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Abstract

This study explores the challenge of achieving consensus in multi-agent systems (MASs) when facing the random packet
dropouts and disturbances. It employs memory state-feedback control (MSFC) in the context of undirected graphs and specified
leader agents. The analysis focuses on mean square consensus, considering MASs within strongly connected networks or
networks with undirected spanning trees. The MSFC approach is developed to ensure asymptotic consensus despite packet
dropouts and also to reduce the impact of disturbances. Specifically, the consensus analysis leverages the Lyapunov-Krasovskii
functional (LKF) framework, and the necessary conditions for implementing the proposed MSFC are established using linear
matrix inequalities (LMIs). The system, augmented with an H∞ attenuation level, is guaranteed to achieve asymptotic mean-
square stability according to the provided criteria. In conclusion, two examples are provided to illustrate the effectiveness and
practicality of the proposed control mechanism.

Keywords: Memory state-feedback control, multi-agent systems, Kronecker product, leader-following consensus, linear matrix
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1. Introduction

The mechanism of agent-based system is a renowned new approach to develop a thought, create, and
implement software systems in artificial intelligence research. In general, agents are refined computer
programs that work independently in support of their users across open and dispersed settings to tackle
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the arising variety of complicated issues. However, from the view of application, it necessitates that
numerous agents can work collaboratively [12, 19].

Multi-agent systems (MASs) are roughly a connected network of software agents that communicate
to derive issues that are beyond any problem solver’s capabilities or understanding. MASs have gotten a
lot of attention during the last couple of decades because of their numerous applications in sectors such
as vehicle formulation, robotics, and mobile networks [8, 9, 11]. MASs provide several advantages over
traditional control systems, including flexibility, reliability, cost reduction, improved system efficiency,
and the provision of additional capabilities such as resilience and reusability [10, 13]. The reason for the
widespread interest in MASs is that they are viewed as a technical instrument for analyzing and devel-
oping models and rules of interaction in complex human-centered systems [2, 25, 37]. Very huge number
of MASs applications require a set of agents to establish an agreement (consensus) on the parameters of
specific variables and so addressing the consensus problem for MASs is quite useful [6, 17, 32].

Often referred to as ”agreement dynamics”, consensus dynamics draws concept from both systems
theory and graph theory. The agreement or consensus issue is currently a hot topic in MASs research
[7, 29]. This refers to the process by which all communication agents arrive at the same value by draw-
ing the knowledge of their immediate neighbors. Physiological systems, gene networks [21], large-scale
energy systems, and vehicle fleets on land, in space, or in the air are examples of agent networks that com-
municate information to establish an agreement. The distributed controller allows all associated agents
to attain a shared goal. Many scholars studied the two forms of consensus, namely, the leader follow-
ing [18, 39] and leaderless [26, 34] consensus, along with numerous applications, including collaboration
among agents.

In many real-world scenarios, control packet loss occurs due to actuator problems, communication
disruption, congestion, and so on [24]. Since the occurrence of random packet dropout in control is
unavoidable, it may cause system instability [16, 20]. As a result, it is critical to consider the consequences
of controlling random packet dropout. There are two forms of packet dropouts: random packet dropout
and deterministic packet dropout. For instance, in [1], the authors investigated the leaderless consensus
of delayed sampled-data control for MASs with random packet losses. In [15], the authors discussed
robust consensus of reliable control scheme nonlinear MASs with probabilistic time delay.

Agent systems and random pocket dropouts in consensus controllers have been extensively used to
mitigate the impact of external disruptions. Some fruitful outcomes have been recorded. For instance, [14]
has found a leader-following consensus of non-fragile H∞ approaches for MASs when the topologies are
changing. Recently, several systems have used feedback control to analyze the dynamic performance of
closed-loop systems. In [30], the authors discussed state-feedback control (SFC) of MASs in the commu-
nication channels under data packet dropout through markovian approach. H∞ control of MASs under
time-delayed signal condition with unknown leader states and switching graph has been discussed in
[33]. In [28], the authors derived an adaptive SFC scheme for the output consensus of MASs. However,
according to the author’s understanding, SFC and MSFC combined with stochastic variables and distur-
bances for MASs has not been discussed in the existing literature. The current study seeks to fill this
need. Motivated by the facts stated above, this work uses MSFC to examine the leader-following consen-
sus of MASs with random packet dropout and external disturbance. This study primarily discusses the
consensus of MASs with constant transmission delay using the MSFC scheme by building the suitable
LKF.

• Given the existing constraints in the utilization of current research findings, it is evident that a more
comprehensive investigation is needed to address the practical implementation of MASs incorpo-
rating MSFC.

• Previous research has not thoroughly examined the interplay between random packet dropout,
external disturbances, transmission delays, and the development of MSFC design.

This study explores the challenge of achieving consensus in MASs when faced with random packet
dropouts and disturbances. It employs MSFC in the context of undirected graphs and specified leader
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agents. The analysis focuses on mean square consensus, considering MASs within strongly connected net-
works or networks with undirected spanning trees. The MSFC approach is developed to ensure asymp-
totic consensus despite packet dropouts and also to reduce the impact of disturbances. Specifically, the
consensus analysis leverages the LKF framework, and the necessary conditions for implementing the
proposed MSFC are established using LMIs. The system, augmented with an H∞ attenuation level, is
guaranteed to achieve asymptotic mean-square stability according to the provided criteria. In conclu-
sion, two examples are provided to illustrate the effectiveness and practicality of the proposed control
mechanism.

The following are the major contributions:

• In most previous research, undirected topologies are represented by random packet dropouts but in
our study, it is modeled along with a transmission delay, random packet dropouts, and an external
disturbance.

• Beside, the asymptotic consensus for MASs under transmission delay, random packet dropouts and
disturbances has been studied using LMI, LKF, graph theory techniques, and the free-weight matrix
approach, making this paper more advanced than prior studies [27].

• In addition, adequate criteria are established to ensure that all followers may asymptotically follow
the leader in the sense of mean square using a specified H∞ performance index.

• The current approaches in [27] have been compared to confirm the efficacy of the suggested method,
which is shown in the numerical simulation.

Notation: There is a positive real value for the time delay γ. Rn×q and Rn stand for the space of
real matrices n× q and the n-dimensional Euclidean space, respectively. The symmetric matrix and the
Kronecker product are represented by ? and ⊗, respectively.

2. Basic concepts of graph theory

Consider G = (σ, ε,W) as a weighted graph, ε ⊆ {σ× σ} is an edge set. W = [aij]N×N is the adjacent
weighted matrix, where the existence of the edge (zi, zj) implying aij must be zero. The Laplacian matrix
L = (lij)N×N is described by lij = −aij, i 6= j and lii =

∑N
j=1,j6=i lij (i, j = 1, 2, . . . ,N). For additional

information on communication topologies, please refer to [31].

3. System formulation

Consider the follower system{
℘̇i(t) = A℘i(t) +Bui(t) +Dωi(t),
yi(t) = C℘i(t),

where ℘i(t) = [℘i1(t),℘i2(t), . . . ,℘in(t)] ∈ Rn and ui(t) ∈ Rq are the state and control inputs, respectively.
ωi(t) ∈ Rm is the external disturbance. yi(t) ∈ Rµ is the system output. A = (ars) ∈ Rn×n, B = (brs) ∈
Rn×q, D = (drs)∈ Rn×m and C = (crs)∈ Rµ×n are constants and well-known matrices.

Consider the leader system described as{
℘̇0(t) = A℘0(t),
y0(t) = C℘0(t),
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here the leader agent state is ℘0(t) ∈ Rn. Consider ηi(t) = ℘i(t) − ℘0(t) and ȳi(t) = yi(t) − y0(t), the
consensus error is described as {

η̇i(t) = Aηi(t) +Bui(t) +Dωi(t),
ȳi(t) = Cηi(t).

(3.1)

The compact version of the consensus error system (3.1) is{
η̇(t) = (I⊗A)η(t) + (I⊗B)U(t) + (I⊗D)W(t),
ȳ(t) = (I⊗ C)η(t),

(3.2)

where η(t) = [η1(t),η2(t), . . . ,ηN(t)]T , U(t) = [u1(t),u2(t), . . . ,uN(t)]T , W(t) = [ω1(t),ω2(t), . . . ,ωN(t)]T .
On the other hand, the control input ui(t) is specified in this manuscript as

ui(t) = K1F(t)

[ N∑
j=1

aij(℘j(t) − ℘i(t)) − =i(℘i(t) − ℘0(t))

]

+K2(1 − F(t))

[ N∑
j=1

aij(℘j(t− γ) − ℘i(t− γ)) − =i(℘i(t) − ℘0(t))

]
,

(3.3)

where K1, K2 are control gain matrices.

F(t) =

{
1, successfully signal transmitted,
0, otherwise,

and F(t) satisfies Bernoulli distributed white sequence with Pr{F(t) = 1} = ε{F(t)} = F and Pr{F(t) =
0} = 1 − ε{F(t)} = 1 − F.
Remark 3.1. It is important to point out that the stochastic variable F(t) of the coupling scheme for the
MASs consensus problem was examined to couple the proportional sample data control and the in-
memory sample data control in [27, 38]. Inspired by the previous studies, in this article, we suggest the
coupling approach in SFC, which is coupled with both SFC and MSFC.
Remark 3.2. Instability in a control system occurs for many causes in real-world engineering, but the
most common ones are transmission delay, random packet dropouts, and stochastic disturbance. This
means that neither transmission delay nor random packet dropouts are taken into account in the previous
literature, despite their importance to the MASs consensus process. Therefore, the model used here is
more accurate.

Define Λ = diag{=1, =2, . . . , =N}. Combining equations (3.2) and (3.3), the error system is stated as

η̇(t) = (I⊗A)η(t) − F(t)

[
(L⊗BK1)η(t) + (Λ⊗BK1)η(t)

]
− (1 − F(t))

[
(L⊗BK2)η(t− γ) + (Λ⊗BK2)η(t)

]
+ (I⊗D)W(t).

(3.4)

Definition 3.3 ([15]). The system (3.4) attains asymptotic consensus of mean-square if for all agent ℘i 3:
the system satisfies limt→∞ ε{‖℘i(t) − ℘j(t)‖2} = 0.

The following Lemmas can be used to achieve sufficient conditions with appropriate LF.

Lemma 3.4 ([22]). For a given matrix M > 0, differentiable function < : [µ, δ]→ Rn, satisfies∫δ
µ

<̇T (σ)M<(σ)dσ >
1

6(δ− µ)
σT

 22M 10M −32M
? 16M −26M
? ? 12M

σ,

where σT =

[
<T (δ) <T (γ) 1

δ−µ

∫δ
µ<

T (σ)dσ

]
.
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Lemma 3.5 ([35]). For a given matrix M > 0 ∈ R4n×4n, a continuous differentiable function < : [µ, δ] → Rn,
vectors Z`(i = 1, 2, 3), and any appropriate matrices Wı(ı = 1, 2, 3), the following inequality holds:

−

∫δ
µ

∫δ
ϑ

<̇T (σ)M<(σ)dσdϑ 6
δ2
µ

2
ZT1 W1M

−1WT
1 Z1 +

δ4
µ

36
ZT2 W2M

−1WT
2 Z2

+
δ6
µ

600
ZT3 W3M

−1WT
3 Z3 + 2

3∑
`=1

Z`W`Πı,

where

δµ = δ− µ,

Π1 = δµ<(δ) −

∫δ
µ

<(σ)dσ,

Π2 =
δ2
µ

3
<(δ) +

2δµ
3

∫δ
µ

<(σ)dσ− 2
∫δ
µ

∫δ
ϑ

<(σ)dσdϑ,

Π3 =
δ3
µ

10
<(δ) −

2δ2
µ

10

∫δ
µ

<(σ)dσ+
12δµ

5

∫δ
µ

∫δ
ϑ

<(σ)dσdϑ− 6
∫δ
µ

∫δ
ϑ

∫δ
ε

<(σ)dσdϑdε.

The primary purpose of this research is to acquire the mean-square asymptotic stable of MASs (3.4)
via MSFC with an upper bound on the communication delay, as shown below.

Problem 3.6. For the required MFSC-states η(t) to be asymptotically stable, given an error of MASs (3.4),
the following conditions must hold:

• The consensus of MASs (3.4) is mean square asymptotic when W(t) = 0.
• With the zero initial condition and β > 0, the following inequality holds:∫+∞

0
yT (s)y(s)ds 6 β2

∫+∞
0

WT (s)W(s)ds.

4. Main results

This section contains the main results for asymptotic consensus criteria for MASs (3.4) using MSFC.
We express block matrices ψTr = [0n,(r−1)n In 0n,(7−r)n] (r = 1, 2, . . . , 7), and the other symbols are
stated as

ξT (t) = [ηT (t) η̇T (t− γ)
1
γ

∫t
t−γ

ηT (s)ds]T , ζT (t) =

[
ηT (t) ηT (t− γ) η̇T (t) ΞT1 ΞT2 ΞT3 W(t)

]T
,

Ξ1 =

∫t
t−γ

ηT (s)ds, Ξ2 =

∫t
t−γ

∫t
θ

ηT (s)dsdθ, Ξ3 =

∫t
t−γ

∫t
θ

∫t
σ

ηT (s)dsdθdσ.

4.1. Multi-agent systems with disturbance
Theorem 4.1. The system (3.4) is asymptotically mean-square consensus for some positive constant ρ, γ and given
gain matrices K1, K2 if there exists positive matrices Pr (r = 1, 2, 3, 4), any matrices Q` (` = 1, 2, 3) with
appropriate dimensions, such that

Ψ =

[
Ψ11 G

? P

]
< 0,

where

Ψ11 = Sym{ψ1(I⊗ P1)ψ
T
3 −ψ1

1
6γ

10(I⊗ P3)ψ
T
2 +ψ1

1
6γ2 32(I⊗ P3)ψ

T
4 +ψ2

1
6γ2 26(I⊗ P3)ψ

T
4 }



J. Thipcha, et al., J. Math. Computer Sci., 33 (2024), 71–86 76

+ψ1(I⊗ P2)ψ
T
1 −ψ2(I⊗ P2)ψ

T
2 +ψ3γ(I⊗ P3)ψ

T
3 −ψ1

1
6γ

22(I⊗ P3)ψ
T
1 −ψ2

1
6γ

16(I⊗ P3)ψ
T
2

−ψ4
1

6γ3 58(I⊗ P3)ψ
T
4 + Sym{

3∑
r=1

µT1r(I⊗Gr)Γr}+ Sym{$× (−ψ3 + (I⊗A)ψ1 − F(L⊗BK1)ψ1

− F(Λ⊗BK1)ψ1 − (1 − F)(L⊗BK2)ψ2 − (1 − F)(Λ⊗BK2)ψ1 + (I⊗D)ψ7}

+ψ1(I⊗ C)(I⊗ C)TψT1 −β2ψ7ψ
T
7 , $ = ψ1(I⊗Q1)

T +ψ2(I⊗Q2)
T +ψ3(I⊗Q3)

T ,

P = diag{2(I⊗ P4), 36(I⊗ P4), 600(I⊗ P4)}; G = {γ µT11(I⊗G1), γ µT12(I⊗G2), γ µT13(I⊗G3)},

Ξ1 = γ ψ1 −ψ3, Ξ2 =
γ2

3
ψ1 +

2γ
3
ψ3 − 2ψ4, Ξ3 =

γ3

10
ψ1 −

3γ2

10
ψ3 +

12γ
5
ψ4 − 6ψ5.

Proof. Let us construct the LKF as

V(t) =

3∑
i=1

Vi(t), (4.1)

where

V1(t) = η
T (t)(I⊗ P1)η(t) +

∫t
t−γ

ηT (s)(I⊗ P2)η(s)ds,

V2(t) =

∫ 0

−γ

∫t
t+θ

η̇T (s)(I⊗ P3)η̇(s)dsdθ,

V3(t) =

∫t
t−γ

∫t
θ

∫t
σ

η̇T (s)(I⊗ P4)η̇(s)dsdθdσ.

Based on (4.1), we get

ε{LV1(t)} = 2ηT (t)(I⊗ P1)η̇(t) + η
T (t)(I⊗ P2)η(t) − η

T (t− γ)(I⊗ P2)η(t− γ), (4.2)

ε{LV2(t)} = η̇
T (t)γ(I⊗ P3)η̇(t) −

∫t
t−γ

η̇T (s)(I⊗ P3)η̇(s)ds, (4.3)

ε{LV3(t)} =
γ2

2
η̇T (t)(I⊗ P4)η̇(t) −

∫t
t−γ

∫t
θ

η̇T (s)(I⊗ P4)η̇(s)dsdθ. (4.4)

Based on Lemma 3.4, we have

−

∫t
t−γ

η̇T (s)(I⊗ P3)η̇(s)ds 6 ξ
T (t)

 22(I⊗ P3) 10(I⊗ P3) −32(I⊗ P3)
? 16(I⊗ P3) −26(I⊗ P3)

T

? ? 12(I⊗ P3)

 ξ(t), (4.5)

where ξT (t) = [ηT (t) ηT (t− γ) 1
γ

∫t
t−γ η

T (s)ds]. Applying Lemma 3.5, we have

−

∫t
t−γ

∫t
θ

η̇T (s)(I⊗ P4)η̇(s)dsdθ

6 ζT (t)

{
γ2

2
µT11(I⊗G1)(I⊗ P4)

−1(I⊗G1)
Tµ11 +

γ4

36
µT12(I⊗G2)(I⊗ P4)

−1(I⊗G2)
Tµ12

+
γ6

600
µT13(I⊗G3)(I⊗ P4)

−1(I⊗G3)
Tµ13 + 2

3∑
r

µ1r(I⊗Gr)Ξr
}
ζ(t).

(4.6)
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Moreover, for any matrices Q` (1, 2, 3), it follows that,

ε

{
0 = 2$T (t){−η̇(t) + (I⊗A)η(t) − F(t)[(L⊗BK1)η(t) + (Λ⊗BK1)η(t)]

− (1 − F(t))[(L⊗BK2)η(t− γ) + (Λ⊗BK2)η(t)] + (I⊗D)W(t)}

}
,

(4.7)

with $(t) = ηT (t)(I⊗Q1)
T + η̇T (t)(I⊗Q2)

T + ηT (t− γ)(I⊗Q3)
T . Hence, on collecting equations (4.2)-

(4.7), we get

ε{LV(t)} 6 ζT (t)Ψζ(t) − yT (t)y(t) +βWT (t)W(t).

Clearly it is evident that Ψ < 0. Moreover

ε{LV(t)} 6 ε{−yT (t)y(t) +β2WT (t)W(t)}.

Integrating on both sides from 0 to∞, we get

V(∞) − V(0) 6 ε
{∫∞

0

(
− yT (t)y(t) +β2WT (t)W(t)

)
dt

}
.

For any nonzero W(t) ∈ L2[0,∞), we have

ε

∫∞
0
yT (t)y(t)dt 6 β2

∫∞
0
WT (t)W(t)dt,

under the initial condition V(0) = 0. Suppose W(t) = 0, ∃ a scalar β 3:

ε{LV(t)} 6 −ε{‖η(t)‖2} for ‖η(t)‖ 6= 0.

Thus, the MASs (3.4) is asymptotically mean-square consensus under H∞ performance index. This ends
the proof.

Remark 4.2. The dynamic performance of MASs (3.4) must be improved. To do this, the forms of µ1ı(ı =
1, 2, 3) can be chosen as either ζ(t) or by applying Theorem 4.1. The two scenarios are as follows:

Case 1: µ11 = col[ψ1, ψ2, ψ3], µ12 = ψ5, µ13 = ψ6 with the free matrices G1,G2, and G3 are implemented
in Theorem 4.1.

Case 2: µ11 = col[ψ1, ψ2], µ12 = ψ4, µ13 = ψ5 with the free matrices G1,G2, and G3 are implemented in
Theorem 4.1.

The control gain matrices for the MSFC method (3.4) to attain asymptotically mean square consensus
between leader and follower system (3.4) will be derived using Theorems 4.1 and 4.3.

Theorem 4.3. The system (3.4) attains asymptotic mean square consensus for some positive constant γ if there
exists positive matrices P̃r (r = 1, 2, 3, 4) and any matrices Q̃` (` = 1, 2, 3) with appropriate dimensions, such that

Ψ̃ =

 Ψ̃11 G̃ Ỹ

? P̃ 0
? ? −I

 < 0, (4.8)

where

Ψ̃11 = Sym{ψ1(I⊗ P̃1)ψ
T
3 −ψ1

1
6γ

10(I⊗ P̃3)ψ
T
2 +ψ1

1
6γ2 32(I⊗ P̃3)ψ

T
4 +ψ2

1
6γ2 26(I⊗ P̃3)ψ

T
4 }
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+ψ1(I⊗ P̃2)ψ
T
1 −ψ2(I⊗ P̃2)ψ

T
2 +ψ3γ(I⊗ P̃3)ψ

T
3 −ψ1

1
6γ

22(I⊗ P̃3)ψ
T
1 −ψ2

1
6γ

16(I⊗ P̃3)ψ
T
2

−ψ4
1

6γ3 58(I⊗ P̃3)ψ
T
4 + Sym{

3∑
r=1

µT1r(I⊗ G̃r)Γr}+ Sym{$× (−ψ3 + (I⊗AQ)ψ1

− F(L⊗BH1)ψ1 − F(Λ⊗BH1)ψ1 − (1 − F)(L⊗BH2)ψ2 − (1 − F)(Λ⊗BH2)ψ1 + (I⊗D)ψ7}

−β2ψ7ψ
T
7 , $̃ = ψ1 + θ1ψ2 + θ2ψ3,

P̃ = diag{2(I⊗ P̃4), 36(I⊗ P̃4), 600(I⊗ P̃4)}; G̃ = {γ µT11(I⊗ G̃1), γ µT12(I⊗ G̃2), γ µT13(I⊗ G̃3)},

Ξ1 = γ ψ1 −ψ3, Ξ2 =
γ2

3
ψ1 +

2γ
3
ψ3 − 2ψ4, Ξ3 =

γ3

10
ψ1 −

3γ2

10
ψ3 +

12γ
5
ψ4 − 6ψ5,

Ỹ = [(I⊗CQT ) 0n · · · 0n︸ ︷︷ ︸
8 times

]T .

In addition, the gain matrices are determined by Km = HmQ
−1, m = 1, 2.

Proof. We define, Q1 = Q−1, Q2 = θ1Q
−1, Q3 = θ2Q

−1, QTPKQ = P̃K, (K = 1, 2, 3, 4), and Hm = KmQ.
Then, the LMI (4.8) is pre and post multiplied on both the sides with diag{(I⊗Q), . . . , (I⊗Q)︸ ︷︷ ︸

8 times

, I} and Ψ̃ is

expressed as in Theorem 4.1. Thus the proof concludes.

4.2. Multi-agent systems without disturbance

Let us consider the error system without disturbance which is described as

η̇(t) = (I⊗A)η(t) − F(t)

[
(L⊗BK1)η(t) + (Λ⊗BK1)η(t)

]
− (1 − F(t))

[
(L⊗BK2)η(t− γ) + (Λ⊗BK2)η(t)

]
.

(4.9)

Theorem 4.4. The system (4.9) attains asymptotically mean square consensus for some positive constant γ if there
exists positive matrices P̃r (r = 1, 2, 3, 4) and any matrices Q̃r (r = 1, 2, 3) with appropriate dimensions, such that

Ψ̃ =

[
Ψ̃11 G̃

? P̃

]
< 0, (4.10)

where

Ψ̃11 = Sym{ψ1(I⊗ P̃1)ψ
T
3 −ψ1

1
6γ

10(I⊗ P̃3)ψ
T
2 +ψ1

1
6γ2 32(I⊗ P̃3)ψ

T
4 +ψ2

1
6γ2 26(I⊗ P̃3)ψ

T
4 }

+ψ1(I⊗ P̃2)ψ
T
1 −ψ2(I⊗ P̃2)ψ

T
2 +ψ3γ(I⊗ P̃3)ψ

T
3 −ψ1

1
6γ

22(I⊗ P̃3)ψ
T
1 −ψ2

1
6γ

16(I⊗ P̃3)ψ
T
2

−ψ4
1

6γ3 58(I⊗ P̃3)ψ
T
4 + Sym{

3∑
r=1

µT1r(I⊗ G̃r)Γr}+ Sym{$× (−ψ3 + (I⊗A)ψ1

− F(L⊗BK1)ψ1 − F(Λ⊗BK1)ψ1 − (1 − F)(L⊗BK2)ψ2 − (1 − F)(Λ⊗BK2)ψ1}

$̃ = ψ1 + θ1ψ2 + θ2ψ3,

P̃ = diag{2(I⊗ P̃4), 36(I⊗ P̃4), 600(I⊗ P̃4)}; G̃ = {γ µT11(I⊗ G̃1), γ µT12(I⊗ G̃2), γ µT13(I⊗ G̃3)},

Ξ1 = γ ψ1 −ψ3, Ξ2 =
γ2

3
ψ1 +

2γ
3
ψ3 − 2ψ4, Ξ3 =

γ3

10
ψ1 −

3γ2

10
ψ3 +

12γ
5
ψ4 − 6ψ5.

In addition, the gain matrices are determined by Km = HmQ
−1, m = 1, 2.
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Proof. We define, Q1 = Q−1, Q2 = θ1Q
−1, Q3 = θ2Q

−1, QTPKQ = P̃K, (K = 1, 2, 3, 4), and Hm = KmQ.
Then, the LMI (4.10) is pre and post multiplied on both the sides with diag{(I⊗Q), . . . , (I⊗Q)︸ ︷︷ ︸

7 times

} and Ψ̃ is

expressed as in Theorem 4.3. Thus the proof concludes.

Remark 4.5. Unlike the results in [1, 15], random packet dropouts are studied in this study under a directed
graph coupled with transmission delay and external disturbance. The MASs consensus in (3.4) through
MSFC with random packet loss highlights the interaction between the transmission delay γ, the random
packet loss F, and the control gain matrices K1 and K2.

Remark 4.6. The algorithm presented below outlines the process of constructing the control gain matrix
using the LMI condition as defined in Theorem 4.3.

Algorithm 4.7 (Grid search algorithm).

1. function LYAPUNOV FUNCTION (A,B,C,D,E, θ1, θ2).
where A,B,C,D, and E are system parameters with positive constants γ, θ1, θ2.

2. if the matrices P̃r, (r = 1, . . . , 4) > 0,
any matrices Q̃`, (` = 1, . . . , 3) exists
and for a given upper bound, LMI (4.8) true then

3. Compute, the control gain matrices Km = HmQ
−1, m = 1, 2

4. else
5. repeat with a superior upper limit
6. end if
7. N = 0 to End time
8. Input: In Examples, the system values are shown
9. for i = 1 to N do

10. Derive the system by R-K fourth order method
11. end for
12. end function

5. Numerical examples

The validation of the proposed results are carried out in two examples.

Example 5.1. Consider the network of agents with one leader and four followers, which is described as

℘̇i(t) =

[
1 0
0 1

]
℘i(t) +

[
1
0

]
ui(t) +

[
1
0

]
ωi(t), i = 1, 2, 3, 4, yi(t) =

[
−1
0

]
℘i(t).

Figure 1: Topology structure of MASs.
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The leaders’ adjacency matrix and Laplacian matrix are identified as:

Λ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , L =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 .

In case 1, assume ω(t) = 0.01 ∗ cos t, we have chosen parameters as θ1 = 0.01, θ2 = 0.07, F = 0.5, and
γ = 0.05. The following gain matrices are generated using MATLAB LMI control toolbox by solving the
LMI (4.8) in Theorem 4.3, and their gain matrices are derived as

K1 =
[
−1.4133 0.2715

]
, K2 =

[
1.6281 −0.2604

]
.

In case 2, assume ω(t) = 0.01 ∗ cos t, we have chosen parameters as θ1 = 0.01, θ2 = 0.07, F = 0.5, and
γ = 0.07. The following gain matrices are generated using MATLAB LMI control toolbox by solving the
LMI (4.8) in Theorem 4.3, and their gain matrices are derived as

K1 =
[
−1.2851 0.5281

]
, K2 =

[
1.8432 −0.1706

]
.

Table 1: The comparison table of transmission delay γ.
Method γ

[27] 0.001
Theorem 4.3 (Based on Remark 4.2 Case 1) 0.05
Theorem 4.3 (Based on Remark 4.2 Case 2) 0.07
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Figure 2: The state evolution of MASs with ui(t) = 0.
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Figure 3: The plot of MASs ℘i1(t), ℘i2(t) (i = 0, 1, . . . , 4).
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For the present circumstances, the agents are chosen to be of ℘0(0) = [0.3,−0.1]T , ℘1(0) = [0.9,−0.2]T ,
℘2(0) = [−0.2, 0.7]T , ℘3(0) = [0.6,−0.5]T , and ℘4(0) = [−0.8, 0.5]T , the consensus of the network is plotted
in Fig. 1. Fig. 3 shows the closed-loop system’s (3.4) state responses in the presence of control input
(3.3). Using the MFSC approach, Fig. 4 shows the progression of the leader and four followers. Fig. 5
depicts the stochastic variable F(t). Additionally, Fig. 2 shows how the system’s (3.4) state responds in
the absence of a control input (3.3). The comparison table of transmission delay is presented in Table 1.
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Figure 4: The plot of error <i(t) under a MSFC.
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Figure 5: Stochastic Variable of F(t).

Example 5.2. Consider the network of agents with one leader and four followers, which is described as

℘̇i(t) =

 0.5 0 0
0 0.5 0
0 0 0.5

℘i(t) +
 1

0
0

ui(t).
The leaders’ adjacency matrix and Laplacian matrix are identified in Fig. 1,

L =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 , Λ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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In case 1, we chose the parameters as θ1 = 0.02, θ2 = 0.06, F = 0.5, and γ = 0.15. The following gain
matrices are generated using MATLAB LMI control toolbox by solving the LMI (4.10) in Theorem 4.4, and
their gain matrices are derived as

K1 =
[
−1.2153 0.5414 0.7234

]
, K2 =

[
0.2316 −0.6525 −0.9163

]
.

In case 2, we chose the parameters as θ1 = 0.02, θ2 = 0.06, F = 0.5, and γ = 0.21. The following gain
matrices are generated using MATLAB LMI control toolbox by solving the LMI (4.10) in Theorem 4.4, and
their gain matrices are derived as

K1 =
[
−0.5427 0.7714 0.8293

]
, K2 =

[
0.5169 −0.3682 −0.4283

]
.

Table 2: The comparison table of transmission delay γ.
Method γ

[27] 0.001
Theorem 4.4 (Based on Remark 4.2 Case 1) 0.15
Theorem 4.4 (Based on Remark 4.2 Case 2) 0.21

For the present circumstances, the agents are chosen to be of ℘0(0) = [−0.6,−0.7, 0.1]T , ℘1(0) =
[0.4,−0.3, 0.2]T , ℘2(0) = [−0.5, 0.5, 0.3]T , ℘3(0) = [0.7, 0.2,−0.4]T , and ℘4(0) = [−0.1, 0.8, 0.5]T , the con-
sensus of the network is plotted in Fig. 1. Fig. 7 shows the closed-loop system’s (4.9) state responses
in the presence of control input (3.3). Using the MFSC approach, Fig. 8 shows the progression of the
leader and four followers. Fig. 9 depicts the stochastic variable F(t). Additionally, Fig. 6 shows how the
system’s (4.9) state responds in the absence of a control input (3.3). The comparison table of transmission
delay is presented in Table 2.
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Figure 6: The state responses of MASs with ui(t) = 0.
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Figure 7: The plot of MASs ℘i1(t), ℘i2(t), ℘i3(t) (i = 0, 1, . . . , 4).
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Figure 8: The plot of error <i(t) under a MSFC.
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Figure 9: Stochastic Variable of F(t).

6. Conclusion

A novel MSFC consensus for MASs with transmission delay and disturbance under the communica-
tion of undirected graphs has been examined in this article. MSF control protocols for the aforementioned
MASs have been proposed based on graph theory concepts. Then, using the LKF method, some inno-
vative delay-dependent conditions were discovered, and it was demonstrated that these criteria ensured
that the closed-loop system would eventually reach the mean-square consensus. In the meantime, these
circumstances are incorporated to construct the needed MSFC, which is deployed in the specified LMI.
Finally, a simulation example has been expressed to validate the suggested control technique.

In [4, 5, 36], the authors delved into a discussion concerning the implementation of a SDC approach
and its impulsive effects in the context of cyber attacks. Subsequently, in [3], the authors provided a
detailed explanation of T-S fuzzy systems in conjunction with SMC techniques. Drawing inspiration from
the insights presented in [3–5, 36], the proposed control methodology is poised to find applications in
T-S fuzzy fractional MASs through an innovative approach. This research introduces a novel method that
will be employed to investigate the application of H∞ SMC for T-S fuzzy MASs in the presence of cyber
attacks in future work.
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