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Abstract
In this paper, we will improve the practical performance of an interior points algorithm for convex nonlinear semi-definite

optimization, where to minimize a nonlinear convex objective function subject to nonlinear convex constraints. We will propose
a new method for solving this kind of problem by using a straightforward kernel function and the iterative Newton direc-
tions combined with the Broyden-Fletcher-Goldfarb-Shanno (BFGS in short) quasi-Newton method. Further, a best polynomial
complexity for solving nonlinear convex problems will be found until now.
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1. Introduction

Interior point methods (IPMs) are called due to the iterations moving inside the feasible region while
staying away from the boundary. A feasible IPM can only be executed if a strictly feasible point is found
is known. Usually, such a starting point is not readily available and infeasible IPMs are used instead.

In IPMs each of the iterations is strictly feasible for some artificial problem and stays close to the
central path of that problem, where closeness is measured by some merit function, see [15] and other
researchers. In [17], we presented the first full-Newton step, O(n) IPMs for linear optimization.

The algorithm proposed in this work aims to solve the following problem:{
min F(X),
C(X) � 0,

(P1)

where

1. let Sn denotes the space of all n×n real symmetric matrices, Sn+ and Sn++ are the cone of symmetric
semidefinite and symmetric positive definite matrices, respectively;
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2. the objective function to be minimized is F : Sn+ → R, must verify: must satisfy the conditions of
convexity and be at least twice differentiable;

3. C(X) � 0, where C : Sn+ → Sm+ ;
4. P̊ = {X ∈ Sn+ : C(X) � 0} is a primal feasible set.

Beginning with an initial value of µ, the perturbed optimality conditions are approximately solved.
The algorithm necessary for this solution employs the iterates generated by the perturbed algorithm as
inner iterates.

The most robust quasi-Newton formula is the BFGS formula, proposed independently by Broyden [8],
Fletcher [11], Goldfarb [13], Shanno [18] and others.

This updated formula approximates the Hessian of the Lagrangian. It mentions that, under the strong
convexity assumption, the matrix being approximated is symmetric and positive definite. Additionally, it
states that the authors or researchers ”require that the matrix M they compute is symmetric and positive
definite”. This indicates that the authors have a specific requirement for the computed matrix M.

For the linear search, it consists of calculating a step such that the new iteration obtained is always
strictly feasible. Additionally, the Armijo condition, as described in [4], must be satisfied. Any differen-
tiable convex quadratic problem can be formulated into a monotone Linear Complementarity Problem
(LCP in short), and vice versa. This makes the LCP one of the fundamental problems of mathematical
programming, where LCP are used in the study of equilibrium problems in, e.g., economics, transporta-
tion planning and game theory in [9]. There have been successful generalizations of a number of IPMs
for linear optimization (LO in short) to LCP [14].

The logarithmic barrier function is the foundation of the majority of IPMs. In [1], proposed a new class
of non-Self-Regular kernel functions for LO and obtained O(q

√
n log(n1+ 1

q ) log nε ) with q > 1, iteration
bounds for large update dual-primal MPIs. By introducing a parameter q > 1 into the kernel function
of [5], they obtained the best known iteration bound for LO in large and small updates by choosing
q = O(log(n+ 1)). The first trigonometric kernel function that gives better results O(

√
n logn log nε ) was

proposed by [7]. [10], proposed a new barrier function (m+ 1)t2 − (m+ 2) + 1
tm with m > 4 and primal-

dual interior point algorithms for problems LCP and an analysis of the kernel function based algorithm.
They obtained O(m

3m+1
2m
√
n log (x0)ty0)

ε ) for small update and O(m
3m+1

2m n
m+1
2m log (x0)ty0)

ε ) for large-update
methods, which are the best known iteration bounds for such methods. [19] introduced a primal-dual
IPM specifically designed for SDO, achieving complexity results of O(q2√n log nε ), and O(

√
n logn log nε )

for updates at both small and large scales, with q > 1. In [12] extended the IPM from LO to SDO and
obtained similar iteration bounds.

Motivated by [2], who proposed a BFGS method with a primal-dual barrier function (IPMs) to solve
convex nonlinear class problems, where the objective function and the constraints sets are in general
convex, and with a reformulation equivalent to the central path, a solution to the linear complementarity
problem was proposed in [10] and they were able to find a new search direction that targets a small
neighbourhood of the central path.

In this context, the main objective of this study is to use an LCP and combine it with a new kernel
function and the quasi-Newton BFGS to solve the nonlinear convex semi-definite problem (P1).

This paper introduces a new method for solving semi-definite convex problems using Newton and
quasi-Newton algorithms to obtain new directions, along with Armijo test algorithms to determine a new
step in Section 2. In Section 3, we examine a novel kernel function and its theoretical properties for SDO.
In Section 4, we present the new complexity of the central path algorithm, and a conclusion is drawn in
Section 5.

2. The resolution of problem (P1)

We consider the following non-empty sets of constraints:

1. P = {X ∈ Sn+ : C(X) � 0} is a primal feasible set;
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2. P̊ = {X ∈ Sn+ : C(X) � 0} is a primal strictly feasible set;
3. P̊D ={(X,S) ∈ Sn+ × Sm+ : (C(X),S) � 0} is a primal-dual strictly feasible set.

The objective in the following is to solve the fundamental problem (P1), based on [3, 7, 10]. First of all,
the optimality conditions will be specified, as shown below.

2.1. The optimality conditions (K.K.T)

The Lagrangian L : Sn+ × Sm+ → R is an important step towards solving the problem (P1):

L(X,S) = F(X) + STC(X),

with

1. for all (X,S), the function L is convex and at least twice differentiable;
2. the gradient’s formula from L to X is:

∇XL(X,S) = ∇F(X) −∇C(X)S;

3. the gradient’s formula from L to S is:

∇SL(X,S) = C(X);

4. the Hessian of L to X is:
∇2
XXL(X,S) = ∇2F(X) +∇TC(X)S∇C(X).

The conditions of optimality are proposed by problem (P1) under constraint qualification require-
ments: there exists a vector of multipliers S ∈ Sm+ that verifies the following problem:

∇F(X) −∇C(X)S = 0,
C(X)S = 0,
(C(X),S) � 0,

(2.1)

Our primal-dual (IPs) approximation is standard and has been discussed in [3, 6]. The next step is to
associate problem (2.1) with the penalized problem, as shown below:

∇F(X) −∇C(X)S = 0,
C(X)S = µI,
(C(X),S) � 0,

(2.2)

with:

1. I is an identity matrix, where I ∈ Sm;
2. the parameter penalization is µ > 0 is fixed at each iteration.

The Newton’s procedure iterative is used to solve a nonlinear equation.

2.2. Kernel function with Newton and BFGS quasi-Newton methods
2.2.1. New class of search directions

We are basing this on [10], where, the main concept is now to replace the perturbative complementarity
equation in the problem (2.1); in other words, the term:

1
µ
D−1C(X)SD = I, (2.3)

is substitute by:

ψ(
1
µ
D−1C(X)SD) = ψ(I),

where ψ is considered a barrier kernel function.
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Definition 2.1. All functions ψ : R∗+ −→ R twice differentiable and satisfy the conditions:

1. ψ (1) = ψ′ (1) = 0;
2. for all t > 0, ψ′′ (t) > 0;
3. limt→0ψ(t) = limt→+∞ψ(t) = +∞,

is a barrier kernel function.

Remark 2.2.

1. We will obtain strict convexity of ψ and its minimum is reached at t = 1 according to conditions (1)
and (2) of the Definition 2.1.

2. Based on the last condition of the Definition 2.1, ψ yields the barrier property.

Thus, the problem (2.2) is expressed as follows:
∇F(X) −∇C(X)S = 0,
ψ( 1
µD

−1C(X)SD) −ψ(I) = 0,
(C(X),S) � 0.

(2.4)

Let
G(X,S) = 0,

in a manner that:

G(X,S) =

 ∇F(X) −∇C(X)S

ψ( 1
µD

−1C(X)SD) −ψ(I)

 ∈ Sn+m. (2.5)

2.3. Newton’s step
We use the search direction for SDO proposed by Nestrov:

P = C(X)
1
2 (C(X)

1
2SC(X)

1
2 )

−1
2 C(X)

1
2 = S

−1
2 (S

1
2C(X)S

1
2 )

1
2S

−1
2 .

To simplify the resolution process we posit D = P−1, we will need to define new vectors as follows:

V =
1
√
µ
(D−1C(X)SD)

1
2 =

1
√
µ
D−1C(X)D−1 =

1
√
µ
DSD, (2.6)

where

A
1
2 = (

√
aij)16i,j6n,

DX =
1
√
µ
D−1C−1(X)∇C(X)V∆XD, (2.7)

DS =
1
√
µ
D−1S−1V∆SD. (2.8)

G is a nonlinear function, so with µ > 0 held constant, we apply Newton’s method to solve (2.5) and obtain
the solution, which is known as Newton’s primal-dual direction (∆X,∆S) ∈ Sn × Sm of the subsequent
system: 

H ∇C(X)

D−1S∇C(X)TD
µ ∇ψ(V2)

D−1C(X)D
µ ∇ψ(V2)


∆X
∆S

 =

 −∇XL(X,S)

−ψ(V2) +ψ(I)

 , (2.9)

where
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1. by design of the kernel function, we get ψ(I) = 0;
2. from (2.4) and (2.3), we obtain

∇XL(X) = ∇F(X) − µ∇C(X)(C(X))−1;

3. H is an approximation of ∇2
X,XL(X,S) as it is positive-definite, and we will get its formula from the

quasi-Newton method with the BFGS technique; it is our goal in the sequel.

2.3.1. Approximation of the Hessian matrix
At each iteration, the matrix H is calculated from the initial matrix H0 as an approximation of the

Hessian matrix or its inverse. The BFGS updates the matrix Hk, resulting in a revised approximation.
The following formulas yield the approximation Hk+1: using (2.6), (2.7), and (2.8) in (2.9), we derive a
new problem, which is the following:{

HDX +∇C(X)C(X)−1S∇C(X)TD−1DSD
−1 = ∇XL(X)C(X)−1∇C(X)D−1VD−1,

DX +DS = −
ψ(V2)

V∇ψ(V2)
,

(2.10)

where H is a positive definite matrix and ∇C(X)C(X)−1S∇C(X)T is a semi-definite matrix, therefore we
find a unique solution called (DX,DS) of the system (2.10). Now, we will present a quasi-Newton formula
for calculating H.{

DX = H−1(S∇C(X)TD−1DSD
−1 −∇XL(X)D−1VD−1)C(X)−1∇C(X),

DS = −
ψ(V2)

V∇ψ(V2)
−DX,

and H−1 is updated with the quasi-Newton formula so as to approximate of the inverse of the La-
grangian’s Hessian:

(Hk
′)−1 = H

− 1
2

k (I−
H

− 1
2

k λ̄kλ̄
T
kH

− 1
2

k

λ̄TkYk + Y
T
kH−1

k Yk
)H

− 1
2

k , H′k = Hk +
YkY

T
k

YT λ̄k
and Hk+1 = H′k −

H′kHkλ̄kλ̄kHkH′k
λ̄TkHkλ̄k

,

where λ̄k ∈ Rn and Yk ∈ Rn are defined by

λ̄k = αλk, λk = Xk+1 −Xk and Y = ∇L(Xk+1,Sk+1) −∇L(Xk,Sk+1),

(Xk+1,Sk+1) is a new iteration derived from (Xk,Sk). How to ensure that Hk remains a positive definite
matrix at each iteration, using the following theorem, is addressed in [2].

Theorem 2.3 ([2]). Hk is well-defined and yields a definite positive matrix if these matrices YTk λ̄k are positive
definite matrices.

2.4. The central path algorithm and Armijo test
2.4.1. The central path algorithm for convex problems

The algorithm for the kernel function is: From the initial solution primal-dual (X0,S0), µ0 > 0, with
the precision parameter ε > 0, and employing a new kernel proposed in the remainder of our work at
each outer iteration, the penalty parameter decreases by a value of (1 − θ), where θ ∈ (0, 1). To have
a solution of the equation (2.9) where this solution is close to the central path, we will use Newton’s
directions, and a second problem will appear in our directions, which is the calculation of the Lagrange
hessian matrix; for this type of question, we relied on the quasi-Newton method where we could have an
approximation of the matrix. We repeat the procedure until we have nµ < ε, at which point we can say
that we have obtained ε-approximate solutions to our primary problem of the primal X and dual S.
In the following, we will have the problem of the step, that’s why we will use the Armijo test. This is
shown in the Algorithm 1.



M. Laouar, M. Brahimi, I. E. Lakhdari, J. Math. Computer Sci., 33 (2024), 1–16 6

2.4.2. Armijo test algorithm
The algorithm of Armijo [4] is: we have α ∈]0,+∞[ and 0 < β < 1, in general we choose the initial

values: α0 = 1 and β = 0.95, where to verify the following conditions:

(X,S) ∈ F̊,

where
αS,Armijo = min{α : S+αβ∆S � 0},

and
αX,Armijo = min{α : C(X) +αβ∇C(X)T∆X � 0}.

In the next step, the so-called Armijo test is passed, defined as follows:

C(Xk +αDk) � C(Xk) +αβ∇C(Xk)TDk.

1. If the condition is verified, we choose the largest integer n0 > 0, such that we perform the following
procedure (we will grow the step):

α1 = 2α0,

and we repeat the Armijo test for the new step value, if the test is verified, we continue and calculate
the new iteration:

α2 = 2α1 = 22α0,

to the largest value n0 that satisfies the Armijo test.
2. If α0 doesn’t check Armijo’s tests, in the case we choose the smallest integer m0 > 0 that will verify

the test, such that we perform the following procedure (we will decrease the step value):

α1 =
α0

2
,

and we repeat the Armijo test for the new step value, if the test is not verified, we continue and
calculate the new iteration:

α2 =
α1

2
=
α0

22 ,

to the smallest value m0 that satisfies the Armijo test.

We repeat the same procedures mentioned above for S. And we get the following:

α = min(0.95 min(αX,Armijo,αS,Armijo),α).

This is shown in lines 7 through 28 of the Algorithm 1.

2.4.3. Initial data
• For the problem (P1), we must provide a strictly feasible iterate X0 strictly feasible at the beginning

of the algorithm, which means that for all i = 1,m, we have Ci(X0) ≺ 0.

• The initial step chosen as α0 = 1.

• For the initial solutions of the problem (2.2), noted S0 and µ0 are provided in the following way:

1. (S0,µ0) ∈ {(S,µ) ∈ Rm ×R : (S,µ) � 0};
2. we set the perturbation parameter µ0 to 1, i.e., µ0 = 1;
3. and deduce the corresponding multiplier using the perturbed complementarity condition, i.e.,

S0 = C−1(X0)I. (2.11)

• The initial approximation of the Hessian matrix is H0 = I.
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Algorithm 1 A path central algorithm with Armijo test.
1: Input: an accuracy parameter ε > 0, an update parameter τ ∈ (0, 1), a threshold parameter θ ∈ (0, 1),
2: Begin X0 = I,C(X) := C(X0),S := C−1(X0)I,µ0 = 1,α0 = (α0

X,α0
S) = (1, 1), M0 = D0 = I,β = 0.95,V0 =

1√
µ0
((D0)−1C(X0)S0(D0))

1
2 ,Ψ(V0) 6 τ

3: while nµk+1 > ε do (outer iteration) (go to 2.4.1)
4: µk+1 = (1 − θ)µk
5: while Ψ(Vk+1) > τ do (inner iteration)
6: Armijo test: (go to 2.4.2)
7: if (Sk+1 � Sk +βα0

SDS) then
8: k′ = 1 and α1

S = 2α0
S

9: while Sk+1 � Sk +αk
′
S βDS do

10: αk
′
S = 2k

′
α0
S; k′ = k′ + 1

11: end while
12: else
13: k′=1 and α1

S =
α0
S

2
14: while Sk+1 � Sk +βαk

′
S DS do

15: αk
′
S =

α0
S

2k′
; k′ = k′ + 1

16: end while
17: end if
18: if C(Xk+1) � C(Xk) +βα0

X∇C(Xk)TDX then
19: k′ = 1 and α1

S = 2α0
S

20: while C(Xk+1) � C(Xk) +βαk
′
x ∇C(Xk)TDX do

21: αk
′
X = 2k

′
α0
X, k′ = k′ + 1

22: end while
23: else
24: while C(Xk+1) � C(Xk) +βαk

′
X∇C(Xk)TDS do

25: αk
′
X =

α0
X

2k′
; k′ = k′ + 1

26: end while
27: end if
28: α = min(0.95 min(αX,αS),α)
29: Xk+1 := Xk +α∆Xk
30: Sk+1 := Sk +α∆Sk
31: Vk+1 := 1√

µ((Dk)
−1C(Xk+1)Sk+1Dk)

1
2

32: end while (inner iteration)
33: end while (outer iteration)

3. Theoretical properties of the new kernel function

We suggest a new simple kernel function with a number of key properties, including a new Newton
direction for complexity analysis. One of these functions is described by:

ψ : R∗+ → R

t 7→ ψ (t) = t2 + 2
t − 3.

(3.1)

Throughout this work, we will use three derivatives of ψ with respect to t, for t > 0, we have:
ψ′ (t) = 2t− 2

t2 ,
ψ′′ (t) = 2 + 4

t3 ,
ψ′′′ (t) = −12

t4 .
(3.2)
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Lemma 3.1. The function ψ defined by (3.1) has the following properties:

1. ψ′′(t) > 2, ∀t > 0;
2. tψ′′(t) +ψ′(t) > 0, ∀t > 0;
3. ψ′′′(t) < 0, ∀t > 0;
4. tψ′′(t) −ψ′(t) > 0, ∀t > 0;
5. 2ψ′′(t)2 −ψ′′′(t) > 0, ∀t > 0;
6. ψ′′(t)ψ′(βt) −βψ′(t)ψ′′(βt) > 0, ∀t > 0, ∀β > 1;
7. 2ψ′′(t)2 −ψ′(t)ψ′′′(t) > 0, ∀t < 1.

Remark 3.2. It should be noted that all conditions in Lemma 3.1 are satisfied.

The barrier function Ψ, is determined by:

Ψ (V) = tr(ψ(V)) =
n∑
i=1

ψ (λi(V)) .

Definition 3.3. In the performance analysis of the algorithm, we also employ the normalized proximity
measure δ(V) given by:

δ (V) =
1
2
‖∇Ψ (V)‖ = 1

2

√√√√i=n∑
i=1

(ψ (λi(V)))
2 =

1
2
‖DX +DS‖ . (3.3)

The properties of ψ defined above imply that if ψ(t) is twice differentiable, then it is completely
determined by its second derivative:

ψ(t) =

∫t
1

∫ζ
1
ψ′′(x)dxdζ =

∫t
1

∫ζ
1
(2 +

4
x3 )dxdζ.

Lemma 3.4 ([16]). The function ψ is exponentially convex, that is to say:

for all V1, V2 ∈ Sn++; Ψ
(
(V

1
2

1 V2V
1
2

1 )
1
2

)
6

1
2
[Ψ (V1) +Ψ (V2)] .

Lemma 3.5 ([16]). Let ψ be a twice differentiable function for t > 0. The properties below are all equivalent.

1. For all t > 0, ψ is an exponentially convex.
2. ψ(eζ) is convex.
3. ψ(

√
ζ) is convex.

4. tψ′′(t) +ψ′(t) > 0, t > 0.
5. tψ′′(t) −ψ′(t) > 0, t > 0.

Lemma 3.6. For all t > 1 and β > 1, ψ′′(t)ψ′(βt) −βψ′(t)ψ′′(βt) > 0.

Proof. Let’s set f(β) = ψ′′(t)ψ′(βt) −βψ′(t)ψ′′(βt). Note that f(1) = 0. We have

f′(β) = tψ′′(t)ψ′′(βt) −ψ′(t)ψ′′(βt) −βtψ′(t)ψ′′′(βt) = ψ′′(βt)[tψ′′(t) −ψ′(t)] −βtψ′(t)ψ′′′(βt).

According to Lemma 3.5, we have tψ′′(t) +ψ′(t) > 0, for all t > 0. By definition of the kernel function,
we have:

1. ψ′′(βt) = 2 + 4
(βt)3 > 2, for all t > 0;

2. for all t > 1, ψ′(t) = 2t− 2
t2 > 0;
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3. for all t,β > 0, ψ′′′(βt) = − 12
(βt)4 < 0,

then, we obtain the result.

Lemma 3.7 ([16]). We have ψ′′′(t) = −12
t4 < 0, for all t > 0, thence ψ satisfies the next mentioned properties.

Case1: For all t < 1, we have:

3(t− 1)2 < ψ(t) < (t−
1
t2 )(t− 1) < (1 +

2
t3 )(t− 1)2.

Case2: For all t > 1, we have:

3(t− 1)2 > ψ(t) > (t−
1
t2 )(t− 1) > (1 +

2
t3 )(t− 1)2.

Lemma 3.8. If we have the following condition satisfied: ψ(t1) = ψ(t2), then one has the satisfaction of the
following properties.

1. If t1 6 β 6 t2 and β > 1, then ψ(βt1) 6 ψ(βt2).
2. If t1 6 1 6 t2, then ψ′(t1) 6 0 and ψ′(t2) > 0 and ψ′(t2) < −ψ′(t1).
3. If t1 > β 6 t2 and β > 1, then −ψ′(βt1) 6 ψ′(βt2).

Proof.

1. We consider h(β) = ψ(βt2) −ψ(βt1), hence h(1) = 0, and

h′(β) = t2ψ
′(βt2) − t1ψ

′(βt1).

By definition of the new kernel function, we have ψ′′(t) > 2, for all t > 0, which gives us the increase of
the function ψ′, we obtain:

h′(β) = t2ψ
′(βt2) − t1ψ

′(βt1) > (t2 − t1)ψ
′(βt2) −ψ

′(βt1) > 0,

per conclusion, h is an increasing function,

h(β) > h(1) = 0,

and we obtain the result.

2. We know that ψ′′(t) > 0, for all t > 0, and ψ′(1) = 0, then, ψ′ is an increasing function, therefore

ψ′(t1) 6 ψ
′(1) = 0 6 ψ′(t2).

In the second part of the proof, we have by assumption and Lemma 3.7 that

3(t1 − 1)2 < ψ(t1) = ψ(t2) < 3(t2 − 1)2,

thus 1 − t1 < t2 − 1. On the other hand, let us assume that −ψ′(t1) < ψ′(t2) and from Lemma 3.7, we
obtain

ψ(t2) > (t2 −
1
t2

2
)(t2 − 1) > (t2 −

1
t2

2
)(1 − t1) > −(t1 −

1
t2

1
)(1 − t1) = (t1 −

1
t2

1
)(t1 − 1) > ψ(t1)

and this is a contradiction with our assumptions.
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3. Let’s put g(β) = ψ′(βt2) +ψ
′(βt1). We have ψ′′(t) > 0, for all t > 0, then

g′(β) = t2ψ
′′(βt2) + t1ψ

′′(βt1) > 0,

therefore, g is an increasing function and from the second property of Lemma 3.8 we get:

g(β) > g(1), ψ′(βt2) +ψ
′(βt1) > ψ

′(t2) +ψ
′(t1) > 0.

These will give us an increasing function and we will then get the result.

Lemma 3.9. Let ψ(t) be a kernel function, we have ψ(t) 6 3(t− 1)2, for all t > 0.

Proof. Using Taylor’s development, we obtain

ψ(t) = ψ(1) +ψ′(1)(t− 1) +
1
2
ψ′′(1)(t− 1)2 +

1
6
ψ′′′(ζ)(ζ− 1)3

6
1
2
ψ′′(1)(t− 1)2 = 3(t− 1)2, for all ζ ∈]1, t[.

Proposition 3.10.

1. Let ρ : [0,+∞[→ [1,+∞[ is an inverse function of the kernel function ψ.
2. The inverse function of −1

2ψ
′ is noted by η : [1,+∞[→]0, 1[ .

Lemma 3.11. Let be ρ the inverse function of the kernel function ψ, then 1 +
√
s
3 6 ρ(s) 6 1 +

√
s, s > 0.

Proof. Let s = ψ(t), t > 1, i.e., ρ(s) = t, t > 1, therefore: s = t2 + 2
t − 3, t > 0 and we have also

ψ′′(t) > 2⇔
∫t

1

∫x
1
ψ′′(y)dydx >

∫x
1

2dydx,

then
s = ψ(t) > (t− 1)2,

so
ρ(s) = t <

√
s+ 1. (3.4)

And on the other hand, applying Lemma 3.7 (Case 2), we find

s = ψ(t) < 3(t− 1)2 ⇔ t− 1 >
√
s

3
⇔ t > 1 +

√
s

3
. (3.5)

From (3.4) and (3.5) we get the result.

Lemma 3.12. Let δ(V) defined in (3.3), we have

1. δ(V) >
√
Ψ(V)

2 ;

2. ‖V‖ 6 n+
√
Ψ(V) 6 n+

√
2δ(V).

Proof.

1. We use the second inequality of the Lemma 3.9,

Ψ(V) =

m∑
i=1

ψ(λi(V)) 6
m∑
i=1

ψ ′(λi(V))
2

2
=

1
2
‖Ψ(V)‖2 = 2δ(V)2.

And we get the outcome of lemma.
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2. From Lemma 3.9, we have:

Ψ(V) =

n∑
i=1

ψ(λi(V)) >
n∑
i=1

(λi(V) − 1)2 > tr(V)2 −n2,

so
‖V‖ 6

√
n2 +Ψ(V) 6 n+

√
Ψ(V) 6 n+

√
2δ(V).

Lemma 3.13. Let β > 1. Then, we have ψ(βt) 6 ψ(t) + (β2 − 1)t2.

Proof. Let us define the kernel function, we have

ψ(βt) −ψ(t) = t2(β2 − 1) +
2
t
(

1
β
− 1),

we have β > 0, so β− 1 > 0 and 1
β − 1 < 0. Then, we have ψ(βt) −ψ(t) 6 t2(β2 − 1).

Lemma 3.14. Let 0 < θ < 1 and V+ = V√
1−θ

, then

Ψ(V+) 6 Ψ(V) +
θ(n+ 2

√
nΨ(V) +Ψ(V))

1 − θ
,

and:

Ψ0 6 τ+
θ(n+ 2

√
nτ+ τ)

1 − θ
.

Proof. From Lemma 3.13, with β = 1√
(1−θ)

, we obtain

Ψ(V+) 6 Ψ(V) +
n∑
i=1

(β2 − 1)(λi(V))2 = Ψ(V) +
θ(tr(V))2

1 − θ

and from Lemma 3.12, we get the result.

Theorem 3.15 ([16]). Let ρ be the inverse function of ψ(t), for all t > 1, we have

Ψ(βV) 6 nψ(βρ(
Ψ(V)

n
)), V ∈ Sn++, β > 1.

Lemma 3.16. Let 0 6 θ < 1, V+ = V√
1−θ

, if Ψ(V) 6 τ, thus, we have

Ψ(V+) 6
3

1 − θ
(θ
√
n+
√
τ)2 = Ψ0.

Such that, Ψ0 is an upper bound for Ψ throughout our algorithm.

Proof. We have 1√
1−θ

> 1 and ρ(Ψ(V)
n ) > 1, so ρ(

Ψ(V)
n )√

1−θ
> 1. From Theorem 3.15, we find

Ψ(V+) 6 nψ(
1√

1 − θ
ρ(
Ψ(V)

n
)).

Using the last inequality of Lemma 3.9, we obtain

Ψ(V+) 6 3n(
1√

1 − θ
ρ(
Ψ(V)

n
) − 1)2,

and from the first inequality of Lemma 3.11, we have

Ψ(V+) 6 3n(
1√

1 − θ
(1 +

√
Ψ(V)

n
) − 1)2 =

3n
1 − θ

(1 +

√
Ψ(V)

n
−
√

1 − θ)2 6
3

1 − θ
(θ
√
n+
√
τ)2 = Ψ0.
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4. Analysis of complexity

For each external iteration, we will compute in this section the number of inner iterations for the
convex problem, using the proximity function defined by the new kernel function proposed in this paper,
following the proximity function approach in [20].

4.1. The step size α
We calculate an approximation of the value of a step α and the resulting decrease of the barrier

function. We have the new solution, which is in the following form:

X := X+αβ∆X, S := S+αβ∆S.

We choose α as the largest step, so that iterating (X,S) is strictly feasible, i.e., (X,S) ∈ F̊, where

αS = min{α : S+αβ∆S � 0},

and
αX = min{α : C(X) +αβ∇C(X)T∆X ≺ 0},

then
α = min(0.95 min(αX,αS),α).

We have
S+ = S+αβ∆S = D−1SV−1(V +αβDS)D

−1

and
C(X+) = C(X) +αβ∇C(X)T∆X = D(V +αβDX)V

−1C(X)D.

From (2.6), we get:
µV2 = D−1C(X)SD.

So

V2
+ =

D−1C(X)SD

µ
= (V +αβDX)(V +αβDS),

and subsequently
V+ =

√
(V +αβDX)(V +αβDS).

Forall α > 0, we put
F(α) = Ψ(V+) −Ψ(V).

F(α) is taken as the difference of the proximity between the new and the old iterations. The exponential
convexity of the function Ψ gives us

Ψ(V+) 6
Ψ(V +αβDX) +Ψ(V +αβDS)

2
,

and, if we posit

F1(α) =
Ψ(V +αβDX) +Ψ(V +αβDS)

2
−Ψ(V), (4.1)

we remark that
F1(α) > F(α) and F1(0) = F(0) = 0.

We have
F ′1(α) =

1
2
tr[∇Ψ(VX)DX +∇Ψ(VX)DS],

such as
VX = V +αβDX and VS = V +αβDS
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and
F ′′1 (α) =

1
2

tr[∆Ψ(VX)D2
X +∆Ψ(VS)D

2
S].

We get
F1(0) = −2δ2(V).

To simplify all that follows we will put δ(V) = δ and Vmin = min λi(V). The following lemmas are based
on references [5, 7]:

Lemma 4.1. Let F1(α) is defined in (4.1), then we have

F ′′1 (α) 6 2δ2Ψ ′′(Vmin − 2αδ).

Lemma 4.2. F ′1(α) 6 0 is valid if α satisfies the inequality

−ψ′(Vmin − 2αδ) +ψ ′(Vmin) 6 2δ. (4.2)

Lemma 4.3. The largest step size α that satisfies the inequality (4.2) is given by:

α1 :=
1

2δ
(ρ(δ) − ρ(2δ)).

Lemma 4.4. Let α1, be as defined in Lemma 4.3, then, we obtain

α1 >
1

ψ′′(ρ(2δ))
= α2.

Lemma 4.5. If the step size α is such that α 6 α1, so

F(α) 6 −αδ2. (4.3)

4.2. Theoretical number of iterations in an algorithm
4.2.1. Outer iterations

About the outer iterations, it can be established from the following results.

Lemma 4.6 ([16]). Let h(t) be a twice differentiable convex function with h(0) = 0, h′(0) < 0 and let h(t) attains
its (global) minimum at t > 0. If h′′(t) is increasing for t ∈ [0, t∗], one has

h(t) =
th′(0)

2
.

Theorem 4.7. If Ψ > 1, we have

F(α2) 6 −
Ψ

1
4

97
.

Proof. From the second inequality of Lemma 4.4 and the definition of the inverse of −1
2ψ
′, whence

−(2t−
2
t2 ) = 2s,

we obtain
t = η(s) >

1√
s+ 1

. (4.4)

From (3.2) and Lemma 4.4, it follows that

α2 =
1

ψ′′(η(2δ))
=

1
2 + 4

(η(2δ))3

,
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from (4.4), we get

α2 >
1

2 + 4(2δ+ 1)
3
2
= α̃.

From Lemma 4.5, hence

F(α̃) 6 −α̃δ2 = −
δ2

2 + 4(2δ+ 1)
3
2
6 −

δ2

4δ+ 4(4δ)
3
2
6 −

δ
1
2

68
.

With the first property of Lemma 3.12 we obtain the following result:

F(α̃) 6 −
Ψ

1
4

97
6 Θ(Ψ

1
4 ).

Lemma 4.8. If α ∈ [0, 1], then
(1 − t)α 6 1 −αt, ∀t > 0.

Proof. Suggest
F(t) = (1 − t)α − (1 −αt).

We achieve the following

1. F(0) = 0;
2. F′(t) = −α(1 − t)α−1 +α;
3. F′(0) = 0;
4. F′′(t) = α(α− 1)(1 − t)α−1.

By definition, we have
F′′(t) < 0, ∀t ∈ [0, 1],

so, F′ is a deceasing function, with F′(t) < F′(0) = 0. And we conclude the same for the function f, which
will give us the result.

Lemma 4.9. We note by Ψ0 the first update of Ψ(v) and Ψj, j = 1, 2, . . . ,K sequence of values of Ψ(v) in the inner
iterations,

K 6

4Ψ
1
4
0

3β

 ,

where
Ψ0 =

3
1 − θ

(θ
√
n+
√
τ)2.

Proof. Let t0, t1, . . . , tK be a sequence of positive numbers that verifies

tj+1 6 tj −βt
1−γ
j , j = 0, 1, . . . ,K− 1. (4.5)

According to (4.5) and Lemma 4.8, we get

0 < tγj+1 6 (tj −βt
1−γ
j )γ = tγj (1 −βt−γj )γ 6 tγj (1 −βγt−γj ) = tγj −βγ.

By recurrence we obtain
0 < tγK 6 tγ0 −Kβγ

and we have

K 6

[
t
γ
0
βγ

]
. (4.6)
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Furthermore, according to Theorem 4.7,

Ψj+1 −Ψj 6 f(α2) 6 −
Ψ

1
4
j

97
,

then it is assumed that

0 6 Ψj+1 6 Ψj −
Ψ

1
4
j

97
.

Using (4.5), we get

0 6 Ψ
1
4
j+1 6 Ψ

1
4
j −

1
384

.

We use the inequality (4.6) and obtain the number of outer iterations is given as:

K 6

[
384Ψ

1
4
0

]
= Θ(n

1
4 ).

4.2.2. Inner iterations
Lemma 4.10. With a given accuracy ε > 0, we obtain

k >
1
θ

log
n

ε
= Θ

(
log

n

ε

)
.

Proof. The central path parameter is µ0 = 1, µk = (1 − θ)kµ0 and nµ 6 ε, so, we have:

n(1 − θ)k 6 ε,

and with the following property:
− log(1 − θ) > θ.

Thus, we conclude the number of inner iterations in the following form:

log
n

ε
.

Remark 4.11. The iterations bound becomes:

Θ(n
1
4 log

n

ε
).

5. Conclusion

In this paper, the best polynomial theoretical complexity Θ(n
1
4 log nε ) has been found until now to

solve convex nonlinear semi-definite problems based on the following methods. The first one concerns
the quasi-Newton BFGS method where the following difficulties have been solved; the second derivatives
where they are not available or difficult to compute and the algorithmic properties with the memory
space is reduced, subsequently we combine it with the second technique called kernel function where
the properties are needed to get a new direction’s Newton, and to guarantee at each iteration, a strictly
feasible solution, we have performed the Armijo test to have iterative steps. For future research we could
focus on infeasible problems.
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