
J. Math. Computer Sci., 33 (2024), 17–26

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Existence and stability results for the integrable solution of
a singular stochastic fractional-order integral equation with
delay

A. M. A. El-Sayeda, Mawaddah Abdurahmanb, Hoda A. Fouada,b,∗

aFaculty of Science, Alexandria University, Alexandria, Egypt.
bCollege of Science, Taibah University, Al-Madinah, Saudi Arabia.

Abstract
In this paper, we are concerning with the existence of the solution V ∈ L1([0, τ],L2(Ω)) of the singular stochastic fractional-

order integral equation with delay ρ(.),

V(t) = B(t)tα−1 + λ IβG(t,V(ρ(t))), t ∈ (0, τ],

where B(t) is a given second order mean square stochastic process, λ is a parameter, ρ(t) 6 t, and G(t,V) is a measurable
function in t ∈ (0, τ] and satisfies Lipschitz condition on the second argument. The Hyers-Ulam and generalized Hyers-Ulam-
Rassias stability will be proved. Moreover, the continuous dependence of the solution on the process B(t) and λ will be studied.
As applications, some nonlocal, weighted and nonlocal-weighted integral problems of stochastic fractional-order differential
equations will be studied.
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1. Introduction

Stochastic differential equations are a powerful tool for describing systems affected by external noise.
These equations utilize random numbers or functions as coefficients for independent or dependent vari-
ables. Recently, El-Sayed and Fouad [15–17] studied a specific category of problems dealing with stochas-
tic differential equations with nonlocal conditions. Their research shows that using Schauder’s fixed
point theorem, there is always at least one solution for a functional nonlocal random integral equation
within the space of all squared integrable stochastic processes with a finite second moment. Nonlocal
and weighted conditions provide more precise measurements taken at multiple locations compared to
local conditions. In stochastic differential equations (SDEs) with non-local conditions, the behavior of the
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solution at a given point depends on the values of the solution at other points in the domain rather than
just the local behavior near that point. This means that the solution of a non-local SDE is influenced by the
global structure of the domain rather than just the local behavior around a point. Non-local conditions in
SDEs arise when the stochastic process is affected by long-range interactions or non-local effects, such as
non-local diffusion or fractional Brownian motion. These non-local effects can arise, for example, when
the underlying phenomenon being modeled exhibits memory or long-range correlations [6, 26]. Overall,
non-local conditions in SDEs can significantly affect the solutions of these equations and have important
implications for the modeling and analysis of a wide range of phenomena in physics, biology, finance,
and other fields [7, 27].

Let (Ω, F, ρ) be a complete probability space where Ω is a sample space, F is a σ-algebra of events of
Ω occurring during the time interval [0, τ], and ρ is a probability measure, let W(t), t > 0 be a standard
Brownian motion on (Ω, F, ρ). Let V(t;ω) = V(t), t ∈ [0, τ], ω ∈ Ω be a second order stochastic process,
i.e., E(V2(t)) < +∞, t ∈ [0, τ]. Let C(I,L2(Ω)) be the class of all continuous stochastic processes in mean
square notion on I = [0, τ] with the norms ([33, 35, 36])

‖ V ‖C= sup
t∈I
‖ V(t) ‖2, ‖ V(t) ‖2=

√
E(V2(t)).

Let L1([0, τ],L2(Ω)) be the class of all second order integrable stochastic processes in mean square notion
on [0, τ]. The norm of V ∈ L1([0, τ],L2(Ω)) is given by

‖V(t)‖∗1 =

∫τ
0
‖V(t)‖2dt.

Definition 1.1. Let {V(t), t ∈ [0, τ]} be a second order continuous or Riemann integrable stochastic process
in mean square notion and α,β ∈ (0, 1]. The fractional-order integral IβV(t) is defined by

IβV(t) =

∫t
0

(t− ξ)β−1

Γ(β)
V(ξ)dξ.

If {V(t), t ∈ [0, τ]} is mean square differentiable and the derivative d
dtV(t) is continuous or Riemann

integrable on [0, τ], then the fractional-order derivative is defined by

DαV(t) = I1−αdV

dt
.

For the properties of stochastic fractional calculus (see [12, 19, 22]).
Some stochastic and deterministic problem of fractional order integral and differential equations have

be studied by authors (see [3, 4, 9–11, 13–18, 20, 21]). Let α, β ∈ (0, 1]. Consider t as

V(t) = B(t)tα−1 + λIβG(t,V(ρ(t))), t ∈ (0, τ], (1.1)

where B(t) is a given mean square second order stochastic process and λ is a parameter. The existence of
solution V ∈ L1([0, τ],L2(Ω)) will be studied. The Hyers-Ulam stability of the integral equation (1.1) will
be proved in the class L1([0, τ],L2(Ω)). The continuous dependence of the solution on the second order
process B(t) and the parameter λ will be proved.

The following are examples of the second order process B(t).

1. The Brownian motion with volatility σ and Drift σ ([28, 32]),

B(t) = σt+ σW(t), t ∈ R+.

2. The Brownian bridge [30]

B(s) = l(1 − s) +ms+ (1 − s)

s∫
0

dW(t)

1 − t
, s ∈ [0, 1), l,m ∈ R.
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3. The Brownian motion started at A, A ∈ L2(Ω) ([29]),

B(t) = A+W(t),

where W(t) is a standard Brownian motion will be considered.

Finally, as applications, the nonlocal problem{
RDβV(t) = λG(t,V(ρ(t))), t ∈ (0, τ],
I1−βV(t)|t=0 = V0,

(1.2)

the weighted problem {
RDβV(t) = λG(t,V(ρ(t))), t ∈ (0, τ],
t1−βV(t)|t=0 = V1,

(1.3)

and the nonlocal-weighted integral problem{
RDβV(t) = λG(t,V(ρ(t))), t ∈ (0, τ],
t1−βV(t)|t=0 = V1 +

∫τ
0 V(t)dt,

(1.4)

where Vo and V1 are second order random variables, will be studied.

2. Existence of the solution

Under the following assumptions, we study the existence of solution of (1.1) .

(A1) ρ : [0, τ]→ [0, τ] is increasing, ρ(t) 6 t and ρ′(t) > ρ > 1.
(A2) G : [0, τ]× L2(Ω)→ L2(Ω) is measurable in t ∈ [0, τ] and the Lipschitz condition is satisfied,

‖G(t,V(t)) − G(t,U(t))‖2 6 b‖V(t) −U(t)‖2,

and G(t, 0) ∈ L1([0, τ],L2(Ω)). From this assumption we can deduce that

‖G(t,V(t))‖2 − ‖V(t, 0)‖2 6 ‖V(t, x(t)) −V(t, 0)‖2 6 b‖V(t)‖2 + ‖G(t, 0)‖2

and
‖G(t,V(t)‖2 6 ‖G(t, 0)‖2 + b‖V(t)‖2.

(A3)

|λ|bτ∗ < 1, where τ∗ = max{
τα

α
,

τβ

Γ(β+ 1)
}.

Theorem 2.1. Let the assumptions (A1)-(A3) be satisfied, then the singular stochastic fractional-order integral
equation (1.1) has a unique solution V ∈ L1([0, τ],L2(Ω)).

Proof. Define the operator F by

FV(t) = B(t)tα−1 + λIβG(t,V(ρ(t))), t ∈ (0, τ]

and the set Q ⊂ L1(I,L2(Ω)) by
Q = {x ∈ L1(I,L2(Ω)), ‖V‖∗1 6 r}.

Let V ∈ Q, then we have

‖FV(t)‖2 6 ‖B(t)tα−1‖2 + ‖λIβG(t,V(ρ(t)))‖2
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6 ‖B(t)‖2t
α−1 + |λ|

∫t
0

(t− ξ)β−1

Γ(β)
‖G(ξ,V(ρ(ξ)))‖2dξ

6 ‖B‖Ctα−1 + |λ|

∫t
0

(t− ξ)β−1

Γ(β)
[‖G(ξ, 0)‖2 + b‖V(ρ(ξ)))‖2]dξ.

But the integral

J =

∫τ
0

∫t
0

(t− ξ)β−1

Γ(β)
[‖G(ξ, 0)‖2 + b‖V(ρ(ξ)))‖2]dξdt

=

∫τ
0

(
[‖G(ξ, 0)‖2 + b‖V(ρ(ξ))‖2]

) ∫τ
ξ

(t− ξ)β−1

Γ(β)
dtdξ

6
τβ

Γ(1 +β)

∫τ
0

(
[‖G(ξ, 0)‖2 + b‖V(ρ(ξ))‖2

)
dξ.

Let ρ(ξ) = θ, then dξ = 1
ρ′dθ 6 1

ρdθ 6 dθ and

J 6
τβ

Γ(β+ 1)
(||G||∗1 +

b

ρ

∫τ
0
‖V(θ))‖2dθ) 6

τβ

Γ(1 +β)
(||G||∗1 + b||V||

∗
1) 6

τβ

Γ(1 +β)
(a+ br), a = ||G||∗1 .

Then

||FV||∗1 =

∫τ
0
‖FV(t)‖2dt 6

‖B‖Cτα

α
+ |λ|

τβ

Γ(1 +β)
(a+ br) = τ∗(||B||C + a|λ|+ rb|λ|) = r,

where

r =
τ∗(||B||C + a|λ|)

1 − |λ|bτ∗
.

This proves that FV : Q→ Q. Let V,U ∈ Q, then we have

‖FV(t) − FU(t)‖2 = ‖λIβ[G(t,V(ρ(t))) − G(t,U(ρ(t)))]‖2 6 |λ|bIβ||V(ρ(t))) −U(ρ(t)))||2

and
‖FV− FU‖∗1 6 |λ|τ∗

b

ρ
||V−U||∗1 6 |λ|τ∗b||V−U||∗1 ,

which proves that F is contraction on Q [8] and the singular fractional stochastic integral equation (1.1)
has a unique solution V ∈ Q ⊂ L1([0, τ],L2(Ω)).

3. Hyers-Ulam stability

For I = [0, τ], ε > 0,ψ ∈ C(I, R+), we consider the integral equation (1.1) and the following two
inequalities (see [2, 24, 25]):

‖V̄(t) −B(t)tα−1 − λIβG(t, V̄(ρ(t)))‖2 6 ε, t ∈ I, (3.1)

‖V̄(t) −B(t)tα−1 − λIβG(t, V̄(ρ(t)))‖2 6 ψ(t), t ∈ I. (3.2)

Definition 3.1 ([23]). Equation (1.1) is the Hyers-Ulam stable if there exists a real number c > 0 such that
for ε > 0 and for each solution V̄ ∈ L1(I,L2(Ω)) to (3.1) there exists a solution V ∈ L1(I,L2(Ω)) to (1.1)
with ‖V̄(t) −V(t)‖2 6 cε, t ∈ I.

Definition 3.2 ([31]). Equation (1.1) is generalized Hyers-Ulam-Rassias stable with respect to ψ if there
exists a real number cψ > 0 such that for each solution V̄ ∈ L1(I,L2(Ω)) to (3.2) there exists a solution
V ∈ L1(I,L2(Ω)) to (1.1) with ‖V̄−V‖2 6 cψψ(t), t ∈ I.
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Theorem 3.3. Let the assumptions of Theorem 2.1 be satisfied. Then the equation (1.1) is Hyers-Ulam stable.

Proof. Let ε > 0 be given such that (3.1) holds and V be the solution of (1.1). Then

||V̄(t) −V(t)||2 = ||V̄(t) −B(t)tα−1 − λIβG(t,V(ρ(t)))||2
= ||V̄(t) −B(t)tα−1 − λIβG(t, V̄(ρ(t))) + λIβG(t, V̄(ρ(t))) − λIβG(t,V(ρ(t))))||2

6 ε+ |λ|bIβ||V(ρ(t)) −Vs(ρ(t))||2 6 ε+ |λ|b
τβ

Γ(1 +β)
||V̄(t) −V(t)||2,

then
||V̄(t) −V(t)||2 6

ε

1 − |λ|bτ∗
.

Theorem 3.4. Let the assumptions of Theorem 2.1 be satisfied and the function ψ ∈ C(I, R+). Then equation (1.1)
is a generalized Hyers-Ulam-Rassias stable with respect to ψ.

Proof. Let V be a solution of (1.1). Then

||V̄(t) −V(t)||2 6 ||V̄(t) −B(t)tα−1 − λIβG(t, V̄(ρ(t))) + λIβG(t, V̄(ρ(t))) − λIβG(t,V(ρ(t))))||2
6 ||V̄(t) −B(t)tα−1 − λIβG(t, V̄(ρ(t)))‖2 + |λ|bIβ||V(ρ(t)) −Vs(ρ(t))||2

6 ψ(t) + |λ|b
τβ

Γ(1 +β)
||V̄(t) −V(t)||2,

then

||V̄(t) −V(t)||2 6
ψ(t)

1 − |λ|bτ∗
.

which completes the proof.

4. Continuous dependence of solutions

The concept of continuous dependence solution is presented in the following definition.

Definition 4.1. The solution V ∈ L1([0, τ],L2(Ω)) of the singular fractional stochastic integral equation
(1.1) depends continuously on the second order stochastic process B(t) and the parameter λ if ∀ε > 0,
there exists δ > 0 such that max{||B(t) −B∗(t)||2, |λ− λ∗|} 6 δ implies that ||V−V∗||1 6 ε.

Theorem 4.2. Let the assumptions of Theorem 2.1 be satisfied, then the solution V ∈ L1([0, τ],L2(Ω)) of the integral
equation (1.1) depends continuously on the second order stochastic process B(t) and the parameter λ.

Proof. Let V∗ be the solution of the equation

V∗(t) = B∗(t)tα−1 + λ∗IβG(t,V∗(ρ(t))), t ∈ (0, τ].

It follows that,

V(t) −V∗(t) = (B(t) −B∗(t))tα−1 + (λ− λ∗)IβG(t,V∗(ρ(t))) + λ(IβG(t,V(ρ(t))) − IβG(t,V∗(ρ(t))))

and

‖V(t) −V∗(t)‖2 6 ‖B(t) −B∗(t)‖2t
α−1 + |λ− λ∗|‖IβG(t,V∗(ρ(t)))‖2

+ |λ|‖IβG(t,V(ρ(t))) − IβG(t,V∗(ρ(t)))‖2)

6 δtα−1 + δ‖IβG(t,V∗(ρ(t)))‖2 + b|λ|I
β‖V(ρ(t))) −V∗(ρ(t)))‖2,
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so that,

‖V−V∗‖∗1 6 δ
τα

α
+ δ

τβ

Γ(1 +β)
(a+ br) +

|λ|τβb

Γ(β+ 1)
‖V−V∗‖1,

then we can obtain that

‖V−V∗‖∗1 6
δτ∗(1 + a+ br)

1 − |λ|bτ∗
= ε,

which completes the proof.

4.1. Examples
Example 4.3. Let B(t) = σt + σW(t) be the Brownian motion with drift, B∗(t) = σ∗t + σ∗W(t). Then
∀ ε > 0, there exists δ > 0 such that

max{|σ− σ∗|, |σ− σ∗|} 6 δ1,

we obtain
||B(t) −B∗(t)||2 = t|σ− σ∗|+ ||W(t)||2|σ− σ

∗| 6 δ1(τ+
√
τ) = δ.

Then our results of Theorem 4.2 are satisfied.

Example 4.4. Let

B(s) = l(1 − s) +ms+ (1 − s)

s∫
0

dW(t)

1 − t
, s ∈ [0, 1), l,m ∈ R

and

B∗(s) = l∗(1 − s) +m∗s+ (1 − s)

s∫
0

dW(t)

1 − t
, s ∈ [0, 1), l∗,m∗ ∈ R,

where
max{l− l∗, m−m∗} 6 δ.

So, we can get

||B(s) −B∗(s)||2 = |(l− l∗)(1 − t) + (m−m∗)t| 6 δ|(1 − t) + t| = δ.

Then our results of Theorem 4.2 are satisfied.

Example 4.5. Finally, let A be a second order random variable, A ∈ L2(Ω), and B(t) = A+W(t). Let

B∗(t) = A∗ +W(t), ||A−A∗||2 6 δ,

then we can get
||B(t) −B∗(t)||2 = ||A−A∗||2 6 δ.

Then our results of Theorem 4.2 are satisfied.

5. Applications

The fractional calculus and fractional-order differential and fractional-order integral equations are im-
portant for the modeling of many important real deterministic and stochastic problems (see, for example
[1, 3, 5, 9–11, 13–18, 20, 21, 28, 34]). Here, we apply our results to prove the existence of integrable
solutions V ∈ L([0, τ],L2(Ω)) for the problems (1.2), (1.3), and (1.4).

(I). Consider nonlocal problem of the stochastic fractional-order differential equation [4]:{
RDβV(t) = λG(t,V(ρ(t))), t ∈ (0, τ],
I1−βV(t)|t=0 = V0.
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Theorem 5.1. Let the assumptions of Theorem 2.1 be satisfied. Then the nonlocal problem (1.2) is equivalent
to the singular integral equation (1.1) with α = β. Consequently, the problem (1.2) has a unique solution V ∈
L1([0, τ],L2(Ω)), which depends continuously on V0 and λ.

Proof. Let B(t) = A, where A is a second order random variable. Let V satisfies (1.2). Integrating (1.2) we
obtain

I1−βV(t) = I1−βV(t)|t=0 + λIG(t,V(ρ(t))) = V0 + λIG(t,V(ρ(t))).

Operating with Iβ, then we have

IV(t) =
V0t

β

Γ(1 +β)
+ λI1+βG(t,V(ρ(t))).

Differentiate both sides, we get (1.1),

V(t) =
V0t

β−1

Γ(β)
+ λIβG(t,V(ρ(t))), A =

V0

Γ(β)
. (5.1)

Let V ∈ L1([0, τ],L2(Ω)) be the solution of (5.1). Operating with I1−β we obtain

I1−βV(t) = V0 + λ

∫t
0
G(ξ,V(ρ(ξ)))dξ, I1−βV(t)|t=0 = Vo,

and
d

dt
I1−βV(t) =R DβV(t) = λG(t,V(ρ(t))),

then (1.2) is equivalent to the nonlocal problem of (1.1). Therefore, Theorems 2.1 and 4.2 are satisfied and
problem (1.2) has a unique solution V ∈ L1([0, τ],L2(Ω)), which depends continuously on V0 and λ.

Now, the following corollary can be proved.

Corollary 5.2. Let the assumptions of Theorems 2.1, 3.3, and 3.4 are satisfied. Let α = β in (1.1), then the nonlocal
problem (1.2) is Hyers-Ulam and generalized Hyers-Ulam-Rassias stable.

(II). Consider the problem with weighted condition (1.3),{
RDβV(t) = λG(t,V(ρ(t))), t ∈ (0, τ],
t1−βV(t)|t=0 = V1.

Theorem 5.3. The weighted problem (1.3) is equivalent to the integral equation (1.1) with α = β. Consequently,
the problem (1.2) has a unique solution V ∈ L1([0, τ],L2(Ω)), which depends continuously on V1 and λ.

Proof. Let B(t) = A, where A is a second order random variable. Let V satisfies (1.3). Integrating (1.3) we
obtain

I1−βV(t) = c+ λIG(t,V(ρ(t))).

Operating by Iβ we get

IV(t) =
ctβ

Γ(1 +β)
+ λI1+βG(t,V(ρ(t))).

Differentiating both sides, we obtain

V(t) =
ctβ−1

Γ(β)
+ λIβG(t,V(ρ(t))).
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Multiplying by t1−β, then

t1−βV(t)|t=0 =
c

Γ(β)
+ λt1−βIβG(t,V(ρ(t)))|t=0

and
V1 =

c

Γ(β)
,

which implies (1.1),
V(t) = V1t

β−1 + λIβG(t,V(ρ(t))), A = V1. (5.2)

Let V ∈ L1([0, τ],L2(Ω)) be the solution of (5.2). Operating with I1−β and d
dt , respectively, on (5.2) we

obtain (1.1). This proves that (1.3) is equivalent to (1.1). Therefore, Theorems 2.1 and 4.2 are satisfied and
problem (1.2) has a unique solution V ∈ L1([0, τ],L2(Ω)), which depends continuously on V1 and λ.

Now, the following corollary can be proved.

Corollary 5.4. Let the assumptions of Theorems 2.1, 3.3, and 3.4 are satisfied. Let α = β in (1.1), then the nonlocal
problem (1.3) is Hyers-Ulam and generalized Hyers-Ulam-Rassias stable.

(III). Consider the weighted-nonlocal-integral problem (1.4),{
RDβV(t) = λG(t,V(ρ(t))), t ∈ (0, τ],
t1−βV(t)|t=0 = V1 +

∫τ
0 V(t)dt.

Theorem 5.5. The weighted-nonlocal problem (1.4) is equivalent to the s integral equation (1.1) with α = β.

Proof. Let B(t) = A, where A is a second order random variable. Let V be a solution of (1.4). Integrating
equation (1.4) we obtain

I1−βV(t) = c+ λIG(t,V(ρ(t))).

Operating by Iβ we obtain

IV(t) =
ctβ

Γ(1 +β)
+ λI1+βG(t,V(ρ(t))).

Differentiating both sides we can get

V(t) =
ctβ−1

Γ(β)
+ λIβG(t,V(ρ(t))).

Multiplying by t1−β, then

t1−βV(t)|t=0 =
c

Γ(β)
+ λt1−βIβG(t,V(ρ(t)))|t=0

and
V1 +

∫τ
0
V(t)dt =

c

Γ(β)
,

which implies (1.1),

V(t) = tβ−1(V1 +

∫τ
0
V(t)dt) + λIβG(t,V(ρ(t))), A = (V1 +

∫τ
0
V(t)dt). (5.3)

Let V be a solution of (1.4). Multiplying (5.3) by t1−β we obtain

t1−βV(t)|t=0 = (V1 +

∫τ
0
V(t)dt).

Operating with I1−β and d
dt , respectively, on (5.3) we obtain (1.1). This proves that (1.4) is equivalent to

(1.1).

Corollary 5.6. Let the assumptions of Theorems 2.1, 3.3, and 3.4 are satisfied. Let α = β in (1.1), then the nonlocal
problem (1.4) is Hyers-Ulam and generalized Hyers-Ulam-Rassias stable.
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6. Conclusions

Let B(t) be a given mean square second order stochastic process, 0 < λ < 1 is a parameter, and
ρ(t) 6 t. Here, we proved the existence of integrable solution V ∈ L([0, τ],L2(Ω)) of the singular stochastic
fractional-order integral equation with delay (1.1),

V(t) = B(t)tα−1 + λIβG(t,V(ρ(t))), t ∈ (0, τ].

The continuous dependence of this solution on B(t) and λ have been proved and some examples of the
mean square second order stochastic process B(t) have been considered.

The Hyers-Ulam and generalized Hyers-Ulam-Rassias stability of (1.1) have been proved in the class
L1([0, τ],L2(Ω)).

As application we proved the the equivalence of (1.1) and the problems of fractional order differential
equations (1.2)-(1.4) and deduced the existence of solutions V ∈ L1([0, τ],L2(Ω)) of these problems.
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