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Abstract

The term convexity in the frame of fractional calculus is a well-established concept that has assembled significant attention
in mathematics and various scientific disciplines for over a century. It offers valuable insights and results in diverse fields,
along with practical applications due to its geometric interpretation. Moreover, convexity provides researchers with powerful
tools and numerical methods for addressing extensive interconnected problems. In the realm of applied mathematics, convexity,
particularly in relation to fractional analysis, finds extensive and remarkable applications. In this manuscript, we construct new
fractional identities for differentiable preinvex functions to strengthen the recently assigned approach even more. Then utilizing
these identities, some generalizations of the Hermite-Hadamard type inequality involving generalized preinvexities in the frame
of fractional integral operator, namely Riemann-Liouville (R-L) fractional integrals are explored. Finally, we examined some
applications to the q-digamma and Bessel functions via the established results. We used fundamental methods to arrive at our
conclusions. We anticipate the techniques and approaches addressed by this study will further pique and spark the researcher’s
interest.
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1. Introduction

A lot of mathematicians have investigated the notion of ”convexity” throughout the past century.
Many researchers have provided this phrase with remarkable thought as they work to advance various
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branches of the pure and applied sciences. It has assumed a significant role in these efforts. In the
fields of statistics, financial, economics, optimization and functional analysis, the idea of convex analysis
assumes a significant role. Numerous real-world applications of optimization of convex functions exist,
including circuit design, controller design, modelling, etc. The term ”convexity” has a wide range of
applications and significance, making it a rich source of inspiration and a mesmerizing topic for scientists
and mathematicians. For the literature regarding convexity, see the references [4, 8, 10, 12, 15, 16, 25–
27, 32, 33, 36].

The concept of inequalities and the convexity property are crucial in today’s mathematics research.
Both terms have a tight relationship with one another. Inequalities play a significant role in an assortment
of fields, including mechanics, probability, mathematical quadrature formulas, functional analysis, infor-
mation technology, and statistical issues. In this way, it is possible to think of the hypothesis of inequality
as a separate area of mathematical analysis. For the literature regarding inequalities, see the references
[1, 7, 9, 17, 19, 20, 28, 30, 31].

Fractional calculus has developed into a prominent and viable topic for study in the varying field
of applied mathematics over the past several years. Some researchers have explored and solved practi-
cal problems in numerous domains and sectors of applied sciences using freshly introduced fractional
derivatives and integrals with multiple points of view and approaches.

The goal of this article is to prove some integral inequalities for derivable mapping whose absolute
value are preinvex. Next we will review some concepts in invexity analysis that will be utilized through-
out the paper (see [2, 21, 23, 29, 37] and references therein).

The idea of convexity is a strong and magnificent tool for dealing with a huge range of applied and
pure science problems. Many researchers have recently devoted themselves to researching the properties
and inequalities associated with topic of convexity in different areas (see [5, 6] and the references therein).

We constructed this manuscript in the following way: first, we explore some fundamental ideas and
definitions in Section 2. In Section 3, we investigate and prove the new integral identities. In order to these
integral identities, with the aid of Hölder and Power mean inequality, we will attain the estimations of H-
H inequalities pertaining to fractional operator. In Section 4, we investigate some applications involving
modified Bessel functions and q-digamma function. Lastly, in Section 5, future directions and conclusion
of the newly discussed concept are elaborated.

2. Preliminaries

This section’s main objective is to remember and discuss specific related ideas and concepts that are
pertinent to our analysis in later sections of this paper.

Definition 2.1 ([13]). A mapping Λ : K ⊆ R→ R is known as convex if

Λ (℘$1 + (1 − ℘)$2) 6 ℘Λ ($1) + (1 − ℘)Λ ($2) ,

for all $1,$2 ∈ K and ℘ ∈ [0, 1] .

Definition 2.2 ([3]). The term invexity (η-connected set) is always defined on set K ⊂ Rn w.r.t. η(·, ·), if
$1,$2 ∈ K and ℘ ∈ [0, 1],

$1 + ℘η($2,$1) ∈ K.

It is self-evident that every convex set is invex in terms of η($2,$1) = $2 −$1. However, there are invex
sets that are not convex [2].

In the year 1988, Mond and Weir [35] explored the idea of invex set to introduced the idea of prein-
vexity.

Definition 2.3 ([35]). The following inequality

Λ ($1 + ℘η ($2,$1)) 6 (1 − ℘)Λ ($1) + ℘ Λ ($2) , ∀$1,$2 ∈ K, ℘ ∈ [0, 1] ,

is said to be preinvex w.r.t. η.
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It is very important to mark that every convex is a preinvex function but the converse is not true [21].
For example Λ(℘) = −|℘|, ∀ ℘ ∈ R, is preinvex but not convex w.r.t.

η ($2,$1) =

{
$2 −$1, if $1$2 > 0,
$1 −$2, if $1$2 < 0.

The folowing condition C first time explored and discussed by Mohan and Neogy [22].

Condition-C: Assume that K ⊂ <n be an open invex subset w.r.t. η : K×K→ R. For any $1,$2 ∈ K and
℘ ∈ [0, 1],

η ($2,$2 + ℘ η ($1,$2)) = −℘ η ($1,$2) , η ($1,$2 + ℘ η ($1,$2)) = (1 − ℘) η ($1,$2) . (2.1)

For any $1,$2 ∈ K and ℘1,℘2 ∈ [0, 1] from condition C, we have

η ($2 + ℘2 η ($1,$2) , $2 + ℘1 η ($1,$2)) = (℘2 − ℘1)η ($1,$2) .

If Λ is preinvex on [$1,$1 + η($2,$1)] and η satisfies condition C, then for each ℘ ∈ [0, 1], from Eq. (2.1),
it yields

|Λ ($1 + ℘η ($2,$1))| = |Λ ($1 + η ($2,$1)) + (1 − ℘)η ($1,$1 + η ($2,$1))|

6 ℘ |Λ ($1 + η ($2,$1))|+ (1 − ℘) |Λ ($1)| ,
(2.2)

and

|Λ ($1 + (1 − ℘)η ($2,$1))| = |Λ ($1 + η ($2,$1)) + ℘η ($1,$1 + η ($2,$1))|

6 (1 − ℘) |Λ ($1 + η ($2,$1))|+ ℘ |Λ ($1)| .

There are numerous vector functions that meet the condition C in [3], which trivial case η ($1,$2) =
$1 −$2. For example suppose K = R\{0} and

η ($2,$1) =


$2 −$1, if $1 > 0,$2 > 0,
$2 −$1, if $1 < 0,$2 < 0,
−$2, otherwise.

The set K is invex set and the condition C is satisfied by η.
Noor [24], demonstrated the following H-H type inequalities.

Theorem 2.4. Assume that function Λ : K = [$1,$1 + η($2,$1)] → (0,∞) is a preinvex on K◦ with
η($2,$1) > 0. Then

Λ

(
2c1 + η ($2,$1)

2

)
6

1
η ($2,$1)

∫$1+η($2,$1)

$1

Λ (x)dx 6
Λ ($1) +Λ ($2)

2
.

The history of fractional calculus can be traced back to the question of whether the significance of
a derivative in integer order can be extended to a fractional order that is not an integer. Following this
unique discussion between Leibniz and L’Hôpital, the idea of fractional calculus piqued the interest of
several notable academics, including Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. As
kernel structures have advanced, fractional operators have become more distinct in terms of singularity,
locality, and having generic forms. In this regard, several new developments based on the fundamental
ideas of analysis in the frame of fractional, R-L, and Caputo-Fabrizio have been effective. Fractional
inequalities are useful for constructing the quantitative and qualitative properties of convex functions.
There is a growing interest in such a field of study as dealing with the challenges of various applications
of these versions.
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Definition 2.5 ([11]). Suppose Λ ∈ L[$1,$2]. The left-sided and right-sided R-L fractional integrals of
order ρ > 0 ae respectively defined by

J
ρ
$1
Λ(τ) =

1
Γ(ρ)

∫τ
$1

(τ− µ)ρ−1Λ(µ)dµ, $1 < τ,

and

J
ρ
$2
Λ(τ) =

1
Γ(ρ)

∫$2

τ

(µ− τ)ρ−1Λ(µ)dµ, τ < $2.

Gamma function is defined as Γ(ρ) =
∫∞

0 e
−uuρ−1du. Note that J0$1

Λ(τ) = J0$2
Λ(τ) = Λ(τ).

Throughout the paper, we will consider that Γ (.) is the gamma function and ρ > 0.

3. Main results

Lemma 3.1. Let an open invex subset K ⊆ R w.r.t. η : K×K −→ R and $1,$2 ∈ K with $1 < $1 + η($2,$1).
Assume that Λ : K→ R is a differentiable function on Ksuch that Λ′ ∈ L([$1,$1 + η ($2,$1)]). Then

Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)
= η ($2,$1)

[
−

∫ ρ
ρ+1

0
℘ρΛ′ ($1 + ℘η ($2,$1))d℘+

∫ 1

ρ
ρ+1

(1 − ℘ρ)Λ′ ($1 + ℘η ($2,$1))d℘

]
.

(3.1)

Proof. By applying the partial integration to the right hand side of (3.1) we have

η ($2,$1)

[
−

∫ ρ
ρ+1

0
℘ρΛ′ ($1 + ℘η ($2,$1))d℘+

∫ 1

ρ
ρ+1

(1 − ℘ρ)Λ′ ($1 + ℘η ($2,$1))d℘

]

= η ($2,$1)

[
−

∫ 1

0
℘ρΛ′ ($1 + ℘η ($2,$1))d℘+

∫ 1

ρ
ρ+1

Λ′ ($1 + ℘η ($2,$1))d℘

]

= −Λ ($1 + η ($2,$1)) + ρ

∫ 1

0
℘ρ−1Λ ($1 + ℘η ($2,$1))d℘+Λ ($1 + η ($2,$1))

−Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)
=

Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)
.

This ends the proof.

Lemma 3.2. Let an open invex subset K ⊆ R w.r.t. η : K×K −→ R and $1,$2 ∈ K with $1 < $1 + η($2,$1).
Assume that Λ : K→ R is a twice differentiable function on Ksuch that Λ′′ ∈ L([$1,$1 + η ($2,$1)]). Then

Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−2 [η ($2,$1)]

2

=

∫ 1
2

0
℘ρΛ′′ ($1 + ℘η ($2,$1))d℘+

∫ 1

1
2

(1 − ℘)ρΛ′′ ($1 + ℘η ($2,$1))d℘.

(3.2)
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Proof. It suffices to write that

I =

∫ 1
2

0
℘ρΛ′′ ($1 + ℘η ($2,$1))d℘+

∫ 1

1
2

(1 − ℘)ρΛ′′ ($1 + ℘η ($2,$1))d℘ = I1 + I2, (3.3)

where

I1 =

∫ 1
2

0
℘ρΛ′′ ($1 + ℘η ($2,$1))d℘

=
℘ρΛ′ ($1 + ℘η ($2,$1))

η ($2,$1)

∣∣∣∣ 1
2

0
−

ρ

η ($2,$1)

∫ 1
2

0
℘ρ−1Λ′ ($1 + ℘η ($2,$1))d℘

=
Λ′
(
$1 +

1
2η ($2,$1)

)
2ρη ($2,$1)

−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−1 [η ($2,$1)]

2 +
Γ (ρ+ 1)

[η ($2,$1)]
ρ+1 J

ρ−1

($1+
1
2η($2,$1))

−Λ ($1) ,

(3.4)

and

I2 =

∫ 1

1
2

(1 − ℘)ρΛ′′ ($1 + ℘η ($2,$1))d℘

=
(1 − ℘)ρΛ′ ($1 + ℘η ($2,$1))

η ($2,$1)

∣∣∣1
1
2

+
ρ

η ($2,$1)

∫ 1

1
2

(1 − ℘)ρ−1Λ′ ($1 + ℘η ($2,$1))d℘

= −
Λ′
(
$1 +

1
2η ($2,$1)

)
2ρη ($2,$1)

+
ρ

η ($2,$1)

∫ 1

1
2

(1 − ℘)ρ−1 Λ′ ($1 + ℘η ($2,$1))d℘

= −
Λ′
(
$1 +

1
2η ($2,$1)

)
2ρη ($2,$1)

−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−1 [η ($2,$1)]

2

+
Γ (ρ+ 1)

[η ($2,$1)]
ρ+1 J

ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1)) .

(3.5)

Combining Eqs. (3.4) and (3.5) with (3.3), we get (3.2).

Theorem 3.3. Assume all conditions in Lemma 3.1 are satisfied. If |Λ′| is preinvex on [$1,$1 + η ($2,$1)], then,
for fractional integrals, the following inequality with ρ > 0 holds∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η ($2,$1)

[
−

ρ

2 (ρ+ 1)2 (ρ+ 2)

∣∣Λ′ ($1)
∣∣+ ρ (−ρρ+1 + 2ρρ + (ρ+ 1)ρ

)
2 (ρ+ 1)ρ+2 (ρ+ 2)

∣∣Λ′ ($2)
∣∣] .

(3.6)

Proof. From (3.1) and the preinvexity of |Λ′| , we have∣∣∣∣ Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η ($2,$1)

[∫ ρ
ρ+1

0
℘ρ|Λ′ ($1 + ℘η ($2,$1)) |d℘+

∫ 1

ρ
ρ+1

(1 − ℘ρ) |Λ′ ($1 + ℘η ($2,$1)) |d℘

]

6 η
(
$2,$1

)[ ∫ ρ
ρ+1

0
℘ρ
{(

1 − ℘
)∣∣Λ′($1

)∣∣+ ℘∣∣Λ′($2
)∣∣}d℘

+

∫ 1

ρ
ρ+1

(
1 − ℘ρ

){(
1 − ℘

)∣∣Λ′($1
)∣∣+ ℘∣∣Λ′($2

)∣∣}d℘]



H. Ahmad, et al., J. Math. Computer Sci., 33 (2024), 27–41 32

6 η
(
$2,$1

)[∣∣Λ′($1
)∣∣ ∫ ρ

ρ+1

0
℘ρ
(
1 − ℘

)
d℘+

∣∣Λ′($2
)∣∣ ∫ ρ

ρ+1

0
℘ρ+1d℘

+
∣∣Λ′($1

)∣∣ ∫ 1

ρ
ρ+1

(
1 − ℘ρ

)(
1 − ℘

)
d℘+

∣∣Λ′($2
)∣∣ ∫ 1

ρ
ρ+1

(
1 − ℘ρ

)
℘d℘

]

= η ($2,$1)

[
ρ

2 (ρ+ 1)2 (ρ+ 2)

∣∣Λ′ ($1)
∣∣+ ρ (−ρρ+1 + 2ρρ + (ρ+ 1)ρ

)
2 (ρ+ 1)ρ+2 (ρ+ 2)

∣∣Λ′ ($2)
∣∣] ,

where ∫ ρ
ρ+1

0
℘ρ+1d℘ =

ρρ+2

(ρ+ 1)ρ+2 (ρ+ 2)
,∫ ρ

ρ+1

0

(
℘ρ − ℘ρ+1)d℘ =

2ρρ+1

(ρ+ 1)ρ+2 (ρ+ 2)
,∫ 1

ρ
ρ+1

(
℘− ℘ρ+1)d℘ =

2ρρ+1 + ρ (ρ+ 1)ρ

2 (ρ+ 1)ρ+2 (ρ+ 2)
,∫ 1

ρ
ρ+1

(1 − ℘ρ) (1 − ℘)d℘ =
4ρρ+1 − ρ (ρ+ 1)ρ

2 (ρ+ 1)ρ+2 (ρ+ 2)
.

This ends the proof.

Remark 3.4.
1. In (3.6), if we take η ($2,$1) = $2 −$1 and ρ = 1, then we get the inequality proved in [18,

Theorem 2.2].
2. If η satisfies the condition C, then by definition of the preinvexity of |Λ′|, we get∣∣Λ′ ($1 + ℘η ($2,$1))

∣∣ = ∣∣Λ′ ($1 + η ($2,$1)) + (1 − ℘)η ($1,$1 + η ($2,$1))
∣∣

6 ℘
∣∣Λ′ ($1 + η ($2,$1))

∣∣+ (1 − ℘)
∣∣Λ′ ($1)

∣∣ . (3.7)

Using inequality (3.7) in proof of Theorem 3.3, the inequality (3.6) becomes the following∣∣∣∣ Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η ($2,$1)

[
ρ

2 (ρ+ 1)2 (ρ+ 2)

∣∣Λ′ ($1)
∣∣+ ρ (−ρρ+1 + 2ρρ + (ρ+ 1)ρ

)
2 (ρ+ 1)ρ+2 (ρ+ 2)

∣∣Λ′ ($1 + η ($2,$1))
∣∣] .

(3.8)

We observe that by employing the preinvexity of |Λ′|,∣∣Λ′ ($1 + η ($2,$1))
∣∣ 6 ∣∣Λ′ ($2)

∣∣ .
Therefore, inequality (3.8) is better than the inequality (3.6).

Theorem 3.5. Assume all conditions in Lemma 3.1 are satisfied. If |Λ′|q is preinvex on [$1,$1 + η ($2,$1)] for
q > 1, then, for fractional integrals, the following inequality holds:∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η

(
$2,$1

)( ρρ+1(
ρ+ 1

)ρ+2

)1− 1
q
{(

2ρρ+1(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1
)∣∣q − ρρ+2(

ρ+ 1
)ρ+2(

ρ+ 2
)∣∣Λ′($2

)∣∣q) 1
q

+

(
4ρρ+1 − ρ

(
ρ+ 1

)ρ
2
(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1
)∣∣q + 2ρρ+1 + ρ

(
ρ+ 1

)ρ
2
(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($2
)∣∣q) 1

q
}

,

(3.9)

where p−1 = 1 − q−1 .
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Proof. From (3.1), utilizing power-mean inequality and definition of preinvexity of |Λ′|q , we have∣∣∣∣ Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η ($2,$1)

[∫ ρ
ρ+1

0
℘ρΛ′ ($1 + ℘η ($2,$1))d℘+

∫ 1

ρ
ρ+1

(1 − ℘ρ)Λ′ ($1 + ℘η ($2,$1))d℘

]

6 η
(
$2,$1

){( ∫ ρ
ρ+1

0
℘ρd℘

)1− 1
q
( ∫ ρ

ρ+1

0
℘ρ
∣∣Λ′($1 + ℘η

(
$2,$1

))∣∣d℘) 1
q

+

( ∫ 1

ρ
ρ+1

(
1 − ℘ρ

)
d℘

)1− 1
q
( ∫ 1

ρ
ρ+1

(
1 − ℘ρ

)∣∣′($1 + ℘η
(
$2,$1

))∣∣d℘) 1
q
}

6 η
(
$2,$1

)( ρρ+1(
ρ+ 1

)ρ+2

)1− 1
q
{( ∫ ρ

ρ+1

0
℘ρ
((

1 − ℘
)∣∣Λ′($1

)∣∣q + ℘∣∣Λ′($2
)∣∣q)d℘) 1

q

+

∫ 1

ρ
ρ+1

(
1 − ℘ρ

)((
1 − ℘

)∣∣Λ′($1
)∣∣q + ℘∣∣Λ′($2

)∣∣q)d℘}

= η
(
$2,$1

)( ρρ+1(
ρ+ 1

)ρ+2

)1− 1
q
{(

2ρρ+1(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1
)∣∣q − ρρ+2(

ρ+ 1
)ρ+2(

ρ+ 2
)∣∣Λ′($2

)∣∣q) 1
q

+

(
4ρρ+1 − ρ

(
ρ+ 1

)ρ
2
(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1
)∣∣q + 2ρρ+1 + ρ

(
ρ+ 1

)ρ
2
(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($2
)∣∣q) 1

q
}

.

This ends the proof.

Remark 3.6.

1. In (3.9), if we set η ($2,$1) = $2 −$1 and ρ = 1, then we get the following midpoint type inequality∣∣∣∣ 1
$2 −$1

∫$2

$1

Λ (x)dx−Λ

(
$1 +$2

2

)∣∣∣∣
6
$2 −$1

8


 |Λ′ ($1)|

q + 2
∣∣∣Λ′ ($2)

∣∣∣q
3


1
q

+

(
2 |Λ′ ($1)|

q + |Λ′ ($2)|
q

3

) 1
q

 .
(3.10)

2. In (3.9), considering that η meets the condition C and using inequality (2.2), we get∣∣∣∣ Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η

(
$2,$1

)( ρρ+1(
ρ+ 1

)ρ+2

)1− 1
q

×
{(

2ρρ+1(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1
)∣∣q − ρρ+2(

ρ+ 1
)ρ+2(

ρ+ 2
)∣∣Λ′($1 + η

(
$2,$1

))∣∣q) 1
q

+

(
4ρρ+1 − ρ

(
ρ+ 1

)ρ
2
(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1
)∣∣q + 2ρρ+1 + ρ

(
ρ+ 1

)ρ
2
(
ρ+ 1

)ρ+2(
ρ+ 2

)∣∣Λ′($1 + η
(
$2,$1

))∣∣q) 1
q
}

.
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Theorem 3.7. Assume all conditions in Lemma 3.1 are satisfied. If |Λ′|q is preinvex on [$1,$1 + η ($2,$1)] for
q > 1, then, for fractional integrals, the following inequality is satisfied:∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η

(
$2,$1

){(
M
(
ρ,p
)) 1

p
(
ρ2 + 2ρ

2
(
ρ+ 1

)2

∣∣Λ′($1
)∣∣q − ρ2

2
(
ρ+ 1

)2

∣∣Λ′($2
)∣∣q) 1

q

+

(
N
(
ρ,p
)) 1

p
(

1

2
(
ρ+ 1

)2

∣∣Λ′($1
)∣∣q + 2ρ+ 1

2
(
ρ+ 1

)2

∣∣Λ′($2
)∣∣q) 1

q
}

,

(3.11)

where

M (ρ,p) =
∫ ρ
ρ+1

0
℘ρpd℘ and N (ρ,p) =

∫ 1

ρ
ρ+1

(1 − ℘ρ)p d℘,

where 1
p + 1

q = 1.

Proof. From (3.1), Hölder integral inequality, and preinvexity of |Λ′|q , we have∣∣∣∣ Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
6 η ($2,$1)

[∫ ρ
ρ+1

0
℘ρ
∣∣Λ′ ($1 + ℘η ($2,$1))

∣∣d℘+ ∫ 1

ρ
ρ+1

(1 − ℘ρ)
∣∣Λ′ ($1 + ℘η ($2,$1))

∣∣d℘]

6 η
(
$2,$1

){( ∫ ρ
ρ+1

0
℘ρpd℘

) 1
p
( ∫ ρ

ρ+1

0

∣∣Λ′($1 + tη
(
$2,$1

))∣∣qd℘) 1
q

+

( ∫ 1

ρ
ρ+1

(
1 − ℘ρ

)p
d℘

) 1
p
( ∫ 1

ρ
ρ+1

∣∣Λ′($1 + ℘η
(
$2,$1

))∣∣qd℘) 1
q
}

6 η
(
$2,$1

){( ∫ ρ
ρ+1

0
℘ρpd℘

) 1
p
( ∫ ρ

ρ+1

0

{(
1 − ℘

)∣∣Λ′($1
)∣∣q + t∣∣Λ′($2

)∣∣q}d℘) 1
q

+

( ∫ 1

ρ
ρ+1

(
1 − ℘ρ

)p
d℘

) 1
p
( ∫ 1

ρ
ρ+1

{(
1 − ℘

)∣∣Λ′($1
)∣∣q + ℘∣∣Λ′($2

)∣∣q}d℘) 1
q
}

= η
(
$2,$1

){(
M
(
ρ,p
)) 1

p
(
−
ρ2 + 2ρ

2
(
ρ+ 1

)2

∣∣Λ′($1
)∣∣q ρ2

2
(
ρ+ 1

)2

∣∣Λ′($2
)∣∣q) 1

q

+

(
N
(
ρ,p
)) 1

p
(

1

2
(
ρ+ 1

)2

∣∣Λ′($1
)∣∣q + 2ρ+ 1

2
(
ρ+ 1

)2

∣∣Λ′($2
)∣∣q) 1

q
}

.

This ends the proof.

Remark 3.8.

1. In (3.11), if we take η ($2,$1) = $2 −$1 and ρ = 1, then we get the inequality proved in [18,
Theorem 2.3].

2. In (3.11), considering that η meets the condition C and using inequality (2.2), we get∣∣∣∣ Γ (ρ+ 1)
[η ($2,$1)]

ρ J
ρ

$+
1
Λ ($1 + η ($2,$1)) −Λ

(
$1 +

ρ

ρ+ 1
η ($2,$1)

)∣∣∣∣
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6 η
(
$2,$1

){(
M
(
ρ,p
)) 1

p
(
ρ2 + 2ρ

2
(
ρ+ 1

)2

∣∣Λ′($1
)∣∣q − ρ2

2
(
ρ+ 1

)2

∣∣Λ′($1 + η
(
$2,$1

))∣∣q) 1
q

+

(
N
(
ρ,p
)) 1

p
(

1

2
(
ρ+ 1

)2

∣∣Λ′($1
)∣∣q + 2ρ+ 1

2
(
ρ+ 1

)2

∣∣Λ′($1 + η
(
$2,$1

))∣∣q) 1
q
}

.

Theorem 3.9. Assume all conditions in Lemma 3.2 are satisfied. If |Λ′′|q is preinvex on [$1,$1 + η ($2,$1)] for
q > 1, then, for fractional integrals, the following inequality is satisfied:∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−2 [η ($2,$1)]

2

∣∣∣∣
6

(
2−ρ−1

ρ+ 1

) 1
p
{[∣∣Λ′′($1

)∣∣q( (ρ+ 3
)
2−ρ−2(

ρ+ 1
)(
ρ+ 2

))+
∣∣Λ′′($2

)∣∣q(2−ρ−2

ρ+ 2

)] 1
q

+

[∣∣Λ′′($1
)∣∣q(2−ρ−2

ρ+ 2

)
+
∣∣Λ′′($2

)∣∣q( 4 −
(
ρ+ 3

)
2−ρ

4
(
ρ+ 1

)(
ρ+ 2

))] 1
q
}

,

(3.12)

where 1
p + 1

q = 1.

Proof. From (3.2) and the famous Hölder’s integral inequality, we have∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−2 [η ($2,$1)]

2

∣∣∣∣
6
∫ 1

2

0
℘ρ
∣∣Λ′′ ($1 + ℘η ($2,$1))

∣∣d℘+ ∫ 1

1
2

(1 − ℘)ρ
∣∣Λ′′ ($1 + ℘η ($2,$1))

∣∣d℘
6

(∫ 1
2

0
℘ρd℘

) 1
p
(∫ 1

2

0
℘ρ
∣∣Λ′′ ($1 + ℘η ($2,$1))

∣∣q d℘) 1
q

+

(∫ 1
2

0
(1 − ℘)ρ d℘

) 1
p
(∫ 1

2

0
(1 − ℘)ρ

∣∣Λ′′ ($1 + ℘η ($2,$1))
∣∣q d℘) 1

q

.

(3.13)

Since |Λ′′|q is preinvex function on [$1,$1 + η ($2,$1)], we have∫ 1
2

0
℘ρ
∣∣Λ′′ ($1 + ℘η ($2,$1))

∣∣q d℘ 6
∫ 1

2

0
℘ρ
{
(1 − ℘)

∣∣Λ′′ ($1)
∣∣q + ℘ ∣∣Λ′′ ($2)

∣∣q}d℘
6
∣∣Λ′′ ($1)

∣∣q( (ρ+ 3) 2−ρ−2

(ρ+ 1) (ρ+ 2)

)
+
∣∣Λ′′ ($2)

∣∣q(2−ρ−2

ρ+ 2

) (3.14)

and∫ 1

1
2

(1 − ℘)ρ
∣∣Λ′′ ($1 + ℘η ($2,$1))

∣∣q d℘ 6
∫ 1

1
2

(1 − ℘)ρ
{
(1 − ℘)

∣∣Λ′′ ($1)
∣∣q + ℘ ∣∣Λ′′ ($2)

∣∣q}d℘
6
∣∣Λ′′ ($1)

∣∣q(2−ρ−2

ρ+ 2

)
+
∣∣Λ′′ ($2)

∣∣q( 4 − (ρ+ 3) 2−ρ

4 (ρ+ 1) (ρ+ 2)

)
.

(3.15)

Using equations (3.14) and (3.15) in (3.13), we get the result of (3.12), which completes the proof.
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Remark 3.10. In (3.12), considering that η meets the condition C and using inequality (2.2), we get∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−2 [η ($2,$1)]

2

∣∣∣∣
6

(
2−ρ−1

ρ+ 1

) 1
p

×
{[∣∣Λ′′($1

)∣∣q( (ρ+ 3
)
2−ρ−2(

ρ+ 1
)(
ρ+ 2

))+
∣∣Λ′′($1 + η

(
$2,$1

))∣∣q(2−ρ−2

ρ+ 2
)] 1

q

+

[∣∣Λ′′($1
)∣∣q(2−ρ−2

ρ+ 2
)
+
∣∣Λ′′($1 + η

(
$2,$1

))∣∣q( 4 −
(
ρ+ 3

)
2−ρ

4
(
ρ+ 1

)(
ρ+ 2

))] 1
q
}

.

Theorem 3.11. Assume all conditions in Lemma 3.2 are satisfied. If |Λ′′|q is preinvex function on [$1,$1 +
η ($2,$1)] for q > 1, q > r, s > 0, then, for fractional integrals, the following inequality is satisfied:∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
−
ρΛ
(
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1
2η ($2,$1)

)
2ρ−2 [η ($2,$1)]

2

∣∣∣∣
6
( 1

2ρ
(
q−r
q−1

)
+1.ρ

(
q−r
q−1

)
+ 1

)1− 1
q

{[∣∣Λ′′($1
)∣∣q( (ρr+ 3

)
2−ρr−2(

ρr+ 1
)(
ρr+ 2

))+ ∣∣Λ′′($2
)∣∣q(2−ρr−2

ρr+ 2

)] 1
q

}

+
( 1

2ρ
(
q−s
q−1

)
+1.ρ

(
q−s
q−1

)
+ 1

)1− 1
q

{[∣∣Λ′′($1
)∣∣q(2−ρs−2

ρs+ 2

)
+
∣∣Λ′′($2

)∣∣q( (ρs+ 3
)
e− ln(2)ρs

4
(
ρs+ 1

)(
ρs+ 2

))] 1
q

}
,

(3.16)

where 1
p + 1

q = 1.

Proof. From (3.2) and Hölder’s integral inequality, we have∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
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1
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2
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6

{(∫ 1
2

0
℘ρ(

q−r
q−1 )d℘

)1− 1
q
(∫ 1

2

0
ρρr

∣∣Λ′′ ($1 + ρη ($2,$1))
∣∣q d℘) 1

q

+

(∫ 1

1
2

(1 − ℘)ρ(
q−s
q−1 ) d℘

)1− 1
q
(∫ 1

1
2

(1 − ρ)ρs
∣∣Λ′′ ($1 + ρη ($2,$1))

∣∣q d℘) 1
q }

.

(3.17)

Since |Λ′′|q is a preinvex function on [$1,$1 + η ($2,$1)], we have

∫ 1
2

0
℘ρr

∣∣Λ′′ ($1 + ℘η ($2,$1))
∣∣q d℘ 6

∫ 1
2

0
℘ρr
{
(1 − ρ)

∣∣Λ′′ ($1)
∣∣q + ℘ ∣∣Λ′′ ($2)

∣∣q}d℘
6
∣∣Λ′′ ($1)

∣∣q( (ρr+ 3) 2−ρr−2

(ρr+ 1) (ρr+ 2)

)
+
∣∣Λ′′ ($2)

∣∣q(2−ρr−2

ρr+ 2

) (3.18)
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and ∫ 1

1
2

(1 − ℘)ρs
∣∣Λ′′ ($1 + ℘η ($2,$1))

∣∣q d℘
6
∫ 1

1
2

(1 − ℘)ρs
{
(1 − ℘)

∣∣Λ′′ ($1)
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∣∣q}d℘
6
∣∣Λ′′ ($1)
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ρs+ 2

)
+
∣∣Λ′′ ($2)

∣∣q( (ρs+ 3) e− ln(2)ρs

4 (ρs+ 1) (ρs+ 2)

)
.

(3.19)

Using equations (3.18) and (3.19) in (3.17), we get (3.16). This ends the proof.

Remark 3.12. In (3.16), considering that η meets the condition C and using inequality (2.2), we get∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
2η($2,$1))

−Λ ($1) + J
ρ−1

($1+
1
2η($2,$1))

+Λ ($1 + η ($2,$1))

}
−
ρΛ
(
$1 +

1
2η ($2,$1)

)
2ρ−2 [η ($2,$1)]

2

∣∣∣∣
6

(
1

2ρ
(
q−r
q−1
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)(
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)
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(
q−s
q−1

)
+ 1

)1− 1
q

×
{[∣∣Λ′′($1
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)(
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))] 1
q
}

.

Corollary 3.13. Under the same conditions of (3.16), when r = s, we have∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1
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J
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4 (ρr+ 1) (ρr+ 2)

)] 1
q
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.

Corollary 3.14. Under the same conditions of (3.16), when r = 0 = s, we have∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
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1
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×
{(∣∣Λ′′ ($1)

∣∣q 3
8
+
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∣∣q 1
8

) 1
q

+

(∣∣Λ′′ ($1)
∣∣q 1

8
+
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∣∣q 3
8

) 1
q
}

.

Corollary 3.15. Under the same conditions of (3.16), when r = s = q, we have∣∣∣∣ Γ (ρ+ 1)

[η ($2,$1)]
ρ+1

{
J
ρ−1

($1+
1
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−Λ (a) + Jρ−1
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1
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}
−
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(
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1
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2
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(
1
2

)1− 1
q
{(∣∣Λ′′ ($1)

∣∣q( (ρq+ 3) 2−ρq−2

(ρq+ 1) (ρq+ 2)

)
+
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∣∣q( 2−ρq−2

(ρq+ 2)

)) 1
q

+
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(ρq+ 2)

)
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∣∣Λ′′ ($2)

∣∣q( (ρq+ 3) e− ln(2)ρq

4 (ρq+ 1) (ρq+ 2)

)) 1
q
}

.

4. Applications to some special functions

4.1. q-digamma function

For 0 < q < 1, the mathematically q-digamma function ϕq (see [14, 34]) is given as:

ϕq = − ln (1 − q) + lnq
∞∑
k=0

qk+ζ

1 − qk+ζ
= − ln (1 − q) + lnq

∞∑
k=0

qkζ

1 − qkζ
.

For q > 1 and ζ > 0, q−digamma function ϕq can be given as:

ϕq = − ln (q− 1) + lnq
[
ζ−

1
2
−

∞∑
k=0

q−(k+ζ)

1 − q−(k+ζ)

]
= − ln (q− 1) + lnq

[
ζ−

1
2
−

∞∑
k=0

q−kζ

1 − q−kζ

]
.

Proposition 4.1. Assume that $1,$2 ∈ R such that 0 < $1 < $2 and 0 < q < 1. Then

∣∣∣∣ 1
$2 −$1

∫$2

$1

ϕq(ε)dε−ϕq

(
$1 +$2

2

)∣∣∣∣ 6 ($2 −$1

8

){(∣∣∣ϕ(1)
q ($1)

∣∣∣q + 2
∣∣∣ϕ(1)
q ($2)

∣∣∣q
3

) 1
q

+

(2
∣∣∣ϕ(1)
q ($1)

∣∣∣q + ∣∣∣ϕ(1)
q ($2)

∣∣∣q
3

) 1
q
}

.

Proof. The assertion can be obtained immediately from equation (3.10), when Λ(ε) = ϕq(ε) and ε > 0,
since Λ′(ε) = ϕ′q(ε) is convex on (0,+∞).

4.2. Modified Bessel function

First we add the mathematical form of modified Bessel function =m, in a first sense, which is given by
(see [34, p.77])

=m(ζ) = Σn>0

(
ζ
2

)m+2n

n!Γ (m+n+ 1)
,

where ζ ∈ R and m > −1, while the mathematical form of modified Bessel function Km in second sense
(see [34, p.78]) is usually explored as

Km (ζ) =
π

2
=−m (ζ) − =m (ζ)

sinmπ
.
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Consider the function Ωm (ζ) : <→ [1,∞) defined by

Ωm (ζ) = 2mΓ (m+ 1) ζ−m=m (ζ) ,

where Γ is the gamma function. The 1st order derivative formula of Ωm (ζ) is given by [34]:

Ω′m (ζ) =
ζ

2 (m+ 1)
Ωm+1 (ζ) (4.1)

and the 2nd derivative can be attained easily from (4.1) to be

Ω′′m (ζ) =
ζ2Ωm+2 (ζ)

4 (m+ 1) (m+ 2)
+
Ωm+1 (ζ)

2 (m+ 1)
. (4.2)

Proposition 4.2. Suppose that m > −1 and 0 < $1 < $2. Then we have∣∣∣∣$1 +$2

4 (m+ 1)
Ωm+1

(
$1 +$2

8

)
−
Ωm ($2) −Ωm ($1)

$2 −$1

∣∣∣∣
6
$2 −$1

8

[
1
3

{(
$2

1Ωm+2 ($1)

4 (m+ 1) (m+ 2)
+
Ωm+1 ($1)

2 (m+ 1)

)q
+ 2

(
$2

2Ωm+2 ($2)

4 (m+ 1) (m+ 2)
+
Ωm+1 ($2)

2 (m+ 1)

)q} 1
q

+
1
3

{
2
(
$2

1Ωm+2 ($1)

4 (m+ 1) (m+ 2)
+
Ωm+1 ($1)

2 (m+ 1)

)q
+

(
$2

2Ωm+2 ($2)

4 (m+ 1) (m+ 2)
+
Ωm+1 ($2)

2 (m+ 1)

)q} 1
q
]

.

Proof. Applying the inequality in (3.10) to the mapping Λ(ζ) = Ω′m (ζ) , ζ > 0 (note that all assumptions
are satisfied) and the identities (4.1) and (4.2), we get the result.

5. Conclusion

The literature on integral inequalities pertaining to fractional operators has grown to be a rich source
of interest for many scholars in numerous domains as a result of the possible applications that fractional
calculus holds. When compared to convex functions, improvements and extensions accomplished with
preinvex functions result in better and sharper bounds. Last but not least, the novel idea of the R-L
operator for the preinvexity has multiple potential applications and is significant in the field of applied
sciences. In this paper, first we constructed few fractional identities. Using these identities and the new
notation, we deduce some parameterized inequalities of the Hermite–Hadamard type relevant to the R-L
fractional integrals. Additionally, several instances are given to show that the results are accurate. With
the assistance of Hölder and Power mean inequality, we acquired the modifications of Hermite-Hadamard
inequality that gave the work more aesthetic appeal. Our outcomes offer advancements and extensions of
prior research, which encourage forward-looking study. Some new concepts such as interval-valued LR
convexities, fuzzy interval convexities, and CR convexities can be used to establish further generalizations.
Interested researchers can also utilize quantum calculus, coordinated interval-valued functions, fractional
calculus, etc to see the behavior of these inequalities as well. It will be quite interesting to see how different
types of new convex functions can be applied to investigate the fractional versions of inequalities.
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[6] H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc.

Amer. Math. Soc., 148 (2020), 705–718. 1
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[9] S. I. Butt, D. Pečarić, J. Pečarić, Several Jensen-Grüss inequalities with applications in information theory, Ukrainian

Math. J., 74 (2023), 1888–1908. 1
[10] S. I. Butt, S. Yousaf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of

fractional integral operators, Chaos Solitons Fractals, 148 (2021), 14 pages. 1
[11] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, In: Fractals and

fractional calculus in continuum mechanics (Udine, (1996), Springer, Vienna, 378 (1997), 223–276. 2.5
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