|}{2 \phi^{2} x^{2}\left(\delta^{2}-3 \delta+4\right)-(2-\delta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)}, & |x-1| \geqq|D|,\end{cases}
$$

where

$$
\mathrm{D}=\frac{2 \phi \mathrm{x}^{2}\left(\delta^{2}-3 \delta+4\right)-(2-\delta)^{2}\left(2(1+\phi) \mathrm{t}^{2}-1\right)}{8 \phi \mathrm{t}^{2}(3-2 \delta)} .
$$

Proof. Let $\mathrm{f} \in \mathfrak{S}_{\Sigma}(\delta, \mathrm{t}, \phi)$. From (2.1) and (2.2), we have

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\delta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\delta}=1+\mathfrak{G}_{1}^{\phi}(t) s_{1} z+\left[\mathfrak{G}_{1}^{\phi}(t) s_{2}+\mathfrak{G}_{2}^{\phi}(t) s_{1}^{2}\right] z^{2}+\cdots \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{z G^{\prime}(\omega)}{G(\omega)}\right)^{\delta}\left(1+\frac{\omega G^{\prime \prime}(\omega)}{G^{\prime}(\omega)}\right)^{1-\delta}=1+\mathfrak{G}_{1}^{\phi}(t) l_{1} \omega+\left[\mathfrak{G}_{1}^{\phi}(t) l_{2}+\mathfrak{G}_{2}^{\phi}(t) l_{1}^{2}\right] \omega^{2}+\cdots \tag{2.4}
\end{equation*}
$$

for some holomorphic functions

$$
u(z)=s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots, \quad v(\omega)=l_{1} \omega+l_{2} \omega^{2}+l_{3} \omega^{3}+\cdots,
$$

such that

$$
\mathfrak{u}(0)=v(0)=0, \quad|s(z)|<1, \quad \text { and } \quad|v(w)|<1 \quad(z, \omega \in \mathfrak{U}) .
$$

Therefore, we have

$$
\left|s_{k}\right| \leqq 1 \quad \text { and } \quad\left|l_{k}\right| \leqq 1
$$

When the equivalent coefficients in (2.3) and (2.4) are compared, we get

$$
\begin{align*}
(2-\delta) b_{2} & =\mathfrak{G}_{1}^{\Phi}(t) s_{1}, \tag{2.5}\\
2(3-2 \delta) b_{3}+\left(\delta^{2}+5 \delta-8\right) \frac{b_{2}^{2}}{2} & =\mathfrak{G}_{1}^{\Phi}(t) s_{2}+\mathfrak{G}_{2}^{\phi}(t) s_{1}^{2} \tag{2.6}\\
-(2-\delta) b_{2} & =\mathfrak{G}_{1}^{\Phi}(t) l_{1}, \tag{2.7}\\
\left(\delta^{2}-11 \delta+16\right) \frac{b_{2}^{2}}{2}-2(3-2 \delta) b_{3} & =\mathfrak{G}_{1}^{\Phi}(t) l_{2}+\mathfrak{G}_{2}^{\Phi}(t) l_{1}^{2} . \tag{2.8}
\end{align*}
$$

From (2.5) and (2.7), we have

$$
\begin{align*}
& s_{1}=-l_{1}, \\
& b_{2}^{2}=\frac{\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{2}\left(s_{1}^{2}+l_{1}^{2}\right)}{2(2-\delta)^{2}}, \quad s_{1}^{2}+l_{1}^{2}=\frac{2(2-\delta)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}} . \tag{2.9}
\end{align*}
$$

Summation of (2.6) and (2.8) gives

$$
\begin{equation*}
\left(\delta^{2}-3 \delta+4\right) b_{2}^{2}=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}+l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left(s_{1}^{2}+l_{1}^{2}\right)=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}+l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left[\frac{2(2-\delta)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}}\right] \tag{2.10}
\end{equation*}
$$

Applying (2.9) in (2.10), yields

$$
\begin{equation*}
\left[\left(\delta^{2}-3 \delta+4\right)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}-2(2-\delta)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})\right] \mathrm{b}_{2}^{2}=\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{3}\left(s_{2}+\mathrm{l}_{2}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\left[4 \phi^{2} x^{2}\left(\delta^{2}-3 \delta+4\right)-2(2-\delta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)\right] b_{2}^{2}=\left[\mathscr{G}_{1}^{\phi}(\mathrm{t})\right]^{3}\left(s_{2}+l_{2}\right),
$$

which gives

$$
\left|b_{2}\right| \leqslant 2|\phi| t \sqrt{\frac{2 \phi t}{2 \phi^{2} t^{2}\left(\delta^{2}-3 \delta+4\right)-(2-\delta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)}} .
$$

Hence, (2.8) minus (2.6) gives us

$$
\begin{equation*}
4(3-2 \delta) b_{3}-4(3-2 \delta) b_{2}^{2}=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}-l_{2}\right)+\mathfrak{G}_{2}^{\Phi}(t)\left(s_{1}^{2}-l_{1}^{2}\right) . \tag{2.12}
\end{equation*}
$$

Then, using (1.3), (2.9), and (2.12), we get

$$
\begin{equation*}
\mathrm{b}_{3}=\mathrm{b}_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-\mathrm{l}_{2}\right)}{4(3-2 \delta)}=\frac{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}\left(s_{1}^{2}+\mathrm{l}_{1}^{2}\right)}{2(2-\delta)^{2}}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-\mathrm{l}_{2}\right)}{4(3-2 \delta)} . \tag{2.13}
\end{equation*}
$$

Applying (1.3), yields

$$
\left|\mathrm{b}_{3}\right| \leqslant \frac{4 \phi^{2} \mathrm{t}^{2}}{(2-\delta)^{2}}+\frac{\phi t}{3-2 \delta} .
$$

From (2.13), for $\chi \in \mathcal{R}$, we have

$$
\begin{equation*}
\mathrm{b}_{3}-\chi \mathrm{b}_{2}^{2}=(1-\chi) \mathrm{b}_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-l_{2}\right)}{4(3-2 \delta)} \tag{2.14}
\end{equation*}
$$

By substituting (2.11) in (2.14), we have

$$
\begin{aligned}
\mathrm{b}_{3}-\chi \mathrm{b}_{2}^{2} & =\frac{(1-\chi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{3}\left(s_{2}+\mathrm{l}_{2}\right)}{\left(\delta^{2}-3 \delta+4\right)\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{2}-2(2-\delta)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-\mathrm{l}_{2}\right)}{4(3-2 \delta)} \\
& =\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left\{\left(\mathrm{G}(\chi)+\frac{1}{4(3-2 \delta)}\right) s_{2}+\left(\mathrm{G}(\chi)-\frac{1}{4(3-2 \delta)}\right) \mathrm{l}_{2}\right\},
\end{aligned}
$$

where

$$
\mathrm{G}(\chi)=\frac{(1-\chi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}}{\left(\delta^{2}-3 \delta+4\right)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}-2(2-\delta)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})}
$$

Thus, according to (1.3), we have

$$
\left|b_{3}-\chi b_{2}^{2}\right| \leqslant \begin{cases}\frac{\left|\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right|}{2(3-2 \delta),} & 0 \leqq|\mathrm{G}(\chi)| \leqq \frac{1}{4(3-2 \delta)}, \\ 2\left|\mathrm{G}(\chi) \| \mathfrak{G}_{1}^{\phi}(\mathrm{t})\right|, & |\mathrm{G}(\chi)| \geqq \frac{1}{4(3-2 \delta)},\end{cases}
$$

hence, after some calculations, gives

$$
\left|\mathrm{b}_{3}-\chi \mathrm{b}_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| \mathrm{t}}{|3-2 \delta|}, & |x-1| \leqq|\mathrm{D}|, \\ \frac{8 \phi^{3} \mathrm{t}^{3}|1-\chi|}{2 \phi^{2} x^{2}\left(\delta^{2}-3 \delta+4\right)-(2-\delta)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)}, & |x-1| \geqq|\mathrm{D}| .\end{cases}
$$

3. Coefficient bounds and Fekete-Szegö inequalities for the class $\mathfrak{M}_{\Sigma}(\varphi, t, \phi)$

Definition 3.1. Let $\varphi \in[0,1], 1 / 2<t \leqq 1$. A function $f \in \mathfrak{M}_{\Sigma}(\varphi, t, \phi)$, if the following subordinations are fulfilled:

$$
\begin{equation*}
\varphi\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\varphi) \frac{z f^{\prime}(z)}{f(z)} \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} z+z^{2}\right)^{\Phi}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(1+\frac{\omega \mathrm{G}^{\prime \prime}(z)}{\mathrm{G}^{\prime}(z)}\right)+(1-\varphi) \frac{\omega \mathrm{G}^{\prime}(z)}{\mathrm{G}(z)} \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} \omega+\omega^{2}\right)^{\phi}}, \tag{3.2}
\end{equation*}
$$

where the function $\mathrm{G}(\omega)$ is defined by (1.2) and $\phi \neq 0$ is a real constant.
The initial Taylor coefficients $\left|\mathrm{b}_{2}\right|$ and $\left|\mathrm{b}_{3}\right|$ and Fekete-Szegö inequality for the function class $\mathfrak{M}_{\Sigma}(\varphi, \mathrm{t}, \phi)$ are determined by the following theorem.

Theorem 3.2. Let $f \in \mathfrak{M}_{\Sigma}(\varphi, t, \phi)$. Then

$$
\left|\mathrm{b}_{2}\right| \leqslant 2|\phi| \mathrm{t} \sqrt{\frac{2 \phi \mathrm{t}}{\left|4 \phi^{2} \mathrm{t}^{2}(1+\varphi)-(1+\varphi)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)\right|^{\prime}}}, \quad\left|\mathrm{b}_{3}\right| \leqslant \frac{4 \phi^{2} \mathrm{t}^{2}}{(1+\varphi)^{2}}+\frac{\phi \mathrm{t}}{1+2 \varphi},
$$

and for $\vartheta \in \mathcal{R}$

$$
\left|\mathrm{b}_{3}-\vartheta \mathrm{b}_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| \mathrm{t}}{|1+2 \varphi|}, & |\vartheta-1| \leqq|\mathrm{N}|, \\ \frac{8 \phi^{3} \mathrm{t}^{3}|1-\vartheta|}{4 \phi^{2} \mathrm{t}^{2}(1+\varphi)-(1+\varphi)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)}, & |\vartheta-1| \geqq|\mathrm{N}|,\end{cases}
$$

where

$$
\mathrm{N}=\frac{4 \phi \mathrm{t}^{2}(1+\varphi)-(1+\varphi)^{2}\left(2(1+\phi) \mathrm{t}^{2}-1\right)}{8 \phi \mathrm{t}^{2}(1+2 \varphi)}
$$

Proof. Let $\mathrm{f} \in \mathfrak{M}_{\Sigma}(\varphi, \mathrm{t}, \phi)$. From (3.1) and (3.2), we have

$$
\begin{equation*}
\varphi\left(1+\frac{z \mathrm{f}^{\prime \prime}(z)}{\mathrm{f}^{\prime}(z)}\right)+(1-\varphi) \frac{z \mathrm{f}^{\prime}(z)}{\mathrm{f}(z)}=1+\mathfrak{G}_{1}^{\phi}(\mathrm{t}) s_{1} z+\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t}) s_{2}+\mathfrak{G}_{2}^{\Phi}(\mathrm{t}) s_{1}^{2}\right] z^{2}+\cdots \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(1+\frac{\omega G^{\prime \prime}(z)}{G^{\prime}(z)}\right)+(1-\varphi) \frac{\omega G^{\prime}(z)}{G(z)}=1+\mathfrak{G}_{1}^{\phi}(t) l_{1} \omega+\left[\mathfrak{G}_{1}^{\phi}(t) l_{2}+\mathfrak{G}_{2}^{\phi}(t) l_{1}^{2}\right] \omega^{2}+\cdots \tag{3.4}
\end{equation*}
$$

for some holomorphic functions

$$
u(z)=s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots, \quad v(\omega)=l_{1} \omega+l_{2} \omega^{2}+l_{3} \omega^{3}+\cdots,
$$

such that

$$
u(0)=v(0)=0
$$

and

$$
|s(z)|<1 \text { and }|v(\omega)|<1 \quad(z, \omega \in \mathfrak{U}) .
$$

Therefore, we have

$$
\left|s_{k}\right| \leqq 1 \text { and }\left|l_{k}\right| \leqq 1 \quad(\forall k \in \mathfrak{N}) .
$$

When the equivalent coefficients in (3.3) and (3.4) are compared, we get

$$
\begin{align*}
(1+\varphi) \mathrm{b}_{2} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathrm{s}_{1}, \tag{3.5}\\
2(1+2 \varphi) \mathrm{b}_{3}-(1+3 \varphi) \mathrm{b}_{2}^{2} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathrm{s}_{2}+\mathfrak{G}_{2}^{\phi}(\mathrm{t}) \mathrm{s}_{1}^{2}, \tag{3.6}\\
-(1+\varphi) \mathrm{b}_{2} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathrm{l}_{1}, \tag{3.7}
\end{align*}
$$

$$
\begin{equation*}
(3+5 \varphi) \mathfrak{b}_{2}^{2}-2(1+2 \varphi) b_{3}=\mathfrak{G}_{1}^{\phi}(t) l_{2}+\mathfrak{G}_{2}^{\phi}(t) l_{1}^{2} . \tag{3.8}
\end{equation*}
$$

From (3.5) and (3.7),

$$
\begin{align*}
& s_{1}=-l_{1}, \\
& b_{2}^{2}=\frac{\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{2}\left(s_{1}^{2}+l_{1}^{2}\right)}{2(1+\varphi)^{2}}, \quad s_{1}^{2}+l_{1}^{2}=\frac{2(1+\varphi)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{2}} . \tag{3.9}
\end{align*}
$$

Summation of (3.6) and (3.8) gives

$$
\begin{equation*}
2(1+\varphi) \mathfrak{b}_{2}^{2}=\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}+\mathrm{l}_{2}\right)+\mathfrak{G}_{2}^{\phi}(\mathrm{t})\left(s_{1}^{2}+\mathrm{l}_{1}^{2}\right)=\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}+l_{2}\right)+\mathfrak{G}_{2}^{\phi}(\mathrm{t})\left[\frac{2(1+\varphi)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}}\right] . \tag{3.10}
\end{equation*}
$$

Applying (3.9) in (3.10), yields

$$
\begin{equation*}
\left[2(1+\varphi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}-2(1+\varphi)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})\right] \mathrm{b}_{2}^{2}=\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{3}\left(s_{2}+\mathrm{l}_{2}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\left[8 \phi^{2} x^{2}(1+\varphi)-2(1+\varphi)^{2} \phi\left(2(1+\phi) t^{2}-1\right)\right] b_{2}^{2}=\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{3}\left(s_{2}+l_{2}\right)
$$

which gives

$$
\left|\mathrm{b}_{2}\right| \leqslant 2|\phi| \mathrm{t} \sqrt{\frac{2 \phi \mathrm{t}}{\left|4 \phi^{2} \mathrm{t}^{2}(1+\varphi)-(1+\varphi)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)\right|}} .
$$

Hence, (3.8) minus (3.6) gives us

$$
4(1+2 \varphi) \mathfrak{b}_{3}-4(1+2 \varphi) b_{2}^{2}=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}-l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left(s_{1}^{2}-l_{1}^{2}\right) .
$$

Then, using (1.3) and (3.9), we get

$$
\begin{equation*}
\mathrm{b}_{3}=\mathrm{b}_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(\mathrm{s}_{2}-\mathrm{l}_{2}\right)}{4(1+2 \varphi)}, \quad \mathrm{b}_{3}=\frac{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}\left(s_{1}^{2}+\mathrm{l}_{1}^{2}\right)}{2(1+\varphi)^{2}}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-\mathrm{l}_{2}\right)}{4(1+2 \varphi)} . \tag{3.12}
\end{equation*}
$$

Applying (1.3), yields

$$
\left|\mathrm{b}_{3}\right| \leqslant \frac{4 \phi^{2} \mathrm{t}^{2}}{(1+\varphi)^{2}}+\frac{\phi \mathrm{t}}{1+2 \varphi} .
$$

From (3.12), for $\vartheta \in \mathcal{R}$, we have

$$
\begin{equation*}
b_{3}-\vartheta b_{2}^{2}=(1-\vartheta) b_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}-l_{2}\right)}{4(1+2 \varphi)} . \tag{3.13}
\end{equation*}
$$

By substituting (3.11) in (3.13), we have

$$
\begin{aligned}
\mathrm{b}_{3}-\vartheta \mathrm{b}_{2}^{2} & =\frac{(1-\chi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{3}\left(s_{2}+l_{2}\right)}{2(1+\varphi)\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{2}-2(1+\varphi)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-l_{2}\right)}{4(1+2 \varphi)} \\
& =\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left\{\left(\mathrm{G}(\vartheta)+\frac{1}{4(1+2 \varphi)}\right) s_{2}+\left(\mathrm{G}(\vartheta)-\frac{1}{4(1+2 \varphi)}\right) l_{2}\right\},
\end{aligned}
$$

where

$$
\mathrm{G}(\vartheta)=\frac{(1-\chi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}}{2(1+\varphi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}-2(1+\varphi)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})}
$$

Thus, according to (1.3), we have

$$
\left|b_{3}-\vartheta b_{2}^{2}\right| \leqslant \begin{cases}\frac{\left|\mathfrak{G}_{1}^{\phi}(t)\right|}{2(1+2 \varphi)}, & 0 \leqq|G(\vartheta)| \leqq \frac{1}{4(1+2 \varphi)}, \\ 2\left|G(\vartheta) \| \mathfrak{G}_{1}^{\phi}(t)\right|, & |G(\chi)| \geqq \frac{1}{4(1-2 \delta)},\end{cases}
$$

hence, after some calculations, gives

$$
\left|b_{3}-\vartheta b_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| \mathrm{t}}{|1+2 \varphi|}, & |\vartheta-1| \leqq|\mathrm{N}|, \\ \frac{8 \phi^{3} \mathrm{t}^{3}|1-\vartheta|}{4 \phi^{2} \mathrm{t}^{2}(1+\varphi)-(1+\varphi)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)}, & |\vartheta-1| \geqq|\mathrm{N}| .\end{cases}
$$

4. Coefficient bounds and Fekete-Szegö inequalities for the class $\mathfrak{H}_{\Sigma}(\boldsymbol{\psi}, \mathrm{t}, \boldsymbol{\phi})$

Definition 4.1. Let $\psi \geqq 0,1 / 2<\mathrm{t} \leqq 1$. A function $\mathrm{f} \in \mathfrak{H}_{\Sigma}(\psi, \mathrm{t}, \phi)$, if the following subordinations are fulfilled:

$$
\begin{equation*}
\psi \frac{z^{2} f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} z+z^{2}\right)^{\phi}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi \frac{\omega^{2} \mathrm{G}^{\prime \prime}(z)}{\mathrm{G}^{\prime}(z)}+\frac{\omega \mathrm{G}^{\prime}(z)}{\mathrm{G}(z)} \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} \omega+\omega^{2}\right)^{\phi}} \tag{4.2}
\end{equation*}
$$

where the function $G(\omega)$ is defined by (1.2) and $\phi \neq 0$ is a real constant.
The initial Taylor coefficients $\left|\mathrm{b}_{2}\right|$ and $\left|\mathrm{b}_{3}\right|$ and Fekete-Szegö inequality for the function class $\mathfrak{H}_{\Sigma}(\psi, \mathrm{t}, \phi)$ are determined by the following theorem.

Theorem 4.2. Let $\mathrm{f} \in \mathfrak{M}_{\Sigma}(\varphi, \mathrm{t}, \phi)$. Then

$$
\left|\mathrm{b}_{2}\right| \leqslant 2|\phi| \mathrm{t} \sqrt{\frac{2 \phi \mathrm{t}}{\left|4 \phi^{2} \mathrm{t}^{2}(1+4 \psi)-(1+2 \psi)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)\right|^{\prime}}}, \quad\left|\mathrm{b}_{3}\right| \leqslant \frac{4 \phi^{2} \mathrm{t}^{2}}{(1+2 \psi)^{2}}+\frac{|\phi \mathrm{t}|}{1+3 \psi},
$$

and for $\psi \in \mathcal{R}$,

$$
\left|b_{3}-\zeta b_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| t}{|1+3 \psi|}, & |\zeta-1| \leqq|R|, \\ \frac{8 \phi^{3} t^{3} 31-\zeta \mid}{4 \phi^{2} t^{2}(1+4 \psi)-(1+2 \psi)^{2} \phi\left(2(1+\phi) t^{2}-1\right)}, & |\zeta-1| \geqq|R|,\end{cases}
$$

where

$$
\mathrm{R}=\frac{4 \phi \mathrm{t}^{2}(1+4 \psi)-(1+2 \psi)^{2}\left(2(1+\phi) \mathrm{t}^{2}-1\right)}{8 \phi \mathrm{t}^{2}(1+3 \psi)} .
$$

Proof. Let $\mathrm{f} \in \mathfrak{H}_{\Sigma}(\psi, \mathrm{t}, \phi)$. From (4.1) and (4.2), we have

$$
\psi \frac{z^{2} f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z f^{\prime}(z)}{f(z)}=1+\mathfrak{G}_{1}^{\phi}(t) s_{1} z+\left[\mathfrak{G}_{1}^{\phi}(t) s_{2}+\mathfrak{G}_{2}^{\phi}(t) s_{1}^{2}\right] z^{2}+\cdots
$$

and

$$
\psi \frac{\omega^{2} \mathrm{G}^{\prime \prime}(z)}{\mathrm{G}^{\prime}(z)}+\frac{\omega \mathrm{G}^{\prime}(z)}{\mathrm{G}(z)}=1+\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathfrak{l}_{1} \omega+\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathfrak{l}_{2}+\mathfrak{G}_{2}^{\phi}(\mathrm{t}) \mathrm{l}_{1}^{2}\right] \omega^{2}+\cdots
$$

for some holomorphic functions

$$
u(z)=s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots, \quad v(\omega)=l_{1} \omega+l_{2} \omega^{2}+l_{3} \omega^{3}+\cdots,
$$

such that

$$
u(0)=v(0)=0, \quad|s(z)|<1, \text { and }|v(w)|<1 \quad(z, w \in \mathfrak{U}) .
$$

Therefore, we have

$$
\left|s_{k}\right| \leqq 1 \text { and }\left|l_{k}\right| \leqq 1, \text { for all } k \in \mathfrak{N}
$$

When the equivalent coefficients in (3.3) and (3.4) are compared, we get

$$
\begin{align*}
(1+2 \psi) b_{2} & =\mathfrak{G}_{1}^{\phi}(t) s_{1} \tag{4.3}\\
2(1+3 \psi) b_{3}-(1+2 \psi) b_{2}^{2} & =\mathfrak{G}_{1}^{\phi}(t) s_{2}+\mathfrak{G}_{2}^{\Phi}(t) s_{1}^{2} \tag{4.4}\\
-(1+2 \psi) b_{2} & =\mathfrak{G}_{1}^{\Phi}(t) l_{1} \tag{4.5}\\
(3+10 \psi) b_{2}^{2}-2(1+3 \psi) b_{3} & =\mathfrak{G}_{1}^{\phi}(t) l_{2}+\mathfrak{G}_{2}^{\Phi}(t) l_{1}^{2} \tag{4.6}
\end{align*}
$$

From (4.3) and (4.5),

$$
\begin{align*}
s_{1} & =-l_{1} \\
b_{2}^{2} & =\frac{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}\left(s_{1}^{2}+l_{1}^{2}\right)}{2(1+2 \psi)^{2}}, \quad s_{1}^{2}+l_{1}^{2}=\frac{2(1+2 \psi)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}} \tag{4.7}
\end{align*}
$$

Summation of (4.4) and (4.6) gives

$$
\begin{equation*}
2(1+4 \psi) \mathfrak{b}_{2}^{2}=\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(\mathrm{s}_{2}+\mathrm{l}_{2}\right)+\mathfrak{G}_{2}^{\phi}(\mathrm{t})\left(\mathrm{s}_{1}^{2}+\mathrm{l}_{1}^{2}\right)=\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(\mathrm{s}_{2}+\mathrm{l}_{2}\right)+\mathfrak{G}_{2}^{\phi}(\mathrm{t})\left[\frac{2(1+2 \psi)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}}\right] \tag{4.8}
\end{equation*}
$$

Applying (4.7) in (4.8), yields

$$
\begin{equation*}
\left[2(1+4 \psi)\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{2}-2(1+2 \psi)^{2} \mathfrak{G}_{2}^{\Phi}(\mathrm{t})\right] \mathrm{b}_{2}^{2}=\left[\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\right]^{3}\left(\mathrm{~s}_{2}+\mathrm{l}_{2}\right) \tag{4.9}
\end{equation*}
$$

and

$$
\left[8 \phi^{2} \chi^{2}(1+4 \psi)-2(1+2 \psi)^{2} \phi\left(2(1+\phi) t^{2}-1\right)\right] b_{2}^{2}=\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{3}\left(s_{2}+l_{2}\right)
$$

which gives

$$
\left|b_{2}\right| \leqslant 2|\phi| t \sqrt{\frac{2 \phi t}{\left|4 \phi^{2} t^{2}(1+4 \psi)-(1+2 \psi)^{2} \phi\left(2(1+\phi) t^{2}-1\right)\right|}}
$$

Hence, (4.6) minus (4.4) gives us

$$
\begin{equation*}
4(1+3 \psi) b_{3}-4(1+3 \psi) b_{2}^{2}=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}-l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left(s_{1}^{2}-l_{1}^{2}\right) \tag{4.10}
\end{equation*}
$$

Then, using (1.3) and (4.7), we get

$$
\mathrm{b}_{3}=\mathrm{b}_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(\mathrm{s}_{2}-\mathrm{l}_{2}\right)}{4(1+3 \psi)}=\frac{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}\left(\mathrm{~s}_{1}^{2}+\mathrm{l}_{1}^{2}\right)}{2(1+2 \psi)^{2}}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(\mathrm{s}_{2}-\mathrm{l}_{2}\right)}{4(1+3 \psi)}
$$

Applying (1.3), yields

$$
\left|\mathrm{b}_{3}\right| \leqslant \frac{4 \phi^{2} \mathrm{t}^{2}}{(1+2 \psi)^{2}}+\frac{|\phi \mathrm{t}|}{1+3 \psi}
$$

From (4.10), for $\zeta \in \mathcal{R}$, we have

$$
\begin{equation*}
\mathrm{b}_{3}-\zeta \mathrm{b}_{2}^{2}=(1-\zeta) \mathrm{b}_{2}^{2}+\frac{\mathfrak{G}_{1}^{\Phi}(\mathrm{t})\left(\mathrm{s}_{2}-\mathrm{l}_{2}\right)}{4(1+3 \psi)} \tag{4.11}
\end{equation*}
$$

By substituting (4.9) in (4.11), we have

$$
\mathrm{b}_{3}-\zeta \mathrm{b}_{2}^{2}=\frac{(1-\zeta)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{3}\left(\mathrm{~s}_{2}+\mathrm{l}_{2}\right)}{2(1+4 \psi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}-2(1+2 \psi)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(\mathrm{s}_{2}-\mathrm{l}_{2}\right)}{4(1+3 \psi)}
$$

$$
=\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left\{\left(\mathrm{G}(\zeta)+\frac{1}{4(1+3 \psi)}\right) \mathrm{s}_{2}+\left(\mathrm{G}(\zeta)-\frac{1}{4(1+3 \psi)}\right) \mathrm{l}_{2}\right\},
$$

where

$$
\mathrm{G}(\zeta)=\frac{(1-\chi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}}{2(1+4 \psi)\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}-2(1+2 \psi)^{2} \mathfrak{G}_{2}^{\phi}(\mathrm{t})} .
$$

Thus, according to (1.3), we have

$$
\left|\mathrm{b}_{3}-\zeta \mathrm{b}_{2}^{2}\right| \leqslant \begin{cases}\frac{\left|\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right|}{2(1+3 \psi)}, & 0 \leqq|\mathrm{G}(\zeta)| \leqq \frac{1}{4(1+3 \psi)}, \\ 2|\mathrm{G}(\zeta)|\left|\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right|, & |\mathrm{G}(\mathrm{X})| \geqq \frac{1}{4(1-3 \psi)},\end{cases}
$$

hence, after some calculations, gives

$$
\left|\mathrm{b}_{3}-\zeta \mathrm{b}_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| t}{|1+3 \psi|}, & |\zeta-1| \leqq|R|, \\ \frac{8 \phi^{3} t^{3}|1-\zeta|}{4 \phi^{2} \mathrm{t}^{2}(1+4 \psi)-(1+2 \psi)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)}, & |\zeta-1| \geqq|R| .\end{cases}
$$

5. Coefficient bounds and Fekete-Szegö inequalities for the class $\mathfrak{B O} \mathfrak{O}_{\Sigma}(\beta, t, \phi)$

Definition 5.1. Let $\beta \in[0,1], 1 / 2<t \leqq 1$. A function $f \in \mathfrak{B O}_{\Sigma}(\beta, t, \phi)$, if the following subordinations are fulfilled:

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z f^{\prime}(z)}{f(z)}-\frac{\beta z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\beta z f^{\prime}(z)+(1-\beta) f(z)}+1 \prec \mathcal{H}_{\phi}(t, z)=\frac{1}{\left(1-2 t z+z^{2}\right)^{\phi}} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{G}^{\prime \prime}(\omega)}{\mathrm{G}^{\prime}(\omega)}+\frac{\omega \mathrm{G}^{\prime}(\omega)}{\mathrm{G}(z)}-\frac{\beta \omega^{2} \mathrm{G}^{\prime \prime}(\omega)+\omega \mathrm{G}^{\prime}(\omega)}{\beta \omega \mathrm{G}^{\prime}(\omega)+(1-\beta) \mathrm{G}(\omega)}+1 \prec \mathcal{H}_{\phi}(\mathrm{t}, z)=\frac{1}{\left(1-2 \mathrm{t} \omega+\omega^{2}\right)^{\phi}}, \tag{5.2}
\end{equation*}
$$

where the function $\mathrm{G}(\boldsymbol{\omega})$ is defined by (1.2) and $0 \neq \phi$ is a real constant.
The initial Taylor coefficients $\left|b_{2}\right|$ and $\left|b_{3}\right|$ and Fekete-Szegö inequality for the function class $\mathfrak{B} \mathfrak{O}_{\Sigma}(\beta, \mathrm{t}, \phi)$ are determined by the following theorem.

Theorem 5.2. Let $f \in \mathfrak{B O}_{\Sigma}(\beta, t, \phi)$. Then

$$
\left|\mathrm{b}_{2}\right| \leqslant 2|\phi| \mathrm{t} \sqrt{\frac{2 \phi \mathrm{t}}{4 \phi^{2} \mathrm{t}^{2}\left(1+(\beta-1)^{2}\right)-(2-\beta)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)}}, \quad\left|\mathrm{b}_{3}\right| \leqslant \frac{4 \phi^{2} \mathrm{t}^{2}}{(2-\beta)^{2}}+\frac{\phi \mathrm{t}}{3-2 \beta},
$$

and for $\eta \in \mathcal{R}$,

$$
\left|b_{3}-\eta b_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| t}{|3-2 \beta|}, & |\eta-1| \leqq|W|, \\ \frac{8 \phi^{3} t^{3}|1-\eta|}{4 \phi^{2} x^{2}\left(1+(\beta-1)^{2}\right)-(2-\beta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)}, & |\eta-1| \geqq|W|,\end{cases}
$$

where

$$
W=\frac{4 \phi x^{2}\left(1+(\beta-1)^{2}\right)-(2-\beta)^{2}\left(2(1+\phi) \mathrm{t}^{2}-1\right)}{8 \phi \mathrm{t}^{2}(3-2 \beta)}
$$

Proof. Let $\mathrm{f} \in \mathfrak{S}_{\Sigma}(\delta, \mathrm{t}, \phi)$. From (5.1) and (5.2), we have

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z f^{\prime}(z)}{f(z)}-\frac{\beta z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\beta z f^{\prime}(z)+(1-\beta) f(z)}+1=1+\mathfrak{G}_{1}^{\phi}(t) s_{1} z+\left[\mathfrak{G}_{1}^{\phi}(t) s_{2}+\mathfrak{G}_{2}^{\phi}(t) s_{1}^{2}\right] z^{2}+\cdots \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{G}^{\prime \prime}(\omega)}{\mathrm{G}^{\prime}(\omega)}+\frac{\omega \mathrm{G}^{\prime}(\omega)}{\mathrm{G}(z)}-\frac{\beta \omega^{2} \mathrm{G}^{\prime \prime}(\omega)+\omega \mathrm{G}^{\prime}(\omega)}{\beta \omega \mathrm{G}^{\prime}(\omega)+(1-\beta) \mathrm{G}(\omega)}+1=1+\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathfrak{l}_{1} \omega+\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathfrak{l}_{2}+\mathfrak{G}_{2}^{\phi}(\mathrm{t}) \mathfrak{l}_{1}^{2}\right] \omega^{2}+\cdots \tag{5.4}
\end{equation*}
$$

for some holomorphic functions

$$
u(z)=s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots, \quad v(\omega)=l_{1} \omega+l_{2} \omega^{2}+l_{3} \omega^{3}+\cdots,
$$

such that

$$
u(0)=v(0)=0, \quad|s(z)|<1, \text { and }|v(\omega)|<1 \quad(z, \omega \in \mathfrak{U})
$$

Now therefore

$$
\left|s_{k}\right| \leqq 1 \text { and }\left|\mathfrak{l}_{k}\right| \leqq 1 \quad(k \in \mathfrak{N}) .
$$

When the equivalent coefficients in (5.3) and (5.4) are compared, we get

$$
\begin{align*}
(2-\beta) b_{2} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathrm{s}_{1}, \tag{5.5}\\
2(3-2 \beta) \mathrm{b}_{3}+\left(5-(\beta+1)^{2}\right) \mathrm{b}_{2}^{2} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) \mathrm{s}_{2}+\mathfrak{G}_{2}^{\phi}(\mathrm{t}) s_{1}^{2}, \tag{5.6}\\
(\beta-2) \mathrm{b}_{2} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) l_{1}, \tag{5.7}\\
\left(7-8 \beta+(1+\beta)^{2}\right) b_{2}^{2}-2(3-2 \beta) \mathrm{b}_{3} & =\mathfrak{G}_{1}^{\phi}(\mathrm{t}) l_{2}+\mathfrak{G}_{2}^{\phi}(\mathrm{t}) l_{1}^{2} . \tag{5.8}
\end{align*}
$$

From (5.5) and (5.7)

$$
\begin{align*}
& s_{1}=-l_{1}, \\
& b_{2}^{2}=\frac{\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}\left(s_{1}^{2}+l_{1}^{2}\right)}{2(2-\beta)^{2}}, \quad s_{1}^{2}+l_{1}^{2}=\frac{2(2-\beta)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}} . \tag{5.9}
\end{align*}
$$

Summation of (5.6) and (5.8) gives

$$
\begin{equation*}
2\left(1+(\beta-1)^{2}\right) b_{2}^{2}=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}+l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left(s_{1}^{2}+l_{1}^{2}\right)=\mathfrak{G}_{1}^{\Phi}(t)\left(s_{2}+l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left[\frac{2(2-\beta)^{2} b_{2}^{2}}{\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}}\right] \tag{5.10}
\end{equation*}
$$

Applying (5.9) in (5.10), yields

$$
\begin{align*}
{\left[\left(1+(\beta-1)^{2}\right)\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}-2(2-\beta)^{2} \mathfrak{G}_{2}^{\phi}(t)\right] b_{2}^{2} } & =\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{3}\left(s_{2}+l_{2}\right), \tag{5.11}\\
{\left[8 \phi^{2} \chi^{2}\left(1+(\beta-1)^{2}\right)-2(2-\beta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)\right] b_{2}^{2} } & =\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{3}\left(s_{2}+l_{2}\right),
\end{align*}
$$

which gives

$$
\left|\mathrm{b}_{2}\right| \leqslant 2|\phi| \mathrm{t} \sqrt{\frac{2 \phi \mathrm{t}}{\frac{4 \phi^{2} \mathrm{t}^{2}\left(1+(\beta-1)^{2}\right)-(2-\beta)^{2} \phi\left(2(1+\phi) \mathrm{t}^{2}-1\right)}{}}}
$$

Hence, (5.8) minus (5.6) gives us

$$
\begin{equation*}
4(3-2 \beta)\left(b_{3}-b_{2}^{2}\right)=\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}-l_{2}\right)+\mathfrak{G}_{2}^{\phi}(t)\left(s_{1}^{2}-l_{1}^{2}\right) . \tag{5.12}
\end{equation*}
$$

Then, using (1.3), (5.9), and (5.12), we get

$$
\begin{equation*}
b_{3}=b_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-l_{2}\right)}{4(3-2 \beta)} \tag{5.13}
\end{equation*}
$$

or

$$
\mathrm{b}_{3}=\frac{\left[\mathfrak{G}_{1}^{\phi}(\mathrm{t})\right]^{2}\left(s_{1}^{2}+l_{1}^{2}\right)}{2(2-\beta)^{2}}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-\mathrm{l}_{2}\right)}{4(3-2 \beta)} .
$$

Applying (1.3), yields

$$
\left|b_{3}\right| \leqslant \frac{4 \phi^{2} t^{2}}{(2-\beta)^{2}}+\frac{\phi t}{3-2 \beta}
$$

From (5.13), for $\eta \in \mathcal{R}$, we have

$$
\begin{equation*}
b_{3}-\eta b_{2}^{2}=(1-\eta) b_{2}^{2}+\frac{\mathfrak{G}_{1}^{\phi}(\mathrm{t})\left(s_{2}-l_{2}\right)}{4(3-2 \beta)} \tag{5.14}
\end{equation*}
$$

By substituting (5.11) in (5.14), we have

$$
\begin{aligned}
b_{3}-\eta b_{2}^{2} & =\frac{(1-\eta)\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{3}\left(s_{2}+l_{2}\right)}{2\left(1+(\beta-1)^{2}\right)\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}-2(2-\beta)^{2} \mathfrak{G}_{2}^{\phi}(t)}+\frac{\mathfrak{G}_{1}^{\phi}(t)\left(s_{2}-l_{2}\right)}{4(3-2 \beta)} \\
& =\mathfrak{G}_{1}^{\phi}(t)\left\{\left(G(\eta)+\frac{1}{4(3-2 \beta)}\right) s_{2}+\left(G(\eta)-\frac{1}{4(3-2 \beta)}\right) l_{2}\right\}
\end{aligned}
$$

where

$$
G(\eta)=\frac{(1-\eta)\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}}{2\left(1+(\beta-1)^{2}\right)\left[\mathfrak{G}_{1}^{\phi}(t)\right]^{2}-2(2-\beta)^{2} \mathfrak{G}_{2}^{\phi}(t)}
$$

Thus, according to (1.3), we have

$$
\left|b_{3}-\eta b_{2}^{2}\right| \leqslant\left\{\begin{array}{cc}
\frac{\left|\mathfrak{G}_{1}^{\Phi}(t)\right|}{2(3-2 \beta)}, & 0 \leqq|G(\eta)| \leqq \frac{1}{4(3-2 \beta)} \\
2|G(\eta)|\left|\mathfrak{G}_{1}^{\Phi}(t)\right|, & |G(\eta)| \geqq \frac{1}{4(3-2 \beta)^{\prime}}
\end{array}\right.
$$

hence, after some calculations, we have

$$
\left|b_{3}-\eta b_{2}^{2}\right| \leqslant \begin{cases}\frac{|\phi| t}{|3-2 \beta|}, & |\eta-1| \leqq|W| \\ \frac{8 \phi^{3} t^{3}|1-\eta|}{4 \phi^{2} x^{2}\left(1+(\beta-1)^{2}\right)-(2-\beta)^{2} \phi\left(2(1+\phi) t^{2}-1\right)}, & |\eta-1| \geqq|W|\end{cases}
$$

6. Conclusion

Recently, there are many researchers in the world, who have been investigating bi-univalent functions connecting with orthogonal polynomials. Since, there is not much research in the literature on bi-univalent functions for the Gegenbauer polynomial.

In the present work, we have first defined certain new subclasses of analytic and bi-univalent functions linked with Gegenbauer polynomial. Then, we have determined some useful results like estimation for first two Taylor-Maclaurin coefficients and the Fekete-Szegö functional problems for every one of our defined function classes.

Moreover, we draw the attention of the interested readers to the potential for examining the q generalizations of findings in this article, which were influenced by a recently published survey-cumexpository review article by Srivastava [21]. Furthermore, according to the proposed extension, the (p,q)extension will only be minor and inconsequently change, as the additional parameter \mathfrak{p} is redundant (see, for details, Srivastava [21, p.340]). Furthermore, the reader's curiosity is drawn to future research into the (k, s)-extension of the Riemann-Liouville fractional integral in light of Srivastava's recent work [22].

Funding

This work was supported by the Ministry of Higher Education Malaysia and Universiti Malaysia Terengganu under the Fundamental Research Grant Scheme (FRGS) project code FRGS/1/2021/STG06/ UMT/02/1 and Vote No. 59659. This research was also supported by the researchers Supporting Project Number (RSP2023R440), King Saud University, Riyadh, Saudi Arabia.

Authors contributions

All authors jointly worked on the results and they read and approved the final manuscript.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344-351. 1
[2] Ş. Altınkaya, S. Yalçin, On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Bol. Soc. Mat. Mex. (3), 25 (2019), 567-575. 1
[3] Ş. Altınkaya, S. Yalçın, The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class, Bol. Soc. Mat. Mex. (3), 26 (2020), 341-348. 1
[4] A. Amourah, A. Alamoush, M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palest. J. Math., 10 (2021), 625-632. 1
[5] A. Amourah, Z. Salleh, B. A. Frasin, M. G. Khan, B. Ahmad, Subclasses of bi-univalent functions subordinate to Gegenbauer polynomials, Afr. Mat., 34 (2023), 14 pages. 1
[6] A. Akgül, (P, Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class, Turkish J. Math., 43 (2019), 2170-2176. 1
[7] A. Akgül, F. M. Sakar, A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials, Turkish J. Math., 43 (2019), 2275-2286.
[8] M. Çağlar, L.-I. Cotîrlă, M. Buyankara, Fekete-Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Symmetry, 14 (2022), 9 pages. 1
[9] P. L. Duren, Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, (1983). 1, 1
[10] P. Filipponi, A. F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, In: Applications of Fibonacci numbers, Vol. 4 (Winston-Salem, NC, 1990), Kluwer Acad. Publ., Dordrecht, 4 (1991), 99-108.
[11] P. Filipponi, A. F. Horadam, Second derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Quart., 31 (1993), 194-204. 1
[12] S. Kazımoğlu, E. Deniz, L.-I. Cotîrlă, Certain Subclasses of Analytic and Bi-Univalent Functions Governed by the Gegenbauer Polynomials Linked with q-Derivative, Symmetry, 15 (2023), 15 pages. 1
[13] M. G. Khan, W. K. Mashwani, J.-S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Math., 8 (2023), 27396-27413. 1
[14] M. G. Khan, B. Khan, F. M. O. Tawfiq, J.-S. Ro, Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions, Axioms, 12 (2023), 13 pages. 1
[15] M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Math., 8 (2023), 21993-22008.
[16] B. Khan, Z.-G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022 (2022), 7 pages. 1
[17] G. Y. Lee, M. Asci, Some properties of the (p,q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math., 2012 (2012), 1-18. 1
[18] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68. 1
[19] A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., 7 (1999), 3-12. 1
[20] A. Özkoç, A. Porsuk, A note for the (p, q)-Fibonacci and Lucas quaternion polynomials, Konuralp J. Math., 5 (2017), 36-46. 1
[21] H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. 6
[22] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons, J. Nonlinear Convex Anal., 22 (2021), 1501-1520. 6
[23] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242-246. 1
[24] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bound for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. 1
[25] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28 (2017), 693-706. 1
[26] H. M. Srivastava, S. B. Joshi, S. Joshi, H. Pawar, Coefficient estimates for certain subclasses of meromorphically biunivalent functions, Palest. J. Math., 5 (2016), 250-258. 1
[27] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. 1
[28] P. Vellucci, A. M. Bersani, The class of Lucas-Lehmer polynomials, Rend. Mat. Appl. (7), 37 (2016), 43-62. 1
[29] A. K. Wanas, L.-I. Cotîrllă, New Applications of Gegenbauer Polynomials on a New Family of Bi-Bazilevič Functions Governed by the q-Srivastava-Attiya Operator, Mathematics, 10 (2022), 9 pages. 1
[30] T. Wang, W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55 (2012), 95-103. 1

[^0]: *Corresponding author
 Email addresses: younismuhammad303@gmail.com (Muhammad Younis), bilalmaths789@gmail.com (Bilal Khan), zabidin@umt.edu.my (Zabidin Salleh), zabidin@umt.edu.my (Zabidin Salleh), musthafa.i@uob.edu.om (Musthafa Ibrahim), ftoufic@ksu.edu.sa (Ferdous M. O. Tawfiq), ftchier@ksu.edu.sa (Fairouz Tchier), shabatimilehin@gmail.com (Timilehin G. Shaba)
 doi: 10.22436/jmcs.033.02.04
 Received: 2023-08-16 Revised: 2023-09-19 Accepted: 2023-11-16

