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Abstract

In this research an original exponential approximation of second accuracy in y- and third accuracy in x-axis employing full
step discretization has been designed for solving 2D non-linear partial differential equation of elliptic nature in a rectangular
domain. We adopted non-constant grid spacing in x-axis and constant grid spacing in y-axis in numerical computation of
convection-diffusion equation where convection term dominates. An exhaustive error behaviour of the technique has been
analysed. Non-linear elliptic equations are computed using this method. Lastly, proposed idea is scrutinized on simulations of
physical repute with emphasis on convection-diffusion equation articulating the efficacy of the technique.
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1. Introduction

Consider two space nonlinear elliptic boundary value problem (EBVP) as per boundary conditions of
Dirichlet type:

d)xx + d)yy = p(x/y/ d)/ d)X/ d)y)/ (x/y) € A/ (11)
where A = (0,1) x (0,1) and 0A denotes the boundary of A,

$(x,y) = dolx,y), (x,y) € 0A. (1.2)
Suppose for (x,y) € (0,1) the following holds:

i) d(x,y) € Co(A);
(ii) p is continuouS‘

(111) b d) ’

d> ) exist and are continuous;
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(iv) & >0, <R, <S,

ap
d by

where R and S are > 0 and CP(A), consists of the family of functions which are continuously differentiable
up to p order.

These conditions profess the solution of (1.1)-(1.2) exists and is unique [5].

The integral of the partial differential equations (PDEs) and associated boundary and initial assump-
tions are an essential part in modeling various phenomena in the fields of sciences (fluid dynamics, heat
flow etc) as well as economics [1, 3, 16, 20, 21]. But very few PDEs possess an analytical solution. Whoever
wants to fabricate models based on such equations and their associated conditions, must find out numer-
ical solutions precisely. It is an onerous task to find exact analytical solutions so it becomes imperative to
enforce numerical methods to compute approximate solutions of these PDEs, so as to explore the prog-
nosis of the mathematical models. There are several methods based on finite elements or on boundary
elements or finite volume method to find numerical solution of the PDEs. However, we found it suitable
to use “finite difference methods” due to its candor and the ease with which it is applied [6, 15, 17].

The convection-diffusion mathematical equation is a combination of the diffusion and convection pro-
cesses and depicts physical phenomena where particles, or other physical units such as mass, momentum,
heat and energy are exchanged inside a physical framework. Diffusion and convection always occur si-
multaneous in nature. The approximate integral of convection-diffusion transport problems emerges in
various applications of advanced sciences, for example: physical models of semiconductors, flow of air
pollutants, flow of oil in reservoirs etc. Therefore, it becomes quite essential to find a viable, stable, and
practical numerical method to compute the convection-diffusion equation [7].

Another significant equation computed in this paper is Poisson’s equation which has an enormous use
in scientific problems related to heat conduction in steady state, ground water flow, dynamics of stretched
loaded membranes, and in the study of the theory of prismatic elastic bodies [23, 24].

Tian et al. [18] discussed compact computational FDM techniques for computing convection-diffusion
models in steady state. Dehghan et al. [2] too contributed in this field. Jain et al. [4, 5] developed
techniques for equations, elliptic in nature. Later, Jain et al. applied techniques to family of PDEs with
coefficients of variable nature. But these techniques needed modification at nodes of singularity. To
resolve this problem, Mohanty and Singh [14] did lot of substantial research. All these schemes [4, §,
9] had uniform mesh sizes and needed 5 functional valuations. Using classical second order central
difference scheme it is not possible to find the exact solution of most of the equations, in order to get
the more appropriate numerical solution, we need to increase the number of mesh points and reduce the
size, as a consequence it results in covering extra storage space and thereby escalation in computing time.
To get more accurate results we need to devise a compact finite difference method of higher accuracy.
Mohanty et al. designed an exponential scheme of high accuracy using geometric mesh, employing off
and full step discretization [12, 13].

Earlier developed methods by Mohanty et al. lacked proficiency in computing convection diffusion
equation for slight values of perturbation factor, therefore, we have made an attempt to overcome that
deficiency. Subsequently, the proposed method has an edge over the previous one to deal in a better
way, the convection diffusion equation with slighter values of perturbation factor. Noting that, albeit the
method developed before was robust it required more algebra and hence more computational cost than
the proposed method [10, 11]. The main strength of this article lies in computing convection-diffusion for
big values of coefficient of convection term, i.e., slight values of perturbation factor exhibiting boundary
layer phenomenon, and that drove us to work with semi-variable mesh.

We construct a method of high resolution to compute nonlinear elliptic PDE employing uniform mesh
spacing p in y- direction and variable mesh spacing hy, in x- direction and nine mesh nodes of only one
computational cell exploiting full step discretization (see Figure 1).

The article is structured as follows. Section 2 formulates compact scheme of order O(p? + p2hy, +h3).
Section 3 gives descriptive numerical recipe of the scheme.
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Figure 1: Compact nine point cell.

Furthermore, Section 4 demonstrates convergence of the method for a constant mesh. Thereafter,
method to solve system of nonlinear elliptic PDEs has been explained in Section 5. Section 6 contains
numerical methods to solve bi-harmonic and tri-harmonic equations. Section 7 illustrates physically
relevant numerical simulations to test the effectiveness of the proposed method. Lastly, Section 8 reports
the conclusions and discussions.

2. Exponential fitting

To convert (1.1)-(1.2) into a system of equations, superimposing on A, a rectangular grid of variable

grid spacing hy > 0 in x-axis and constant grid spacing p > 0 in y-axis directions. Notating grid node by
(xb,Ya), 0 =%0 <x1 <xX2 < -+ <XM+1 =1, hp11 =Xp41—Xp for b = 0(1)M, grid ratio ¢ = (h}‘i—;l) > 0 for
b =1(1)Np and yq = dp, for d = 0(1)(Ng + 1), where M and N are natural number so that (No+1)p = 1.
For ¢ > 1 (or ¢ < 1) the mesh spacing are rising (or falling) as we proceed in the domain. For ¢ =1
means, hy, 1 = hp = h, the mesh sizes are same.

Denote by @y, 4 to be the analytical and ¢ g to be the numerical value of ¢(xp,yq), respectively.

Further, at the mesh point (xp,ygq), denote
P=04+0-1,Q=01+0Q1+3C+C),R=C1+(—).

Suppose

(1) pb,d = p(xb/yd/ q)b,dl q)Xb,d/ (Dyb,d)/'
(i) pPv,a = P(Xv,Ya, Po,dr Pxpar Pypa)s

At each mesh point (xp,yq), (1.1) is written as
(DXXb/d + (DUUb,d = Pb,d-

Let the central operator be 0,0 = (GJH% — ®17%) and the average operator be 01 = % (@H% + (Dl,%)
in x-direction etc. The approximations after discretizing the PDE (1.1) are defined as below:

_ Qpi,a— (1—3)Qyq— CPDp1,q

(Dxb,d - hb(,(l + C) 7 (21&)
— 1
g = 0] — 20 2Dy _
018 = T T Ohe (1+20)Ppi14— (140" Pp,qa+ CDp_14), (2.1b)
— 1
@ = (—® 14+ 0?0y g — 2+ Q) Dy 2.1
xp_1,d C(1+C)hb( b+1,d + (1 4+ )" DPyp,a — (24 )DPp_1,4), (2.1c)
Dy = (D gg — D 1) (2.22)
Yv,d — 2p b,d+1 b,d—1), .
_ 1
Oy g = 5= (Pbr1,a41 — Pobt1,a-1), (2.2b)

2p
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— 1

Qg = E((Db—l,d—o—l — Pp-1,a-1), (2.2¢)
— 1
Qyypi1a = ?((Db+l,d+1 — 20y 1,0+ DPvi1,a-1), (2.3a)
— 1
Qyyy 14 = g(q)b—l,dﬂ—l —20p_1,0 +DPp—1,a-1)- (2.3b)

Define

5b+1,d = p(Xb+1/Udr (Db—O—l,d/ ®Xb+1,d’ (I)yb+1,d)’ ﬁb—],d = p(xb—llyd/ q)b—l,dr (Dbel,d’ CD‘bel,d)'

Next, we employ following approximations

h h — —

qV)Xb,d = Dy, y — E(ﬁbﬂ,d —Po_1,a) + E(d)yyb+l,d —Qyyyra)s
v — h _ _ h — —
(Dxb,d - (Dxb,d - Z(prrl,d - pbfl,d) + Z((Dyber],d - (Dyyb,lld)/

and let

Bo,a = P(xb, Yd, Po,a, Dxy s Pyna)r  Po,a = P(Xb,Yd, Po,d, Py us Dy a)-

Then at (xy,ya), (1.1) is discretized by technique written below:

Li(@p41,a41 + Por1,a—1) + La(Pp—1,a41 + Po—1,a—1) + L3(Pp,a41 + Pp,a—1)
+ La(Dpy1,a) + L5(Pp—1,a) + LeDPp,a

. (2.4)
h? PPbi1,a + RPp_1,a — (P+R)Pv,a
= C 1+ C —p ex z — ’ +1 ,
A+ )5 foaexp ( 601+ Opva ord
where I, ¢ = O(p*h? +p?h? +h}), [b=1(1)M,d =1(1)N],
h2 h2 h2
L, =P—b L, =R—-5% L3 =Q—2,
1= T op2 27 Mop? 3 Q12p2
h? h? h?
[,=1-2P—2 L5 =(—2R—2 Lg=—(1 —2Q-—-2..
4 12p2’ 5=20C 12p2’ 6 =—(1+0)—2Q 2p?
3. Formulation of technique
To deduce the technique (2.4), we use the notations where (b, d) symbolizes at node (xp,Ya4),
Kbd = op ) = —ap
b,d = 2D, b,d, b,d = 20, b,d~
We simplify the approximations and get
_ (h?
Dy = Oy o + qu’mb,d +0(h}), (3.1a)
— ((1+¢
Dxyira = Pxpyra — 6 )h%(Dxxxb,d + O(h%)/ (3.1b)
— (1+0Q)
Dy g =@ ——h Dyxxy o + O(hY), (3.1c)

Xb—1,d 6
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2

Dy, = Dy, , + P6 Dyyypa T O(p*), (3.1d)
Dy = Pyyiga + ]962 Dyyyya £ O(hup?), (3.1e)
Dy, y =Dy, 0+ p62<Dyyyb,d + O(hpp?), (3.1f)

DOyyyiia = Pyypiia + 0P+ hp), (3.1g)
Qyyy 14 = Pyy, 14 + 0P +p*hy). (3.1h)

Further, by Taylor series expansion we obtain

Li(Ppi1,a+1 + Pot1,a—1) + La(DPo—1,a+1 + Po—1,a—1) + L3(Pp,a41 + Pv,a—1)
+ Ly(Dyy1,a) + L5(Pp—_1,a) + LePyp,a
h2 Ppb+1,d + Rpv—1,a — (P +R)pyv,a
=((1+0)— ex ( . : — | + 1y q,
( ) 5 Po,aexp 6201+ Opo.a b,d

where Iy g = O(pzh% +p2h% +h%), [b =1(1)M, d = 1(1)N]. Using approximations (3.1b), (3.1c), (3.1e),
and (3.1f) we obtain

(3.2)

_ C(1+0)

Poi1,d = Po+ld — = ¢ hg @xxxk + O(p? + p*hp + h), (3.3a)
_ 1+C

Pb—1,d = Pb—1,d — (Chl) G )h%,(DxxxK +0(p? +p*hp +h}). (3.3b)

Now let,

v —_

q)Xb,d = 6Xb,d + alhb (ﬁb—kl,d _bb—l,d) + azhb (6be+1,d - q)yybfl/d)l

where aj, ay are to be determined. Then using Taylor’s expansion and (3.1a), (3.1g), (3.1h), (3.3a), and
(3.3b) we have

(i)xb,d = (Dxb/d + ajhy (§b+1,d - bbfl,d) + azhy ((Dyyb+1,d - Eyyb—l/d)
2
o

h
bt 2 (C+6a1(1+ ) Pux + M (a1 + @) (14 O Dryy + O(p? +p*ho + ).

Now,

¥

. ¢
q)Xb,d = (DXb,d + O(pz +p2hb + h%)/ if aj=—ap=—

6(1+¢)

and consequently,

Bv,a = P(xb, Yd, Pv,a, Py s Pypa) = Pb,a + O(p* +p*hp +h3).

Again, let

v
M J—

q)xb,d = 6Xb/d + blhb (ﬁb+l,d _bbfl,d) + b2hb (6yyb+l,d - q)yybfl/d)/

where by, by are to be determined. Then using Taylor’s expansion and (3.1a), (3.1g), (3.1h), (3.3a), and
(3.3b) we have

v 2
Dy = Do+ -2 (C+6b1(1+ Q)P + 1 (b1 +52) (14 Oy + O(p* + P + 7). (3.4)
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Using (3.1d) and (3.4) we get

O«

b,a = P(xv,Ya, Pv,a, Pxy o) Dy a)
h2
= Po,a+ 2 (C+6b1(1 +0)) Dxoxxk + 1 (b1 + b2) (14 Q) Dy + O(p? +phy + h).

Now,

PPui1a+RPy 1,4 — (P+R)Po,a

1+
n( . n)h 6bcDxxxK R

2
— (P+R)h—b(c+6b1(1+ 0))@xxxk — (P 4+ R)h3 (by + b2) (1 + )@y k + O(p? + p*hp +h3)

= PPy41,a + RPp—1,a — (P +R)pv,a — pl h2 @k K

(1+n)
6

h2
=Ppv+1,a+ Rpp—1,a — (P+ R)pv,a — (1+ 0)(20> — (1 =3+ &)(C+6by (1+ C)))?bq)xxxK

+ (14 0)*(1 =3¢+ *)h3 (by + ba)Uxyyk + O(K* + k*hyp + h})
= Ppbi1,d +Rob_1,a— (P+R)pp,a + O(p* +p*hy +hi),

if
22— (1-30+3)(C+6b1(1+0)=0 and b;+by,=0.
This implies

{(1—50+ )

b= = A A &)

4. Error analysis

We take ¢ =1 for our convenience. Then the method (2.4) for the equation (1.1) becomes

h? h? 4 + P14 —20
(éxz + ?6132 + —6X26y2)®b,d = hzéb,d exp <pb+1’d pbv Ld pb’d>

12p? 12pp,4
or
E1(DPpy1,a + Pv_1,a) + &(Pp,ar1 + Po,a—1) + E3(Poi1,a+1
2
+ @p41,d-1+ Po-1,a+1 + Pb-1,a-1— (20 + 24%)d)b,d)
hg 4.1)
= W2y gexp ( DorbaTPooLa T )y b = 1(1)M, d = 1(1)N],
12pp,4
where I, g = O(pzh% + h%), & =1- 2, & = 6 2 ,and &3 = 12 —2t- We shall assume in (4.1) that &; >

and & > 0. Let

Portda+Po_1,a—2Pb,a
120y,a

Tv,a = h*Pp,a exp (
Then expressing method (4.1) in matrix form is

CO+1D+1=0, (4.2)
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where C =[Cq, Cy, Cl]Nngg is a three-block-diagonal matrix and

Ci=[—&3 & —&lNngxN, and Co=[—§&;,20&3 +2, —&1lNyx N,

are tri-diagonal matrices. We solve (N3 x N2) system as given below to find an appropriate approximation
¢ for @.

Cap+ tdp = 0. 4.3)
Let
eb,d = Pv,a — Pb,a, (b=1(1)Np, d =1(1)No),
and
v=p—D
Let

Po+1,d = P(Xb+1,Yd, d_)b:i:l,d/ (T)xbil,d, @gbﬂd) ~ Pb+1,d-
Pb,a = P(Xp, Yq, Pb,d, Pxyar Py, o) & Po,a,

Bb,d = P(Xb, Yd, Pb,d, Oxyar Dy, ) = Pb,a-

We may write

F (1) - F (1)
Xb+l,d q)xbil,d)Hbﬂzl,d + (d)ybil,d - (Dyb:tl,d)vb:tl,d’
- = 2
(d)yb,d - q)yb,d)v](glc)l/ (44)

N Y (3)
(d)yb,d - (Dyb,d)vb,d’

_ _ - — 1
Pbi1,d — Poitd = (Pvi1,a — (Dbil,d)G{,j)ﬂ,d + (
N “ 2 v v
Pv,d — Pv,d = Eb,dG{,,ll + (Pxyq — (Dxb,d)H‘E)
M M 3 H %
Pb,d — Pb,d = 5b,dG1(,,21 + (Pxypq — q)xb,d)Hl()
for suitable El(jli)L 4 EEL, and ESL, where E = G,H and V. For E = H and V, we write
1 1 1 1 1
Bl g =Egn £hEQ, +0(h?),  GU, 4 =Gy y£0(h). (4.5)
Using (4.4) and (4.5) we yield
Th — TD = v, (4.6)

where 8 = (9), ((i = 1(1)N%), j= 1(1)N%) is the three-block-diagonal matrix with

2 3
VY (d—1)Ng+b,(d—1)No+b+1 = E[i6H£,,31 + H{)ii ¥ Hé,)d]

h2
+ 7[—2H£1,31H{32,31 + Gy +2H A+ HY T HE

+0(p*+h%), ((b=1(1)Ng—1,2(1)No),d =1(1)No),
hZ
D (d—1)No-+b,(d—141)No+b = @mv{j; F Vil +o(p?+h%), ((b=1(1)Ng),d=1(1)Ng—1,2(1)Ny),

h2
Y(d—1)Ng+b,dNg+b+1 = %[ivsc)l] +0(p*+h?), ((b=1(1)Ng—1,2(1)Ng),d=1(1)Nog—1),
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hZ
Y@ 1N, (a-2)No 041 = 5 FEVial + (P71, (0 =1(1)No = 1,2(1)No), d = 1(11No 1),

Equation of error, using (4.6) in (4.2) and (4.3) is:

(C+9)v-T1. 4.7)
Let G = min 38 and Gf) = max 3%, where A = AUA. Then 0 < G < Gy, 4 Gy

(xy)ea (xy)eA
Gk < Gy, and for E = H,V, let 0 < [E(, 4|,

number E(1). For howsoever slight h, we can see

(2)
b,d

El(aszi‘ < E and ‘E(l) ’ < EM, for some positive
s Xb,d

4

19 (d—1)Ng+b,(d—1)Ng+b£1| < &1

19 (d-1)No+b,(d—1+1)M+b| < &2,
19 (d—1)Ng+b,dNg+b+1| < &3/

19 (d-1)Ng+b,(d—2)Ny+b+1| < &3,

Figure 2: Directed graph of (C +¥9).

Figure 2 displays graph of (C 4 &) is directed, so, (C +¥9) is an irreducible matrix. Here, in (C 4 9)
there is an arrow symbolizing the path i — j corresponding to each entry of the matrix which is non-zero.
We observe that directed path is strongly connected. Thus the matrix (C + ) is irreducible ([19, 22]).
Assuming T4 to be the summation of points in the ' row of (C + 9), then for ¢ = 1 and N, we yield

h h h? h 2 3) | ~) 2 13
Tq=11&+1+ 12(aq + qu) 24ﬂpkq +15 [12G 1 —2G,; + G,/ +O0(p”+h7), (4.8)
where
(2) (1) (3)
aq = £6H?) £ H) FHE),
(1)44(2) (1)14(3) (1)
Jdq = 2Hq,lHq,1 — Hq 1Hq,l fZHqu,
_ (2) (3) (1)
kg = 12V —2v®) 4 v, (4.9)
h h?
S(Ng—1)Ng+q = 11&+1+ ﬁ( (No=1)No+1 + 5 9(N 1)Ng+1) + i K(Ng—1)Ng+1
hZ
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where
_ (2) (1) (3)
A(Ng—1)Np+q = :l:6Hq,l + Hq,l + Hq,l/
1,2 1), 1
9(No—1)Ng+q = 2H. )Hg,i - H;inﬁ —2HL),
(2) (3) (1)
For (2 <j<Np—1):
T 1+, +hg ]+h—2[12G(2)—ZG(3)+Gm]+O( 2+h%),  (410)
(G—1DNo+q — 12 A(;—1)No+q 9(j—1)No+q 12 g1 q,1 q.1 p ’ :

where

(2) (1) (3) (1)4(2) (1)4(3) (1)
A(j—1)No+q — :|:6Hq’)- + Hq,j + Hq,l’ 9(j—1)Ng+q = 2Hq,qu,j — Hq,qu,j _Zqu/Jw

For (i =2(1)Ng—1):

h h? 3
Sta-Ng+i =1+ 5 [ha(q—1)Ng+i) + — PCICEILTE +h2[2V1 q +3V ]+ O(p*+h?), (4.11)
where
_ W@, lowg® g _ M ey 23 Ly
9(q—1)No+i = 94,qV4,q + 2749 tq T X (q—1)No+i — @( q1 T Vg1 q,1)’
and, ultimately for ((2 <1< Np—1), 2<j < Np—1):
R0 a3~ W) o) (1))
S 1est = 1501265 — 26 + 6131+ T eHHE — 21l —H{THE). (4.12)

With the help of (4.8), (4.9), (4.10), (4.11), and (4.12) for n = 1, Ny, (Ng — 1)Ng + 1 and N3,
lagl <8H, [gql <3HZ+2HW, kgl <15V,
and for g =1iand (No—1)Np+1i,i=2(1)No—1,
lagl<H, lgql <H, [kql <8V,
and forn = (j—1)Npg+1and jN,j =2(1)Ng—1,
lagl <8H, lgql <3H2Z+2HW, |kql < V.

It conforms that for h slight enough,
15

Tq Ehzei ) q=1,Np, (Ng—1)Ng+1 and N3, (4.13a)
Tq>%h2G* ) g=1iand (Ng—1)Ng+i, i=2(1)Ng—1, (4.13b)
Tq >gh26* ) q=(G-1No+1 and jM, j=2(1)Ng—1, (4.13¢)
Tooumen > 122G, (1= 2(Ng—1), j = 2(1)No — 1) (4.13d)

For sufficiently slight h, (C + ) is monotone. So, existence of (C + ©) 1 is assured and (C +9)~1=B>0,
where B = [Bi,j]N%XNZ‘
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Since Zl\ljl By;T;=1,1= 1(1)N%, from(4.13a), (4.13b), (4.13¢), and (4.13d), we obtain

1 12
Bl, g = < 5 q = 1/N0/ (NO - 1)N0 + 1/N2/ (4143)
7 Tq " 15n262
N 1 12 , ,
2 Bla<————— < — "o a=1MNo—1)No+1, (4.14b)
i 2<ioNy 1 @ 15h2G.,
Nle < L < 12 q=0G—1)No+1,jN (4.140)
1,q ~X . T (2)/ - - 0 7 0, .
j=2 2<)'I2]1\1;1071 q 15h2G*
NoZl NOZlB < L < 12 qg=0—1)Ng+1i (4.144)
lLq X . XX 2)” = U 0 . .
i=2 =2 21 Ta = 1502G
2<5<Ng—1
Further, equation (4.7) gives
ol < BT, (4.15)
where
(No—1)
B = 11“2?;% Byi+ ; Bii+ BN,
No—1 No—1No—1 Np—1
+ Z BLG—1)Ng+1 T Z Z Bi,G—1)Ng+i T Z B1iNg (4.16)
j=2 i=2 j=2 i=2

No—1
+ (BL(NOUNOH + Z Bl,(Nol)No+i+B1,Ng>] :
i=2

Putting the values from (4.14a), (4.14b), (4.14c), and (4.14d) in equation (4.16), we have

5

< ———.
Bl < 26rev®

(4.17)

Finally, using (4.15) and (4.17), for amply slight h and k, we yield
[ul| < O(p*+h?).
This institutes the convergence of technique (1.1). When p  h?, then

|v]| < O(h?).

5. Techniques in vector form

Here we generalise the technique to solve system of nonlinear PDEs,

. . . 1 2 .
O + ol = 0Py, 0™, 0@, o™, o, 6P, oM, 00, e, el 1<i<n, (1)

where (x,y) € A=(0,1) x (0,1), and

oM (x,y) = oV (x, ).
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Let @éi,)d and d)(bizi be the exact and approximate values of ¢V (xy,,1y4), respectively. For every i = 1(1)n,
let

i i 1 2 1 2 1 2
Pt = P (b, Y0, Dy, Py Dy Py, Do, DX, Dy By, D)
We define the following approximations:

(i) (Dél—a—l,d + (CZ - 1)(D1(31,21 B CZ(Dl(alil,d

7

o Ry C(1+ C)
—(i) 1 20
®Xb+1,d:m((l+2c) b+ld — (1400 d+C o 1d)
oy, = C(lfc)m’(—@éﬂlw 1+l —ce+oll, ),
Oy = 55 (@ — i),
6&11,@1 - ;,(Qéill,d+1 - (Dl(:ill,dq)f
61(;1371@ = 21]:)(®{)1)1/d+1 —®y_1,a-1),
6&,),1,“@ = plz((DbH,dH —2®p41,4 + Pvy1,a-1),
ali),b,l/d = plz(q)b—l,d—H —2@p 41,0+ Dpi1,a-1)-

Define

ﬁl(,lj)LLd = p(i)(Xb+1zyd/(DbJrl,d/ébu,d/EybH,d)/ ﬁgll,d = P(i)(belfyd, (Db—l,drgxb,l/dzﬁyb,l,dy

Next, we employ following approximations
=@ h —(1) h =) =(i)
Xbd — CXba E( b+1,d pbfl,d) + E( YYbrld befl,cl)’

v(i) =i h _) (i) h —(1) =(i)

(DXb,d - (Dxb,d - Z(prrl,d - pb—l,d) + Z((Dyberl,d o befl,d)’
and let

) D ox (i) =) v(i 1) %) )

puh =P (xp,ya, @4, O, @) ), Bk =0 (xp,ya, Ly, DY, ).
),

Then at (xy,ya), the class of PDE (5.1) is discretized by the subsequentdifference scheme:

i)

(i) (1) (i)
L1(®b+1d+1+®b+ld 1)+L2( b— 1d+1+(Db 1,d— 1)+L3( bd+1+q)bd 1)
i)

+ L4((Db+1 a)t L5((Db 1a) T L6(Db d

(i) (1) ¥ (1)

h2 PPoi1at+ ROy 14— (P+R)Pyy -

C(1+C) )d xp( btld b ’dvm . ~|—Il(f,)d,
6C(1+C)pb,d

(5.2)

where I\ = O(p?h2 +p?h3 +13), [b =1(1)M, d = 1(1)N], where

b,d
h? h2 h?
L =P—2 L, =R—-2 L3 = Q-2
12p2/ 2 12p2/ 3 Q12p2/
h? h? h?
Ly=1— 2P12p2, s =(— 2R12p2, Lg=—(14+0)— 2Q12
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6. Method for multi-harmonic problems

Consider 2D biharmonic equation:

V4¢(X,y) = d)xxxx + zd)xxyy + ‘byyyy

) ) ) (6.1)
- P(Xzyrd)/d)x,d)yzv d)/v Cl)X/v d)y)/ (Xry) € (011) X (011)/

where p is the imposing function. Suppose V2¢ = 0. Then the coupled form of equation (6.1) is as under

V2 = bxx + dyy = 0(x,y), (v, y) €4, (6.2a)
VZG = Oxx + eyy = p(x, Y, b, v, by, vx, q)yfvy)/ (X/U) € A. (6.2b)

Note that, values of ¢ and 0 are known on the boundary of A. We use method (5.2) to (6.2a)-(6.2b) and
obtain a scheme for (6.1) as

Li(@pi1,a41 + Por1,a—1) + L2(Pp—1,a41 + Po—1,a—1) + L3(Pp,a41 + Pp,a—1)
+ L4(DPp41,a) + Ls(DPp—1,a) + LDy,

- i . 6.3)
h? . POp41,a +ROp_1,a — (P +R)Oy q
= ((14+ ()= Op,q ex : - = | +Ip,a,
2 P 60(1+ )&y q
where I 4 = O(p*h? +p?h} +h?), [b=1(1)M,d = 1(1)N],
L1(Ov+1,a+1 +Ob+1,d-1) + L2(Ov—1,d+1 + Ovb—1,a—1) + L3(Ov,a+1 +Ov,a—1)
+14(Gb+1,d) + I—S(G‘)b—l,d) + L6@b,d 6 4)

h? PPbi1,a+RPy 1,0 — (P+R)Pva
=((14+0)—=Pp qex : = — | +Iv,a,
1+ 07 bra p( 6¢(1+ ()po.a o

where Iy g = O(pzh%, +th%j + h{?)), [b =1(1)M,d = 1(1)N], where L;,i =1,...,6 are already defined in
Section 2. Next, we consider the 2D tri-harmonic equation

V6¢(X,y) = Prxxxxx +3(d)xxxxyy + d)xxyyyy) + d)yyyyyy

6.5
= p(x,Y, d, bx, by, V2, V2bx, Vidy, Vi, Vidy, Vidy), (x,y) € (0,1) x (0,1), (©9)

where p is the imposing function. Let V2¢p = 0 and V?0 = w. Then the equation (6.5) can be expressed
as

V2P = Gux + Gyy =0(x,y), (x,y) €4, (6.6a)
V20 = Oy + Oyy = w(xy), (x,y) €A, (6.6b)
Viw = Wxx + Wyy = P(x, Y, d,0, w, by, Ox, W, d)yz ey/ wy)/ (x,y) € A. (6.6¢)

We use method (5.2) to (6.6a)-(6.6¢c), and obtain a scheme to solve equation (6.5) as

Li(@p41,a41 + Por1,a—1) + La(Pp—1,a41 + Po—1,a—1) + L3(Pp,a+1 + Pp,a—1)
+ L4(DPp41,a) + Ls(DPp—1,a) + LeDop,a

POy 1,4 +ROp_14— (P+R)Opa
= +Ip,a,
6¢(1+ ¢)Op,a

(6.7)

h? .
=((1+ C)TGb,d exp
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where I ¢ = O(p?h +p*h} + h?), [b=1(1)M,d = 1(1)N],

L1(®p41,a+1 +Opbs1,a-1) + L2(Ov—_1,a4+1 + Ov—1,a—1) + L3(Oyp,a+1 + Up,a—1)
+14(Gb+1,d) + I—S(Gb—l,d) + I—6®b,d

0 e . 6.8)
h? PWy 1,4 +RWy_1,4 — (P+R)Wy 4
=((1+C)5Wy,qex - — = | +Ip,a,
2 P 60(1+ Q)Woa
where I, ¢ = O(p*h? +p?h? +h3), [b=1(1)M,d = 1(1)N],
Li(Wyi1,a41 + Woit,a—1) + La(Wo—1,a41 + Wo—1,a—1) + Las(Wp,a4+1 +Wp,a—1)
+Ls(Wp41,a) + Ls(Wp—1,a) + LeWr,a ©9)

h? PPbi1,a+RPy 1,0 — (P+R)Pva
=1+ C)5Poaex ’ S S| +loa,
( ) g Po.a &P < 6¢(1+ C)Pv,a bd

where I, g = O(pzh% —|—p2h% + h%), [b=1(1)M,d = 1(1)N], where L;,1 =1, ...,6 have been described in
Section 2.

7. Numerical Simulations

The interval [0,1] in y- direction is dissected into (No + 1) points of equal length p > 0, so that
Y4 = dp for d = 0(1)Ng + 1. Further, the interval [0,1] in x- direction is dissected into (M + 1) points,
0=x<x <..<xmp1 =1 M =0,1,2,... with non-constant grid spacing hy, = xp —xp_1, b =
1(1)(M + 1)and the mesh ratio ¢ = (") > 0,b = 1(1)M.
This divides the space A with mesh points (xy,yq), b =0(1)(M+1),d =0(1)(N +1).
Now,

1=xmyp1—% = (*M+1—2M) + (XM —XM—1) + ... + (X1 —X0)

=hmit+hm + oty =140+ C+..+ MKy
Thus,
h =1/1+ 0+ +...+ ™ (7.1)

The above working , makes us known, with the first step size in x-direction, so we derive, further step sizes
using hyp 1 = Chp; b = 1(1)M. Thus we each mesh point (xv,yq) of the rectangular mesh is ascertained.
If { =1 means hy 1 = hy, = h; b = 1(1)M, the (2.4) condenses to technique of O(p? + p?h? + h*). For
constant mesh ratio, 0 = %, the uniform mesh O(p? + p?h? + h*) method yields fourth order accuracy in
spatial directions. The order of accuracy can be validated using;:

E
log(g2)
log()

where Ey,, and Ep, are the maximum absolute errors (MAEs) for uniform mesh widths h; and h; respec-
tively.

Hereby, we have computed six problems which can be directly applied to the physical models. The
closed solution is stated. The RHS functions and boundary conditions are found using closed form
solution. The difference equations are computed by Gauss-Seidel iterative scheme and Newton-Raphson
method depending on the linearity and non-linearity respectively [19]. The simulations were aborted
when the absolute error tolerance < 10712 was attained. MATLAB codes were employed for computation.
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Numerical outcomes are compared with O(p? + h%) scheme, defined as
To discretize (1.1), we use subsequent estimations:

= (1420)Dpi1,a — (14 0)?Qp,a + PPy_1,q

() = 7.2
Xb+1,d th(l'f‘ C) ( a)
= —Dpi1q+ (14 0)?Qpa — 2+ Q) DPb_1,a
@ = : : : 7.2b
Ro((1+0) 7:20)
— 2(0 —(1+0)D + (O
B, , = (Ppi1,a — ( ! )Dy,4a b—1,d) (7.3a)
hp“C(1+ Q)
— 1
Dyyyq = T?((Db,alﬂ —2@yp,q + Pp,a-1) (7.3b)
By = i [(@ (1-2) 2o
Wube = foar(i g g | Porlart— (1 b,d+1 — CDPv_1,a+1
—2(@py1a— (1—P)Dpq— CDp_14)
+(Dpy1,a-1— (1— )Py a1 — CDp_14-1)] (7.4)
Now, let
ﬁb,d = P(xb/yd/ q)b,d/ 6Xb’d16yb’d)l (75&)
Posi,d = P(Xb+1,Yd, CDbﬂ,d,axbﬂ,d,aybﬂd), (7.5b)

Using (2.1a), (2.1b), (2.1c), (2.2a), (7.2a), (7.2b), (7.3a), (7.3b), (7.4), (7.5a) and (7.5b) the O(p? + h%) method
for (1.1) is obtained as:

— — (-1, =
Dxp,q T Pyypa + Thbq)xyyb,d

1) _ _ _
M[Pbﬂ,d — (1= )Pp,a— Py_1.d] (7.6)

Example 7.1 (Convection-Diffusion equation).

= Pyp,a t+

d)xx+¢yy:[3¢x/ O<x, y<l1

Closed form solution is

ePe/25 ) (5072 Gnh(yx) + sinh(y(1—x))], v = y/n2 + B
sinh(y)

The MAEs in ¢ are recorded in Table 7.1a and Table 7.1b for ¢ = 0.78 and (¢ = 1 respectively. Graphs 7.1a,
7.1b show closed form and computed solutions for (M =70, N =70), # = 1000 and ¢ = 0.78.

Table 7.1a: Example 1: The MAEs for ¢ = 0.78

(M,N) Suggested method (2.4) o(p2+ hzb ) method (7.6)

=100 =500 3 = 1000 3 = 1400 B =100 3 =500 3 = 1000 3 = 1400
(30,30 2.4760(-04) 2.8976(-04) | 5.0452(-04) 7.7537(-04) 9.1687(-01) 9.8406(-01) 9.8720(-01) 9.8698(-01)
(40,40) | 1.9869(-04) | 1.6837(-04) | 1.7476(-04) | 1.8494(-04) | 9.0953(-01) | 9.3798(-01) | 9.5298(-01) | 9.8083(-01)
(50,50) 1.8309(-04) 1.5455(-04) 1.5163(-04) 1.5199(-04) 9.8732(-01) 9.1648(-01) 9.4946(-01) 9.7196(-01)
(60,60) | 1.7541(-04) | 15161(-04) | 1.4841(-04) | 1.4787(-04) | 9.4298(-01) | 9.0864(-01) | 9.6453(-01) | 9.6543(-01)
(70,70) | 1.7086(-04) | 1.4984(-04) | 1.4763(-04) | 1.4708(-04) | 9.3956(-01) | 8.9363(-01) | 8.7689(-01) | 8.3497(-01)
(80,80) 1.6953(-04) 1.4763(-04) 1.4727(-04) 1.4680(-04) 9.2478(-01) 8.4198(-01) 8.86246(-01) 8.1467(-01)
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Table 7.1b: Example 1: MAEs for { =1

h Suggested method (2.4) O(p2+h?)
3 =100 3 =500 3 = 1000 3 = 1400 3 =100 B =500 3 = 1000 3 = 1400
1/30 3.6601(-02) 4.8397(-01) 6.9512(-01) 7.7116(-01) Oscillations Oscillations Oscillations Oscillations
1/40 1.5899(-02) 3.8128(-01) 6.1687(-01) 7.0798(-01) Oscillations Oscillations Oscillations Oscillations
1/50 7.7319(-03) 3.0079(-01) 5.4751(-01) 6.4969(-01) Oscillations Oscillations Oscillations Oscillations
1/60 4.0895(-03) 2.3800(-01) 4.8559(-01) 5.9676(-01) Oscillations Oscillations Oscillations Oscillations
1/70 2.3284(-03) 1.8855(-01) 4.3102(-01) 5.4801(-01) Oscillations Oscillations Oscillations Oscillations
1/80 1.3984(-03) 1.5069(-01) 3.8313(-01) 5.0308(-01) Oscillations Oscillations Oscillations Oscillations

Exact solution

Numerical solution

Ed values

Y values

X values

@ values

Y values

i
i A

L

X
%

%
%
s
Y
%
%

Xvalues

Figure 7.1a: Exact Solution of Example 1 for (M = 70, N = Figure 7.1b: Numerical Solution of Example 1 for (M
70) and (3 = 1000. 70,N =70) and 3 = 1000.

Example 7.2 (Poisson’s equation in -z plane).

Grr+ s+ o =H(rz), 0<r,z<1

(7.7)

The closed form solution is coshrcoshz. The MAEs in ¢ are recorded in Table 7.2a for ¢ = 0.75 and in
Table 7.2b for ¢ = 1 and fixed mesh ratio parameter o = 20. Graphs 7.2a, 7.2b show closed form and
computed solutions for (M =70,N =70), « = 2 and ¢ = 0.75 graphically.

Table 7.2a: Example 2: MAEs for { = 0.75

(M,N) Suggested method (2.4) o(p2+ h%, ) method (7.6)
a=1 o =2 a=1 o =2
(30,30) | 3.4627(04) | 6.6427(-04) | 7.5498(-02) | 1.1856(-01)
(40,40) 3.4450(-04) 6.6045(-04) 7.5276(-02) 1.6956(-01)
(50,50) | 3.4222(-04) | 6.6033(-04) | 7.5243(-02) | 1.2294(-01)
(60,60) | 3.3977(:04) | 6.6016(-04) | 7.4973(-02) | 1.2294(-01)
(70,70) 3.3666(-04) 6.6011(-04) 5.4383(-02) 1.2294(-01)
(80,80) | 3.3446(-04) | 6.6001(-04) | 54323(-02) | 1.2294(-01)
Table 7.2b: Example 2: MAEs for { =1 and o = 20.
(h,p) Suggested method (2.4) O(p2 +h?)
=1 =2 ax=1 =2
(1/20,1/20) 2.2501(-04) 2.9509(-04) Oscillations Oscillations
(1/40,1/80) 1.3992(-05) 1.9158(-05) Oscillations Oscillations
(1/80,1/320) 1.0038(-06) 1.2471(-06) Oscillations Oscillations
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Exact solution

¥ valves o0

X values
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Numerical solution
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Figure 7.2a: Exact Solution of Example 2 for (M =70, N =

Figure 7.2b: Numerical Solution of Example 2 for (M =
70) and o = 2.

70,N =70) and o« = 2.

Example 7.3 (Burgers’ equation).

e(Ppxx + d)yy) = b(Px + d)y) + Q(X,y),

The closed form solution is e* sin (52).

O<xy<l1

The MAEs in ¢ are recorded in Table 7.3a for ¢ = 0.85 and in Table 7.3b for ¢ = 1 and fixed mesh
ratio parameter ¢ = 20. Graphs 7.3a, 7.3b show closed form and computed solution for (M = 60, N = 60),

¢ =0.01 and ¢ = 0.85.
Table 7.3a: Example 3: MAEs for = 0.85

Exact solution

4
& i
Vi

A

Ea values

¥ valves

Xvalues

(M, N) Suggested method (2.4) O (pz + h% ) method (7.6)
=01 e =001 =01 e =001
(30,30) 3.9288(-03) 5.3998(-04) 1.2943(-01) 2.3875(-01)
(40,40) 3.5232(-04) | 4.8002(-04) | 1.2178(-01) | 2.0564(-01)
(50,50) 3.3794(-04) 4.2887(-05) 1.2067(-01) 1.9632(-01)
(60,60) 3.32216(-05) 3.9508(-05) 1.2048(-01) 1.9611(-01)
(70,70) 3.3001(-05) 3.6798(-05) 1.2023(-01) 1.9597(-01)
(80,80) 3.2892(-05) 3.4809(-05) 1.2012(-01) 1.9520(-01)

Table 7.3b: Example 3: The MAEs for ( =1 and o =20

(h,p) Suggested method (2.4) 0(k2+h?)
e=01 e =0.01 e=01 e =0.01
(1/20,1/20) 4.5988(-03) 9.6298(-03) oscillations oscillations
(1/40,1/80) 2.8493(-04) 6.0792(-04) oscillations oscillations
(1/80,1/320) 1.7535(-05) 3.7824(-05) oscillations oscillations

\

\
b
[
.
\\§\

|
.

Z

\

_

¥ values

\
N
\

\
.
L

\

|

(L
.
\
\
\

Numerical solution

45
W
05

%

AN
N\

%
7

%%
7,
7

N
\
N\
N\
N
N\

R
N\
\

N\

D
§\
N\
N\
N
\

o
D
\

\
‘.
0

\
\

\

%
7%

‘

\
\

g
2
B
A
2555
%

2
7
7

Z et
J
25

N
N
\

N
N

\

X values

Figure 7.3a: Exact Solution of Example 3 for (M =60, N =

Figure 7.3b: Numerical Solution of Example 3 for (M =
60), e = 0.01.

60,N = 60), e = 0.01.
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Example 7.4 (Navier-Stokes equations in cartesian coordinates).

1

Ri(‘bxx + (byy) = bdx +0dy + f(x,y), 0<x, y<1, (7.8a)
e

1
e

The closed form solutions are sin(7x) sin(my), 0(x,y) = cos(7x) cos(my).

The MAEs in ¢ and 0 are recorded in Table 7.4a for { = 1.2 and in Table 7.4b for { = 1 and fixed mesh
ratio parameter o = 20. Graphs 7.4a, 7.4b, 7.4c and 7.4d show closed form and computed solutions for
(M =60,N=60),e=00land (=12.

Table 7.4a: Example 4: MAEs for { =1.2

M,N Suggested method (5.2) (@] ('p2 + h%j ) method (7.6)
Re=10 Re=102 Re=103 Re=10 Re=102 Re=103

(30,30)

O] 6.8419(-04) 1.4472(-04) 3.4957(-03) 5.2108(-01) oscillations oscillations

0 3.9768(-04) 5.2169(-03) 4.7639(-03) 1.6934(-01) oscillations oscillations
(40,40)

[) 6.6477(-04) 1.3820(-04) 3.4468(-03) 5.1874(-01) oscillations oscillations

<] 3.0955(-04) 4.5672(-03) 4.6537(-03) 1.5789(-01) oscillations oscillations
(50,50)

¢ 6.3506(-04) 1.3547(-04) 3.4253(-03) 5.1496(-01) oscillations oscillations

0 2.6865(-04) 4.3531(-03) 4.4173-03) 1.5218(-03) oscillations oscillations
(60,60)

¢ 5.8635(-04) 1.3404(-03) 3.4175(-03) 5.1275(-01) oscillations oscillations

0 2.4633(-04) 4.3247(-02) 4.3862(-03) 1.5031(-03) oscillations oscillations
(70,70)

[ 4.9854(-04) 1.3318(-03) 3.3692(-03) 5.1133(-01) oscillations oscillations

€] 2.3292(-04) 4.3135(-02) 4.2747(-03) 1.4932(-03) oscillations oscillations
(80,80)

¢ 3.8712(-04) 1.3262(-03) 2.9845(-03) 5.1027(-01) oscillations oscillations

0 2.2415(-04) 4.3132(-02) 4.2418(-03) 1.4861(-03) oscillations oscillations

Table 7.4b: Example 4: MAEs for ( =1 and o =20

(h,p) Suggested method (5.2) O(p?+h?)
Re=10 Re=102 Re=10% Re=10 Re=102 Re=10%

(1/20,1/20)

¢ 1.1102(-03) 5.5715(-03) 4.7863(-03) oscillations oscillations oscillations

0 4.4622(-04) 3.8404(-03) 4.9369(-03) oscillations oscillations oscillations
(1/40,1/80)

0] 7.4981(-05) 3.8808(-04) 2.8792(-04) oscillations oscillations oscillations

€] 2.9913(-05) 2.4199(-04) 3.1374(-04) oscillations oscillations oscillations
(1/80,1/320)

¢ 3.5961(-06) 2.4744(-05) 1.7926(-05) oscillations oscillations oscillations

€] 2.1538(-06) 1.5364(-06) 1.9549(-05) oscillations oscillations oscillations
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Figure 7.4a: Exact Solution of Example 4 of ¢ for (M = Figure 7.4b: Numerical Solution of Example 4 of ¢ for
60, N = 60), Re = 100. h = (M =60,N = 60), Re = 100.
Exact solution Numerical solution
¥values o0 Xvalues Yvalues o0 Xvalues
Figure 7.4c: Exact Solution of Example 4 of 6 for (M = Figure 7.4d: Numerical Solution of Example 4 of 0 for
60, N = 60), Re = 100. (M =60,N =60), Re = 100.
Example 7.5 (Bi-harmonic Equation).
4
Vi =p(xy), 0<xy<l (7.9)

The closed form solution is sin(7tx) cos(7ty). The MAEs in ¢ are recorded in Table 7.5a for ¢ = 1.23
and in Table 7.5b for ¢ = 1 and fixed mesh ratio parameter o = 20. Graphs 7.5a, 7.5b show closed form
and computed solutions for (M = 60, N = 60) and ¢ = 1.23.

Table 7.5a: Example 5: MAEs for ¢ = 0.1.23

MN Proposed method (6.3)-(6.4) | O(p? + h? ) method (7.6)
(30,30) 3.1830(-04) 3.1073(-03)
(40, 40) 2.5830(-04) 3.0202(-03)
(50, 50) 2.3585(-04) 2.9818(-03)
(60, 60) 2.2356(-04) 2.9605(-03)
(70, 70) 2.1609(-04) 2.9477(-03)
(80, 80) 2.1121(-04) 2.9415(-03)

Table 7.5b: Example 5: MAEs for ( =1 and o = 20.

(h,p) Suggested method (6.3)-(6.4) O(p2+h?)
(1/20,1/20) 4.3746(-04) 8.7437(-04)
(1/40,1/80) 2.9574(-05) 1.4484(-04)

(1/80,1/320) 1.7446(-06) 2.7813(-05)
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Exact solution Numerical solution

E® values
@ values

0 0
Y values X values Y values Xvalues

Figure 7.5a: Exact Solution of Example 5 for (M = 60, N = Figure 7.5b: Numerical Solution of Example 5 for (M =
60). 60, N = 60).

Example 7.6 (Tri-harmonic Equation).
Vo = p(x,y), 0<x,y<1. (7.10)

The closed form solution is sin(7tx) cos(my). .
The MAEs in ¢ are recorded in Table 7.6a for { = 1.2 and in Table 7.6b for { = 1 and fixed mesh ratio
parameter ¢ = 20. Graphs 7.6a, 7.6b show closed form and computed solutions for (M = 60, N = 60) and
(=12
Table 7.6a: Example 6: MAEs for { =1.2

MN Suggested method (6.7)-(6.9) | O(p? -+ h} ) method (7.6)
(30,30) 4.6247(-04) 3.5937(-03)
(40,40) 3.9123(-04) 3.5735(-03)
(50,50) 3.7471(-04) 3.5706(-03)
(60,60) 3.7268(-04) 3.5704(-03)
(70,70) 3.6334(-04) 3.5703(-03)
(80,80) 3.6098(-04) 3.5700(-03)

Table 7.6b: Example 6: MAEs for { =1 and o = 20.

(hp) Suggested method (6.3)-(6.4) | O(p?+ h?)
(1/20,1/20) 4.8727(-04) 9.7649(-03)
(1/40,1/80) 3.2942(-05) 1.6144(-04)
(1/80,1/320) 1.8753(-06) 2.9574(-05)

Exact solution Numerical solution

Ed values
@ values

0 0
¥ values Xvalues ¥ values Xvalues

Figure 7.6a: Exact Solution of Example 6 for (M =60, N = Figure 7.6b: Numerical Solution of Example 6 for (M =
60). 60, N = 60).
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8. Conclusions and discussions

This paper reports a novel, implicit technique based on exponential form for computing 2D non-
linear EBVPs employing nine point compact cell. This scheme leads us to diagonally dominant block
tri-diagonal system of difference equations which reduces computational time to a great extent. We have
performed six physically significant simulations to manifest the ability of our method both in terms of
computation and accuracy. It was accomplished before that the highly accurate technique on uniform
mesh behaves seamlessly for small values of 3(0 < 3 < 100), whereas the proposed technique on semi-
variable mesh is stable for reasonably large values of 3, that is, for = 200; 500; 1000; 1400. For 3 > 1500
the proposed technique is unstable. Further, it has been observed in past that approximation techniques
fails to compute for large values of Re or small values of ¢ = 1/R. especially in the variable mesh;
whereas, the proposed method is stable for high values R, = 103 on a semi-variable mesh. The major
benefit of our research is the numerical solution on a semi-variable mesh. To establish theoretically, order
of convergence, we have computed numerical solution for ¢ = 1 (constant mesh). Also, we have assumed
u € C%(A) and we have chosen u which is at least six times continuous in the prescribed region and
calculated the corresponding forcing function in terms of convection coefficient and Dirichlet boundary
conditions so that the problem’s analytical solution is unique irrespective of whether u is independent of
convection coefficient or not.

Further, in future we plan to extend the proposed scheme to time dependent problems.
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