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Abstract
In this paper, we consider a boundary control problem associated with a parabolic equation. On the part of the border of

the considered domain, the value of the solution with control parameter is given. Restrictions on the control are given in such a
way that the average value of the solution in some part of the considered domain gets a given value. The auxiliary problem is
solved by the method of separation of variables, while the problem in consideration is reduced to the Volterra integral equation.
By Laplace transform method, the existence theorem for admissible control is proved.
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1. Introduction

Consider the following heat exchange process along the interval 0 < x < l:

∂u(x, t)
∂t

=
∂

∂x

(
k(x)

∂u(x, t)
∂x

)
, (x, t) ∈ ΩT = (0, l)× (0,∞), (1.1)

with boundary value conditions

u(0, t) = µ(t), u(l, t) = 0, t > 0, (1.2)

and initial value condition
u(x, 0) = 0, 0 6 x 6 l. (1.3)

Assume that the function k(x) ∈ C1
(
[0, l]

)
satisfies condition

k(x) > 0, 0 6 x 6 l.

Definition 1.1. If function µ(t) ∈W1
2(R+) satisfies the conditions µ(0) = 0 and |µ(t)| 6 1, we say that this

function is an admissible control.
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We consider also the weight function ρ(x), which is smooth on the interval (0; l) and defined as follows

ρ(x) =

l∫
x

dy

k(y)

( l∫
0

dy

k(y)

)−1
. (1.4)

One of the urgent problems for the equations of mathematical physics is the problem of mathematical
modeling of processes associated with various partial differential equations. In particular, mathematical
modeling of the heat exchange process and the control of this process. Control in this situation is made by
changing the heat flux entering to the region under consideration from a part of its boundary. It is natural
to achieve an average temperature in the whole area. Therefore, it is important to control the boundary
flow to reach the average temperature in any part of the area, and in the case of a delta-like distribution,
at a fixed point in the area.

In this article, we consider the control problem associated with a parabolic equation. On part of the
boundary of the segment [0, l], there is a source with a given flow. It is required to find such a mode of
operation of the source so that the average value of the solution in some part of the segment [0, l] takes
the specified value.

In the present work we consider the following problem.

Problem 1.2. For the given function θ(t), problem consists of looking for the admissible control µ(t) such
that the solution u(x, t) of the initial-boundary value problem (1.1)-(1.3) exists and for all t > 0 satisfies
the equation

l∫
0

ρ(x)u(x, t)dx = θ(t), (1.5)

where weight function ρ(x) is defined by (1.4). More information about the function θ(t) will be given in
Section 2.

From the increasing interest in physics and mathematics, a lot of effects have been devoted to the
studies of boundary control problems for the parabolic equations in recent years. The optimal control
problem for the second order parabolic type equations was studied by Friedman and Fattorin [15, 19].
Time-optimal problems with control on the boundary for the second order parabolic equation have been
treated by Egorov [14]. He proved a bang-bang principle in the special case.

The boundary control problem for a second order parabolic type equation with a piecewise smooth
boundary in a n-dimensional domain was studied by Albeverio and Alimov [1, 2] and an estimate for
the minimum time required to reach a given average temperature was found. In [3], a boundary control
problem with a positive weight function placed under the integral in the n-dimensional domain for the
homogeneous heat conduction equation was studied.

The latest results on boundary control problems for the second order parabolic type equations are
studied in works [5, 6, 8, 17, 21]. These articles are mainly devoted to the problems of finding the
boundary control function for the heat transfer equation in one and two-dimensional domain. In [7],
an estimate of the minimum time for a given average temperature in a two-dimensional domain was
obtained.

Boundary control problems for pseudo-parabolic equations are studied in works [9, 10, 16]. In these
works, the control problem is studied for the pseudo-parabolic type equation, but the proof of the control
function is proved using the Laplace transform method.

A lot of information about optimal control problems is given in detail in the monographs of Friedman
et al. [18, 20, 22]. General numerical optimization and optimal boundary control have been studied in a
great number of publications such as [4]. The practical approaches to optimal control of the heat equation
are described in publications like [13].

In previous works, boundary control problems for parabolic type equations were also considered. For
example, the time-optimal control for a heat transfer equation was studied in [11, 12]. In our work, it is
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proved that the control function exists when the weight function is under integral. In Section 2, the given
problem is reduced to the Volterra integral equation of the first kind. Finally, required estimate for the
kernel is obtained and proved the existence of the control function using the Laplace transform method
in the Section 3.

2. Main integral equation

Consider the following eigenvalue problem

d

dx

(
k(x)

dvk(x)

dx

)
= −λk vk(x), 0 < x < l, (2.1)

with boundary value conditions

vk(0) = vk(l) = 0, 0 6 x 6 l, k = 1, 2, . . . . (2.2)

It is well-know that this problem is self-adjoint in L2(0, l) and there exists a sequence of eigenvalues {λk}

so that
λ1 6 λ2 6 · · · 6 λk →∞, k→∞.

The corresponding eigenfuctions vk form a complete orthonormal system {vk}kεN in L2([0, l]) and these
functions belong to C([0, l]) (see [23, 24]).

Definition 2.1 ([11]). By the solution of the problem (1.1)-(1.3) we understand the function u(x, t) repre-
sented in the form

u(x, t) =
l− x

l
µ(t) −w(x, t), (2.3)

where the function w(x, t) ∈ C2,1
x,t(ΩT )∩C(ΩT ) is the solution to the problem:

wt =
∂

∂x

(
k(x)

∂w

∂x

)
+
k ′(x)

l
µ(t) +

l− x

l
µ ′(t),

with boundary value conditions
w(0, t) = 0, w(l, t) = 0,

and initial value condition
w(x, 0) = 0.

Set
βk =

(
λkbk − ak

)
γk, (2.4)

where

ak =

l∫
0

k ′(x)

l
vk(x)dx, bk =

l∫
0

l− x

l
vk(x)dx, (2.5)

and

γk =

l∫
0

ρ(x) vk(x)dx, k = 1, 2, . . . . (2.6)

Consequently, we have

w(x, t) =
∞∑
k=1

( t∫
0

e−λk(t−s)
(
µ(s)ak + µ

′(s)bk
)
ds

)
vk(x), (2.7)
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where ak and bk defined by (2.5) and the function vk(x) is the solution of problem (2.1)-(2.2), i.e., the
eigenfunction. From (2.3) and (2.7), we get the solution of the problem (1.1)–(1.3) (see, [24]):

u(x, t) =
l− x

l
µ(t) −

∞∑
k=1

( t∫
0

e−λk(t−s)
(
µ(s)ak + µ

′(s)bk
)
ds

)
vk(x).

We know that the eigenvalues λk of the boundary value problem (2.1)-(2.2) satisfy the inequalities λk > 0
(see [23, 24]). According to Jentsch’s theorem, v1(x) > 0 (see [25]). Then from k(x) > 0 and the equation
(2.1), we have λ1 > 0. According to condition (1.5) and the solution of the problem (1.1)-(1.3), we may
write

θ(t) =

l∫
0

ρ(x)u(x, t)dx

= µ(t)

l∫
0

ρ(x)
l− x

l
dx−

∞∑
k=1

( t∫
0

e−λk(t−s)
(
µ(s)ak + µ

′(s)bk
)
ds

) l∫
0

ρ(x) vk(x)dx

= µ(t)

l∫
0

ρ(x)
l− x

l
dx−

∞∑
k=1

ak γk

t∫
0

e−λk(t−s)µ(s)ds−

∞∑
k=1

bk γk

t∫
0

e−λk(t−s)µ ′(s)ds

= µ(t)

l∫
0

ρ(x)
l− x

l
dx−

∞∑
k=1

ak γk

t∫
0

e−λk(t−s)µ(s)ds

− µ(t)

∞∑
k=1

bk γk +

∞∑
k=1

λk bk γk

t∫
0

e−λk(t−s)µ(s)ds,

(2.8)

where γk defined by (2.6). Note that

∞∑
k=1

bk γk =

l∫
0

ρ(x)

( ∞∑
k=1

bk vk(x)

)
dx =

l∫
0

ρ(x)
l− x

l
dx. (2.9)

As a result, from (2.8) and (2.9), we obtain

θ(t) =

∞∑
k=1

(
λk bk − ak

)
γk

t∫
0

e−λk(t−s)µ(s)ds.

Set

B(t) =

∞∑
k=1

βk e
−λkt, t > 0, (2.10)

where βk defined by (2.4). Then we get the main integral equation
t∫
0

B(t− s)µ(s)ds = θ(t), t > 0. (2.11)

Denote by W(M) the set of function θ ∈W2
2(−∞,+∞), θ(t) = 0 for t 6 0, which satisfies the condition

‖θ‖W2
2(R+) 6M.

Theorem 2.2. There exists M > 0 such that for any function θ ∈ W(M) the solution µ(t) of the equation (2.11)
exists and satisfies condition

|µ(t)| 6 1.
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3. Proof of the Theorem 2.2

Lemma 3.1. For the coefficients {βk}∞k=1 the estimate

0 6 βk 6 C1, k = 1, 2, . . . ,

is valid, where C1 = const > 0.

Proof.

Step 1. We use from (2.1) and (2.5), consider the following equality

λk bk =

l∫
0

l− x

l
λk vk(x)dx = −

l∫
0

l− x

l

d

dx

(
k(x)

dvk(x)

dx

)
dx

= −

(
l− x

l
k(x)v ′k(x)

∣∣∣∣x=l
x=0

+
1
l

l∫
0

k(x) v ′k(x)dx

)

= k(0)v ′k(0) −
1
l

l∫
0

k(x) v ′k(x)dx

= k(0)v ′k(0) −
1
l

(
k(l)vk(l) − k(0)vk(0)

)
+

l∫
0

k ′(x)

l
vk(x)dx = k(0)v ′k(0) + ak.

Then we have
λk bk − ak = k(0)v ′k(0), k = 1, 2, . . . . (3.1)

Step 2. It can be seen that from Eq. (2.1) we have the following relation

k(0)v ′k(0) = λk

l∫
0

ρ(τ)vk(τ)dτ, k = 1, 2, . . . , (3.2)

where function ρ(τ) defined by (1.4). Consequently, from (3.1) and (3.2), we get the following estimate

βk = (λk bk − ak)γk = k(0)v ′k(0) ·
l∫
0

ρ(x) vk(x)dx = λk

( l∫
0

ρ(x) vk(x)dx

)2

> 0, k = 1, 2, . . . .

Step 3. It is clear that if k(x) ∈ C1([0, l]), we may write the estimate (see [23, 26])

max
06x6l

|v ′k(x)| 6 C2 λ
1/2
k , k = 1, 2, . . . .

Therefore,
|v ′k(0)| 6 C2 λ

1/2
k , |v ′k(l)| 6 C2 λ

1/2
k . (3.3)

According to (3.2) and (3.3), we have the estimate

|γk| =

∣∣∣∣
l∫
0

ρ(x) vk(x)dx

∣∣∣∣ = 1
λk
k(0) |v ′k(0)| 6 C3 λ

−1/2
k .

Then
0 6 βk 6 k(0)

∣∣v ′k(0)∣∣ ∣∣γk∣∣ 6 C1, k = 1, 2, . . . .
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It is known that if the function k(x) is smooth and positive in the interval (0, l), then the following
estimate is valid for the eigenvalues λk of the problem (2.1)-(2.2) (see, e.g., [26, Theorem 1]):

λk =
k2π2

p2 +O(k−2), p =

l∫
0

dx√
k(x)

, k = 1, 2, . . . .

Proposition 3.2. Let 1/2 < α < 1. Then for the function B(t) defined by (2.10) the following estimate

0 < B(t) 6
Cα

tα
, 0 < t 6 1,

is valid.

Proof. It is clear that, from Lemma 3.1 function B(t) is positive. Let 1/2 < α < 1 and λ > 0. Then the
maximum value of the function h(t, λ) = tαe−λt is reached at the point t = α

λ and this value is equal to
αα

λα e
−α. As a result, for any 1/2 < α < 1, we get the estimate

B(t) =
1
tα

∞∑
k=1

βkt
αe−λkt 6

C1

tα

∞∑
k=1

αα

λαk
e−α 6

Cα

tα
,

where ∞∑
k=1

1
λαk

< +∞, 1/2 < α < 1.

We rewrite integral equation (2.11)

t∫
0

B(t− s)µ(s)ds = θ(t), t > 0.

We use the Laplace transform method to solve equation (2.11). We introduce the notation

µ̃(p) =

∞∫
0

e−pt µ(t)dt.

Then using Laplace transform we get

µ̃(p) =
θ̃(p)

B̃(p)
, where p = a+ iξ, a > 0,

and

µ(t) =
1

2πi

a+iξ∫
a−iξ

θ̃(p)

B̃(p)
eptdp =

1
2π

+∞∫
−∞

θ̃(a+ iξ)

B̃(a+ iξ)
e(a+iξ)tdξ. (3.4)

Then we can write

B̃(p) =

∞∫
0

B(t)e−pt dt =

∞∑
k=1

βk

∞∫
0

e−(p+λk)t dt =

∞∑
k=1

βk
p+ λk

,
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where B(t) is defined by (2.10) and

B̃(a+ iξ) =

∞∑
k=1

βk
a+ λk + iξ

=

∞∑
k=1

βk (a+ λk)

(a+ λk)2 + ξ2 − iξ

∞∑
k=1

βk
(a+ λk)2 + ξ2 = ReB̃(a+ iξ) + i ImB̃(a+ iξ),

where

ReB̃(a+ iξ) =
∞∑
k=1

βk (a+ λk)

(a+ λk)2 + ξ2 , ImB̃(a+ iξ) = −ξ

∞∑
k=1

βk
(a+ λk)2 + ξ2 .

We know that
(a+ λk)

2 + ξ2 6 [(a+ λk)
2 + 1](1 + ξ2),

and we have the following inequality

1
(a+ λk)2 + ξ2 >

1
1 + ξ2

1
(a+ λk)2 + 1

. (3.5)

Consequently, according to Lemma 3.1 and estimate (3.5) we can obtain the following estimates

|ReB̃(a+ iξ)| =
∞∑
k=1

βk (a+ λk)

(a+ λk)2 + ξ2 >
1

1 + ξ2

∞∑
k=1

βk (a+ λk)

(a+ λk)2 + 1
=

C1a

1 + ξ2 , (3.6)

and

|ImB̃(a+ iξ)| = |ξ|

∞∑
k=1

βk
(a+ λk)2 + ξ2 >

|ξ|

1 + ξ2

∞∑
k=1

βk
(a+ λk)2 + 1

=
C2a |ξ|

1 + ξ2 , (3.7)

where C1a, C2a are as follows

C1a =

∞∑
k=1

βk (a+ λk)

(a+ λk)2 + 1
, C2a =

∞∑
k=1

βk
(a+ λk)2 + 1

.

From (3.6) and (3.7), we have the following estimate

|B̃(a+ iξ)|2 = |ReB̃(a+ iξ)|2 + |ImB̃(a+ iξ)|2 >
min(C2

1a,C2
2a)

1 + ξ2 ,

and
|B̃(a+ iξ)| >

Ca√
1 + ξ2

, where Ca = min(C1a,C2a). (3.8)

Then, when a→ 0, from (3.4), we obtain

µ(t) =
1

2π

+∞∫
−∞

θ̃(iξ)

B̃(iξ)
eiξtdξ. (3.9)

Lemma 3.3. Let θ(t) ∈W(M). Then for the image of the function θ(t) the following inequality

+∞∫
−∞

|θ̃(iξ)|
√

1 + ξ2dξ 6 C4 ‖θ‖W2
2(R+),

is valid, where C4 = const > 0.
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Proof. It is known that the following relation is valid for the Laplace transform of the function θ(t):

(a+ iξ) θ̃(a+ iξ) =

∞∫
0

e−(a+iξ)t θ ′(t)dt,

and for a→ 0 we have

iξ θ̃(iξ) =

∞∫
0

e−iξt θ ′(t)dt.

Also, we can write the following equality

(iξ)2 θ̃(iξ) =

∞∫
0

e−iξt θ ′′(t)dt.

Then we have
+∞∫
−∞

|θ̃(iξ)|2(1 + ξ2)2dξ 6 C5 ‖θ‖2
W2

2(R+)
. (3.10)

Consequently, according to (3.10) we get the following estimate

+∞∫
−∞

|θ̃(iξ)|
√

1 + ξ2dξ =

+∞∫
−∞

|θ̃(iξ)|(1 + ξ2)√
1 + ξ2

6

( +∞∫
−∞

|θ̃(iξ)|2(1 + ξ2)2dξ

)1/2( +∞∫
−∞

1
1 + ξ2dξ

)1/2

6 C4 ‖θ‖W2
2(R+).

Proof of the Theorem 2.2. We prove that µ ∈W1
2(R+). Indeed, according to (3.8) and (3.9), we obtain

+∞∫
−∞

|µ̃(ξ)|2(1 + |ξ|2)dξ =

+∞∫
−∞

∣∣∣∣∣ θ̃(iξ)B̃(iξ)

∣∣∣∣∣
2

(1 + |ξ|2)dξ 6 C

+∞∫
−∞

|θ̃(iξ)|2(1 + |ξ|2)2 dξ = C‖θ‖2
W2

2(R)
.

Further,

|µ(t) − µ(s)| =

∣∣∣∣∣∣
t∫
s

µ ′(τ)dτ

∣∣∣∣∣∣ 6 ‖µ ′‖L2

√
t− s.

Hence, µ ∈ Lip ζ, where ζ = 1/2. Then from (3.8), (3.9), and Lemma 3.3, we can write

|µ(t)| 6
1

2π

+∞∫
−∞

|θ̃(iξ)|

|B̃(iξ)|
dξ 6

1
2πC0

+∞∫
−∞

|θ̃(iξ)|
√

1 + ξ2dξ 6
C4

2πC0
‖θ‖W2

2(R+) 6
C4M

2πC0
= 1,

as M we took as
M =

2πC0

C4
.

It remains to verify the fulfillment of condition µ(0) = 0. For that we rewrite Eq. (2.11) as follows:

t∫
0

B(s)µ(t− s)ds = θ(t).
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By differentiating this equation, we have

B(t)µ(0) +

t∫
0

B(s)µ ′(t− s)ds = θ ′(t).

Let us tend t→ 0 in this correlation. Then, taking into account the conditions imposed on the function θ,
and the unboundedness of the function B(t) in the neighborhood of zero, we obtain the desired equality
µ(0) = 0.
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