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Abstract

In this paper, a two species amensalism model with a cover for the first species takes the form

dx

dt
= a1x(t)− b1x

2(t)− c1(1− k)x(t)y(t),

dy

dt
= a2y(t)− b2y

2(t),

is investigated, where ai, bi, i = 1, 2 and c1 are all positive constants, k is a cover provided for the

species x, and 0 < k < 1. Our study shows that if 0 ≤ k < 1− a1b2
a2c1

, then E2(0,
a2
b2

) is globally stable,

and if 1 > k > 1 − a1b2
a2c1

, then E3(x
∗, y∗) is the unique globally stable positive equilibrium. More

precisely, the conditions which ensure the local stability of E2(0,
a2
b2

) is enough to ensure its global
stability, and once the positive equilibrium exists, it is globally stable. Some numerical simulations
are carried out to illustrate the feasibility of our findings. c©2016 All rights reserved.

Keywords: Amensalism model, Lyapunov function, stability.
2010 MSC: 34C25, 92D25, 34D20, 34D40.

1. Introduction

During the last two decades, the study of dynamic behaviors of population system incorporating
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a refuge for some species become one of the most important research topic, (see [5–7, 9, 10, 13, 15–
21, 24–28] and the references cited therein). Also, there are several papers on the dynamic behaviors
of amensalism model, see [1–4, 8, 12, 14, 22, 23, 29, 30]. However, only [22] considered the influence
of refuge on the amensalism model.

Sita Rambabu, Narayan and Bathul[22] considered a two species amensalism model with a partial
cover for the first species to protect it from the second species, the model is as follows:

dx

dt
= a1x(t)− b1x

2(t)− c1(1− k)x(t)y(t),

dy

dt
= a2y(t)− b2y

2(t),

(1.1)

where ai, bi, i = 1, 2 and c1 are all positive constants, k is a cover provided for the species x, and
0 < k < 1. The series solution of above system was approximated by the Homotopy analysis method
(HAM). However, the author did not give any analysis about the cover parameter k, to show how
the cover influence the dynamic behaviors of the system (1.1). To find out the influence of refuge
(which is represent by k), one should give a thoroughly analysis of the global dynamic behaviors of
system (1.1).

The aim of this paper is to investigate the local and global stability property of the possible
equilibria of system (1.1) and to find out the influence of refuge. We arrange the paper as follows:
In the next section, we will investigate the existence and local stability property of the equilibria of
system (1.1). In Section 3, by constructing a suitable Lyapunov function and applying the Dulac
Theorem, we will investigate the global stability property of the system; In Section 4, an example
together with its numeric simulations is presented to show the feasibility of our main results.

2. The existence and stability of the equilibria

The equilibria of system (1.1) is determined by the system

a1x− b1x
2 − c1(1− k)xy = 0,

a2y − b2y
2 = 0.

Hence, system (1.1) admits four possible equilibria, E0(0, 0), E1

(
a1
b1
, 0
)
, E2

(
0, a2

b2

)
and E3

(
x∗, y∗

)
,

where x∗ =
a1b2 − a2c1(1− k)

b1b2
, y∗ =

a2
b2
. Obviously, E3 is a positive equilibrium if and only if

k > 1− a1b2
a2c1

.

Concerned with the local stability property of the above four equilibria, we have,

Theorem 2.1. E0(0, 0) and E1(
a1
b1
, 0) are unstable; If k < 1 − a1b2

a2c1
, then E2(0,

a2
b2

) is stable and if

k > 1− a1b2
a2c1

, then E2(0,
a2
b2

) is unstable; If k > 1− a1b2
a2c1

holds, E3

(a1b2 − a2c1(1− k)

b1b2
,
a2
b2

)
is stable.

Proof. The Jacobian matrix of the system (1.1) is calculated as

J(x, y) =

(
a1 − 2b1x− c1(1− k)y −c1(1− k)x

0 −2b2y + a2

)
.
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Hence the Jacobian matrix of the system (1.1) about the equilibrium E1(0, 0) is given by(
a1 0
0 a2

)
.

Clearly E0(0, 0) is unstable.
For E1(

a1
b1
, 0), its Jacobian matrix is given by(

−a1 −
c1(1− k)a1

b1
0 a2

)
.

Clearly E1(
a1
b1
, 0) is unstable.

For E2(0,
a2
b2

), its Jacobian matrix is given by(
a1 −

c1a2(1− k)

b2
0

0 −a2

)
.

Hence, if a1 >
c1a2(1− k)

b2
holds, E2(0,

a2
b2

) is unstable, and if a1 <
c1a2(1− k)

b2
holds, E2(0,

a2
b2

) is

stable. That is to say, if k < 1 − a1b2
a2c1

(in this case, system (1.1) has no positive equilibrium), then

E2(0,
a2
b2

) is stable and if k > 1− a1b2
a2c1

(in this case, system (1.1) has positive equilibrium E3), then

E2(0,
a2
b2

) is unstable. The Jacobian matrix about the equilibrium E3 is given by( a2c1(1− k)− a1b2
b2

c1(k − 1)(a2c1(k − 1) + a1b2)

b1b2
0 −a2

)
,

if k > 1− a1b2
a2c1

, then a2c1(1− k)− a1b2 < 0, hence, the eigenvalues of the above matrix are negative

and E3 is stable. This ends the proof of Theorem 2.1.

Remark 2.2. Theorem 2.1 shows that if the positive equilibrium is exist, then it is locally stable.

Theorem 2.1 also shows that if the cover for the species is large enough, such that k > 1− a1b2
a2c1

, then

two species could be coexisted in a stable state.

3. Global stability of the equilibria

Following we will further investigate the global stability of the boundary equilibrium E2 and the
positive equilibrium E3. As a direct corollary of Lemma 1.1.4 of [11], we have,

Lemma 3.1. System
dy

dt
= a2y(t)− b2y

2(t), (3.1)

has a unique globally attractive positive equilibrium y∗ = a2
b2
.
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Theorem 3.2. If k < 1− a1b2
a2c1

, then E2(0,
a2
b2

) is globally stable.

Proof. k < 1− a1b2
a2c1

is equivalent to a1− c1(1−k)a2
b2

< 0, hence, one could choose small enough ε > 0

such that
a1 − c1(1− k)(

a2
b2
− ε) < 0 (3.2)

holds. For this ε, it follows from Lemma 3.1 that there exists a T > 0, such that every positive
solution y(t) of (3.1) satisfies

a2
b2
− ε < y(t) <

a2
b2

+ ε. (3.3)

Now let’s consider the Lyapunov function

V1(x, y) = x + y − y∗ − y∗ ln
y

y∗
,

where y∗ = a2
b2
. Calculating the derivative of V along the solution of the system (1.1), by using

equalities (3.3) and (3.2), we have

V̇1 = a1x− b1x
2 − c1(1− k)xy + (a2y − b2y

2)(1− y∗

y
)

= −b1x2 + (a1 − c1(1− k)y)x + (a2 − b2y)(y − y∗)

≤ −b1x2 +
(
a1 − c1(1− k)(

a2
b2
− ε)

)
x− 1

b2
(a2 − b2y)2.

Obviously, dV1

dt
< 0 strictly for all x, y > 0 except the positive equilibrium E2(0,

a2
b2

), where dV1

dt
=

0. Thus, V1(x, y) satisfies Lyapunov’s asymptotic stability theorem, and the boundary equilibrium
E2(0,

a2
b2

) of system (1.1) is globally stable. This ends the proof of Theorem 3.2.

Remark 3.3. Theorem 3.2 shows that if the boundary equilibrium E2 is locally stable, then it is
globally stable.

Theorem 3.4. If k > 1− a1b2
a2c1

holds, then E3

(
x∗, y∗

)
is globally stable.

Proof. Firstly we proof that every solution of system (1.1) that starts in R2
+ is uniformly bounded.

From the first equation of (1.1) one has

dx

dt
≤ a1x− b1x

2.

By using the differential inequality, we obtain

lim sup
t→+∞

x(t) ≤ a1
b1
. (3.4)

From (3.3) and (3.4), there exists a ε > 0 such that for all t > T

x(t) <
a1
b2

+ ε, y(t) <
a2
b2

+ ε.

Let B = {(x, y)| ∈ R2
+ : x < a1

b2
+ ε, y < a2

b2
+ ε}. Then every solution of system (1.1) starts

in R2
+ is uniformly bounded on B. Also, from Theorem 2.1 there is a unique local stable positive



X. D. Xie, F. D. Chen, M. X. He, J. Math. Computer Sci. 16 (2016), 395–401 399

equilibrium E3(x
∗, y∗). To ensure E3(x

∗, y∗) is globally stable in above area, we consider the Dulac
function u(x, y) = x−1y−1, then

∂(uP )

∂x
+

∂(uQ)

∂y
= −b1y−1 − b2x

−1 < 0,

where P (x, y) = a1x− b1x
2− c1xy,Q(x, y) = a2y− b2y

2. By Dulac Theorem, there is no closed orbit
in area B. So E3(x

∗, y∗) is globally asymptotically stable. This completes the proof of Theorem
3.4.

Remark 3.5. Theorem 3.4 shows that if the positive equilibrium E3 exists, then it is globally stable.

Remark 3.6. Noting that x∗(k) =
a1b2 − a2c1(1− k)

b1b2
, and dx∗(k)

dk
=

a2c1
b1b2

> 0, which means that the

cover can increase the densities of the first species and thus can reduce the chance of the extinction
of the first species.

4. Numeric simulations

Now let us consider the following example.

Figure 1: Numeric simulations of system (4.1) with k = 1
4 , the initial conditions

(x(0), y(0)) = (1.2, 1.2), (0.2, 2), (1.2, 3), (1.2, 0.2) and (0.2, 0.2), respectively.

Example 4.1. Consider the following system

dx

dt
= x(t)− 1

4
x2(t)− (1− k)x(t)y(t),

dy

dt
= 2y(t)− y2(t).

(4.1)

In this system, corresponding to system (1.1), we take a1 = b2 = c1 = 1, a2 = 2, b1 = 1
4
. First, let

us consider the case k = 1
4
, obviously, in this case k < 1− a1b2

a2c1
, and so, from Theorem 3.2, the prey
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species go extinct while predator species reaches its maximum environment carrying capacity. Figure
1 shows the dynamics behavior of species x and y, where k = 1

4
. It follows from Theorem 3.4 that

for all k > 1
2
, system (4.1) admits a unique positive equilibrium, which is globally asymptotically

stable. Figure 2 shows the dynamics behavior of species x and y, where k = 3
4
. The figures confirm

the effect of refuge for the first species.

Figure 2: Numeric simulations of system (4.1) with k = 3
4 , the initial conditions

(x(0), y(0)) = (0.3, 3), (0.2, 0.2), (3, 2.5), (0.8, 3), (3, 0.2) and (2, 0.1), respectively.
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