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Abstract

In this paper, we are concerning with the existence of the solution V € L1 ([0,1], L2(Q)) of the singular stochastic fractional-
order integral equation with delay p(.),

V(t) =B(t)t* L+ A IBG(t, V(p(t)), te (0,1,

where B(t) is a given second order mean square stochastic process, A is a parameter, p(t) < t, and §(t,V) is a measurable
function in t € (0, 1] and satisfies Lipschitz condition on the second argument. The Hyers-Ulam and generalized Hyers-Ulam-
Rassias stability will be proved. Moreover, the continuous dependence of the solution on the process B(t) and A will be studied.
As applications, some nonlocal, weighted and nonlocal-weighted integral problems of stochastic fractional-order differential
equations will be studied.
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1. Introduction

Stochastic differential equations are a powerful tool for describing systems affected by external noise.
These equations utilize random numbers or functions as coefficients for independent or dependent vari-
ables. Recently, El-Sayed and Fouad [15-17] studied a specific category of problems dealing with stochas-
tic differential equations with nonlocal conditions. Their research shows that using Schauder’s fixed
point theorem, there is always at least one solution for a functional nonlocal random integral equation
within the space of all squared integrable stochastic processes with a finite second moment. Nonlocal
and weighted conditions provide more precise measurements taken at multiple locations compared to
local conditions. In stochastic differential equations (SDEs) with non-local conditions, the behavior of the
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solution at a given point depends on the values of the solution at other points in the domain rather than
just the local behavior near that point. This means that the solution of a non-local SDE is influenced by the
global structure of the domain rather than just the local behavior around a point. Non-local conditions in
SDEs arise when the stochastic process is affected by long-range interactions or non-local effects, such as
non-local diffusion or fractional Brownian motion. These non-local effects can arise, for example, when
the underlying phenomenon being modeled exhibits memory or long-range correlations [6, 26]. Overall,
non-local conditions in SDEs can significantly affect the solutions of these equations and have important
implications for the modeling and analysis of a wide range of phenomena in physics, biology, finance,
and other fields [7, 27].

Let (Q,F, p) be a complete probability space where Q) is a sample space, F is a o-algebra of events of
Q occurring during the time interval [0, 7], and p is a probability measure, let W(t), t > 0 be a standard
Brownian motion on (Q,F, p). Let V(t; w) = V(t), t € [0,7], w € Q be a second order stochastic process,
ie., E(V3(t)) < +o0, t € [0,7]. Let C(I,L(Q)) be the class of all continuous stochastic processes in mean
square notion on I = [0, T] with the norms ([33, 35, 36])

1V lle= sup V)l V() [l2= /E(VA(1)).
te

Let Ly ([0, ], L2(Q)) be the class of all second order integrable stochastic processes in mean square notion
on [0, 7]. The norm of V € L;([0, 7], L2(Q)) is given by

VT = L V(1) ||2dt.

Definition 1.1. Let {V(t), t € [0, T]} be a second order continuous or Riemann integrable stochastic process
in mean square notion and «, 3 € (0, 1]. The fractional-order integral J BV(t) is defined by

t —1
(t—&)P
IPV(t :J - V(&)dE.
(t) Ty (&)
If {V(t), t € [0,7]} is mean square differentiable and the derivative %V(t) is continuous or Riemann
integrable on [0, Tl, then the fractional-order derivative is defined by

dv
DOV(t) = gl—*——,
(t) dt

For the properties of stochastic fractional calculus (see [12, 19, 22]).
Some stochastic and deterministic problem of fractional order integral and differential equations have
be studied by authors (see [3, 4, 9-11, 13-18, 20, 21]). Let &, € (0,1]. Consider t as

V(t) = B()t* T+ AIBG(t, V(p(t)), te (0,1, (1.1)

where B(t) is a given mean square second order stochastic process and A is a parameter. The existence of
solution V € L;([0, ], Lo(Q)) will be studied. The Hyers-Ulam stability of the integral equation (1.1) will
be proved in the class Li([0, 1], [2(Q)). The continuous dependence of the solution on the second order
process B(t) and the parameter A will be proved.

The following are examples of the second order process B(t).

1. The Brownian motion with volatility o and Drift o ([28, 32]),
B(t) =ot+oW(t), teR,.
2. The Brownian bridge [30]

B(s) :l(l—s)+ms+(1—s)Jdlvi(?, s€0,1), L melR.
0
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3. The Brownian motion started at A, A € [,(Q) ([29]),
B(t) = A+ W(t),

where W(t) is a standard Brownian motion will be considered.

Finally, as applications, the nonlocal problem

RDBY(t) =AG(t, V(p(t))), te (0,7, 12

IBY(t)li=0 = Vo, '
the weighted problem

RDPY(t) =AS(t, V(p(1)), te€ (0,1, (13)

tIBY(t) im0 = V4, '
and the nonlocal-weighted integral problem

DRV =SV, & 07 4

tBY(t) o = V1 + [ V(t)dt, :

where V, and V; are second order random variables, will be studied.

2. Existence of the solution
Under the following assumptions, we study the existence of solution of (1.1) .
(A1) p:[0,7] — [0,7] is increasing, p(t) < tand p'(t) > p > 1.
(A2) G:[0,7] x L(Q) — L(Q) is measurable in t € [0, 7] and the Lipschitz condition is satisfied,
15(t, V(1)) = (t, U(t))]|2 < bI[V(t) —U(t) |2,
and §(t,0) € L1([0, 7], L2(Q)). From this assumption we can deduce that

15(t, VN [2 = [[V(t, 0}l < [[V(t, x(t)) = V(t,0)[2 < b[|V(t)[]2 + [|S(t, 0) |2

and
15(t, V(t)[l2 < [IS(t, 0)[]2 + b[[V(t)|]2.
(A3)
> T(i
Albt* <1, where T* —max{ 7}

rie+1)

Theorem 2.1. Let the assumptions (A1)-(A3) be satisfied, then the singular stochastic fractional-order integral
equation (1.1) has a unique solution V € L1([0, ], L2(Q)).

Proof. Define the operator F by
FY(t) = Bt 1+ AIPS(t, V(p(1)), te (0,1

and the set Q C L;(I,L,(Q)) by
Q={xe Li(I,L2(Q)), [[V|f<T}

Let V € Q, then we have

IFV(©)[l2 < B |2 + [IATPS(t, Vip(t)]2
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t oy £\B—1
<l | L

tp_ £\p-1
<IBllett+ |

IS(&,V(p(E)))[|2dE

[IS(&,0)[l2 4 b[[V(p(&)))2ldE

But the integral

=[] S st 0l + blp(e)laear

T+ z\B—1
J(HS £,0) 2+ b|[V(p ))||2])Lwdtd£

)
L (||9 a,o)uz+buwp(anuz> .

< T
ST(1+p)

Let p(&) = 0, then d¢ = l, 0 < =dO < db and

1
p

(ISl +blVIiT) < (a+br), a=|ISl7.

J <

T
r1+p)

b B
(ISI + pL 1'V(6))]2d8) < M1+ pB)

B
rp+1)
Then

[Bl[ct*

T
I[FVII; —J IIFV(t)]2dt < + (Al (a+br) =1*([IBllc + alAl|+TbIA|) =

IN'1+p)

where
~ 1(IBllc + alAl)

1—|Albt*
This proves that FV: Q — Q. Let V,U € Q, then we have

IFV(t) = FU(t) [l = [AIPIS(t, V(p(1))) = S(t, Ulp(t)))][l2 < NBIPIV(p(t))) — Ulp(t)))l2

and b
|FV —FU||7 < IAIT*BIIV—UIIT < ATV = Ullf,

which proves that F is contraction on Q [8] and the singular fractional stochastic integral equation (1.1)
has a unique solution V € Q C Ly ([0, 1], L2(Q)). O
3. Hyers-Ulam stability

For I = [0,7],¢ > 0,9 € C(I,Ry), we consider the integral equation (1.1) and the following two
inequalities (see [2, 24, 25]):

V() = B()t* 1 —=ATBG(t, V(p(t))2 <e, te], (3.1)
V() = B(t)t* 1 —ATBG(t, V(p(t))|]2 < W(t), telL (3.2)

S <3

Definition 3.1 ([23]). Equation (1.1) is the Hyers-Ulam stable if there exists a real number ¢ > 0 such that
for ¢ > 0 and for each solution V € L;i(I,L,(Q)) to (3.1) there exists a solution V € L1(I,L»(Q)) to (1.1)
with [|[V(t) = V(t)|2 <ce, t€L

Definition 3.2 ([31]). Equation (1.1) is generalized Hyers-Ulam-Rassias stable with respect to 1 if there
exists a real number ¢y, > 0 such that for each solution V € L;(I,L,(Q)) to (3.2) there exists a solution
Ve L1(L L2(Q)) to (1.1) with [|[V =V, < cpP(t), t€L
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Theorem 3.3. Let the assumptions of Theorem 2.1 be satisfied. Then the equation (1.1) is Hyers-Ulam stable.
Proof. Let ¢ > 0 be given such that (3.1) holds and V be the solution of (1.1). Then

V(1) = V(t)ll2 = V(1) — B(t)t* " = ATPG(t, V(p(t)))ll2
= [IV(t) = B(t)t* 1 = AIPG(t, V(p(t))) + AIPS(t, V(p(t))) — AIPS(t, V(p(1)))ll2

< e+ MLIPIV(p(t)) — Vs(p(t))ll2 < e+ Abs V() = V(t)ll2,

B
r1+p)
then
3

R
90 = V(I < {— s

O

Theorem 3.4. Let the assumptions of Theorem 2.1 be satisfied and the function \p € C(I,IR4.). Then equation (1.1)
is a generalized Hyers-Ulam-Rassias stable with respect to 1.

Proof. Let V be a solution of (1.1). Then

IV(t) = B(t)t* " —AIPG(t, V(p(t))) + ATPS(t, V(p(t))) — AIPS(t, V(p(t)))ll2
|

V(1) =Bt =ATPG(t, V(p(t)]l2 + ABIPV(p(t)) — Vs (p(t)ll2
w
<U(t) + IAlbmlW(t) = V(t)ll2,
then .
() - Vol < o
which completes the proof. O

4. Continuous dependence of solutions
The concept of continuous dependence solution is presented in the following definition.

Definition 4.1. The solution V € L;([0,7],[2(Q)) of the singular fractional stochastic integral equation
(1.1) depends continuously on the second order stochastic process B(t) and the parameter A if Ve > 0,
there exists > 0 such that max{|[B(t) — B*(t)ll2, IA — A*[} < 6 implies that [[V —V*[|; < e.

Theorem 4.2. Let the assumptions of Theorem 2.1 be satisfied, then the solution V € L1 ([0, t], Ly(Q)) of the integral
equation (1.1) depends continuously on the second order stochastic process B(t) and the parameter .

Proof. Let V* be the solution of the equation
V*(t) = B*(t)t* 1+ A*IPG(t, V*(p(t))), te€ (0,1
It follows that,
V(t) = V*(t) = (B(t) = B*(t)t* !+ (A= A")IPG(t, V*(p(t))) + A(IPG(t, V(p(1))) — IPG(t, V*(p(1))))
and

V() =V*(t)]l2 < [|B(t) *(t)llzt“’l+|7\—A*I\IJﬁS(t,V*(p(t))JHz

+ AT S(t, V(p(t )))—359& V*(p(t)))]2)
<5t +5]|7B5(t, V¥ (p Hz+bwsﬁuv —V*(p())]l2,

2 <
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so that, 5 5
™ T AlTPb
V-V <d—4+6—— b — |V —=V"|4,
V=V <8+ gy @+ o)+ gy V=Vl
then we can obtain that 5 (1 br)
T (1+a+br
V-V < =g,
H Hl 1—|7\|b’f* €
which completes the proof. O

4.1. Examples

Example 4.3. Let B(t) = ot + cW(t) be the Brownian motion with drift, B*(t) = o*t + 0c*W(t). Then
YV € > 0, there exists 6 > 0 such that

max{|o — 0"|, |0 — 0™[} < &,

we obtain
IB(t) — B*(t)ll, = tlo — ™|+ [[W(t)|2]lo — 0¥ < d1(T+ /1) = 6.

Then our results of Theorem 4.2 are satisfied.

Example 4.4. Let

B(s) :l(l—s)+ms+(1—s)JdW(:), s€0,1), LmeR
0

and

B*(s) =1"(1—s)+m*s+ (1—s) s€0,1), I*, m*eR,

Y S
—_ &
1=

o+
=
~

where
max{l—1*, m—m*} < 6.

So, we can get
B(s) =B*(s)lb =11 =1")(1—t) + (m—m")t| < B|(1 —t) + t| = &.
Then our results of Theorem 4.2 are satisfied.
Example 4.5. Finally, let A be a second order random variable, A € 1,(Q), and B(t) = A+ W(t). Let
B (t) = AT+ W(t),[[A = A%[l2 <3,

then we can get
IB(t) = B*(t)ll2 = A — A2 < 8.

Then our results of Theorem 4.2 are satisfied.

5. Applications

The fractional calculus and fractional-order differential and fractional-order integral equations are im-
portant for the modeling of many important real deterministic and stochastic problems (see, for example
[1, 3, 5, 9-11, 13-18, 20, 21, 28, 34]). Here, we apply our results to prove the existence of integrable
solutions V € L([0, 7], [2(Q)) for the problems (1.2), (1.3), and (1.4).

(I). Consider nonlocal problem of the stochastic fractional-order differential equation [4]:

RDPY(t) =AG(t, V(p(t)), t € (0,1,
I=BY(t) =0 = Vo
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Theorem 5.1. Let the assumptions of Theorem 2.1 be satisfied. Then the nonlocal problem (1.2) is equivalent
to the singular integral equation (1.1) with « = (. Consequently, the problem (1.2) has a unique solution V €
L1 ([0, tl, L2(Q)), which depends continuously on Vo and A.

Proof. Let B(t) = A, where A is a second order random variable. Let V satisfies (1.2). Integrating (1.2) we
obtain

TBY(t) = I7BV(t)i—o + AIG(t, V(p(t))) = Vo +AIS(t, V(p(t))).

Operating with JP, then we have

__ VotP 14+
:Wﬁy_ru+ﬁ)+w*’%thﬁnl
Differentiate both sides, we get (1.1),
. Votﬁfl B o Vo
V(t) = rB) +ATPG(t, Vip(t)), A= () (5.1)

Let V € L1([0, 7], L2(Q)) be the solution of (5.1). Operating with '~P we obtain

t

7-BY(t) =V, ”L S(E,V(E)AE, T PVE)imo = Vo,

and
d

dt

then (1.2) is equivalent to the nonlocal problem of (1.1). Therefore, Theorems 2.1 and 4.2 are satisfied and
problem (1.2) has a unique solution V € L ([0, 7], L(Q)), which depends continuously on Vj and A. O

J=BY(1) =R DPV(t) = AG(t, V(p(t))),

Now, the following corollary can be proved.
Corollary 5.2. Let the assumptions of Theorems 2.1, 3.3, and 3.4 are satisfied. Let « = {3 in (1.1), then the nonlocal
problem (1.2) is Hyers-Ulam and generalized Hyers-Ulam-Rassias stable.

(IT). Consider the problem with weighted condition (1.3),

RDBY(t) = AS(t, V(p(t))), te (0,1,
I PY(t) o = V1.

Theorem 5.3. The weighted problem (1.3) is equivalent to the integral equation (1.1) with o« = (3. Consequently,
the problem (1.2) has a unique solution V € L;([0, ], Lo(Q)), which depends continuously on V1 and A.

Proof. Let B(t) = A, where A is a second order random variable. Let V satisfies (1.3). Integrating (1.3) we
obtain
TPY(t) = ¢+ AIS(t, V(p(t))).

Operating by I® we get

ctP
IV(t) = MBS, V(p(t)).
(©) = gy + AL Vip(n)
Differentiating both sides, we obtain
th—1
V(t) = S + ATBG(t, V(p(1)).

r(p)
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Multiplying by t'~P, then
1 BY()lmo = = + At PIBG(L, V(p(t)))leo

r'(p)
and .
V1= Tp)
which implies (1.1),
V(t) = VitP T+ ATRG(t, V(p(t)), A ="V;. (5.2)

Let V € L1([0,7],L2(Q)) be the solution of (5.2). Operating with 1= and %, respectively, on (5.2) we

obtain (1.1). This proves that (1.3) is equivalent to (1.1). Therefore, Theorems 2.1 and 4.2 are satisfied and

problem (1.2) has a unique solution V € L; ([0, 1], L(Q)), which depends continuously on V; and A. O
Now, the following corollary can be proved.

Corollary 5.4. Let the assumptions of Theorems 2.1, 3.3, and 3.4 are satisfied. Let o« = 3 in (1.1), then the nonlocal
problem (1.3) is Hyers-Ulam and generalized Hyers-Ulam-Rassias stable.

(III). Consider the weighted-nonlocal-integral problem (1.4),

RDPY(t) = AG(t, V(p(t))), t € (0,1,
T BV(t) im0 = V1 + [ V(t)dt.

Theorem 5.5. The weighted-nonlocal problem (1.4) is equivalent to the s integral equation (1.1) with o« = f3.
Proof. Let B(t) = A, where A is a second order random variable. Let V be a solution of (1.4). Integrating
equation (1.4) we obtain

IPY(t) = ¢ +AIS(t, V(p(1))).
Operating by J# we obtain

_ P 1+6
IV(t) = TR (t, V(p(t))).
Differentiating both sides we can get
vio) = S agbg(e, v
t) = t, V(p(t))).
(8) = g7 + A7 V(p(1)

Multiplying by t'~F, then

BV = %ﬁ) +ABIBG (L, V(p(1))l—o

and -
v, +J V(t)dt = ——
0 rp)’
which implies (1.1),

T T

V(t)dt) + AIBG(t, V(p(t))), A:(V1+J V(t)dt). (5.3)

V(t) =P~ (v, +J
0

0
Let V be a solution of (1.4). Multiplying (5.3) by t!~P we obtain

T
tPY(t)le—o = (V1 +J V(t)dt).
0
Operating with J1=P and %, respectively, on (5.3) we obtain (1.1). This proves that (1.4) is equivalent to
(1.1). O

Corollary 5.6. Let the assumptions of Theorems 2.1, 3.3, and 3.4 are satisfied. Let « = {3 in (1.1), then the nonlocal
problem (1.4) is Hyers-Ulam and generalized Hyers-Ulam-Rassias stable.
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6. Conclusions

Let B(t) be a given mean square second order stochastic process, 0 < A < 1 is a parameter, and
p(t) < t. Here, we proved the existence of integrable solution V € L[0, 1], L2(Q)) of the singular stochastic
fractional-order integral equation with delay (1.1),

V(t) = B()t* 1+ AIPG(t, V(p(t)), te (0,1

The continuous dependence of this solution on B(t) and A have been proved and some examples of the
mean square second order stochastic process B(t) have been considered.

The Hyers-Ulam and generalized Hyers-Ulam-Rassias stability of (1.1) have been proved in the class
L1 ([0, 7], L (QQ)).

As application we proved the the equivalence of (1.1) and the problems of fractional order differential
equations (1.2)-(1.4) and deduced the existence of solutions V € L;([0, 1], [,(Q)) of these problems.
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