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Abstract

Visceral leishmaniasis (VL), or black fever (kala-azar), is a fatal parasitic disease that infects a hosts internal organs. Ac-
cording to the World Health Organization (WHO), leishmaniasis is a major public health problem that has been neglected, and
the control measures in various seriously infected areas have not been successful. Therefore, in order to analyze and control
the spread of leishmaniasis, we establish a diffusive model with direct and indirect infection rate. Firstly, we prove the uniform
bounds of solutions of the system, and analyze the sensitivity of the parameters. Secondly, sufficient conditions for the existence
of the disease-free equilibrium and the endemic equilibrium are given, respectively. In addition, the stability of the model is
studied in local and global sense by using the Routh Hurwitz criterion and Lyapunov theory, we prove that the disease-free equi-
librium is globally asymptotically stable when the basic reproduction number R0 6 1 and the endemic equilibrium is globally
asymptotically stable when the basic reproduction number R0 > 1. Finally, the theoretical results of the diffusive Leishmaniasis
model with direct and indirect infection rate are verified by simulation. The results show that direct or indirect infection rates
may affect the prevalence of the disease.

Keywords: Leishmaniasis disease, direct and indirect infection rate, diffusive model, globally asymptotically stable, Lyapunov
functions.
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1. Introduction

Leishmaniasis is the world’s second largest vector borne disease parasitic on humans, especially
caused by protozoan parasites belonging to the genus Leishmania. Visceral leishmaniasis (VL), post
kala azar cutaneous leishmaniasis (PKDL), cutaneous leishmaniasis (CL) and cutaneous leishmaniasis
involve mucosal lesions, also known as mucocutaneous leishmaniasis (MCL), which are four different
clinical manifestations of the disease, the main symptoms are weight loss, anemia, hepatosplenomegaly
and irregular fever. Contrary to well-known NTDS such as: endemic treponematoses, dracunculiasis,
and trypanosomiasis, if patients do not receive treatment of kala azar, more than 95% of cases may be
fatal. However, even after treatment, VL infection can still become post kala azar cutaneous leishmaniasis
(PKDL) ([31]). It has resulted in the death of 20,000 to 40,000 people worldwide ([40]), with 200,000 to
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400,000 new cases every year ([18]). India, East Africa and Brazil are mainly affected by it. Nearly 5000
to 9000 cases of visceral leishmaniasis occur every year, but only 25% to 45% of cases are reported to the
World Health Organization (WHO) ([9]). Considering its transmission and death, it is considered as one
of the major parasitic diseases.

In order to control and prevent leishmaniasis, we can diminish the morbidity and mortality of leishma-
niasis through early diagnosis and effective and timely treatment. It also helps to diminish the transmis-
sion rate and observe the spread of diseases. Treatment of leishmaniasis, especially visceral leishmaniasis.
Vector control helps to reduce the spread of diseases by reducing the number of sandflies. To this end,
we can effectively reduce the spread of leishmaniasis through pesticide spraying, personal protection,
community adaptation education and mobilization, etc. ([2, 7, 12, 32, 37, 39]).

Epidemiology plays a significant role in different disciplines like medical, engineering, chemistry,
physics, economics and other disciplines. A diseases model is investigated with the help of well-known
branches of mathematics like spatio-temporal, stochas-tic, fractional, and fractal fractional ([1, 29, 30, 33–
35]). In 1996, Dye introduced the ordinary differential equation (ODE) model to describe the prevalence
of VL, but this model only considers susceptible, latent, infectious, and recovering populations ([14]).
Courtney et al. ([10]) improved Dye’s model, taking the dog population as an infection source, and
determined that the human infection rate was significantly affected by the size of the dog population. In
2013, Ribas et al. ([36]) proposed a mathematical model for the optimal control of zoonotic VL. Agyingi et
al. ([3]) proposed a model considering the transmission dynamics of leishmaniasis. ELmojtaba et al. ([15])
conducted a mathematical analysis on the dynamics of Sudan, the results show that human treatment
helps in disease control, and its synergy with vector control will more likely result in the elimination of
the disease. Almeida et al. ([11]) proposed a mathematical model of the immune systems response in
CL. In 2017, Boukhalfa et al. ([8]) proposed a mathematical model to describe the dynamics of visceral
leishmaniasis in the dog population, and this study identifies the key parameters that play a key role on
the disease dynamics, and thereby contributing in the design of effective control strategies. Coffeng et al.
([9]) investigated the detection, control and impact of visceral leishmaniasis VL in the Indian subcontinent.
In 2018, Mubayi et al. ([28]) studied the epidemiological comparison of different cutaneous leishmaniasis
outbreaks in Madrid and Tolima regions by estimating the number of reproduction. Ghosh et al. ([16])
studied the epidemiology of post kala azar cutaneous leishmaniasis (PKDL) in different regions of India
in 2021, and proposed that PKDL caused many social problems. In 2023, Wang et al. ([41]) investigated
the effects of spatial heterogeneity and temporal periodicity on disease transmission, a nonlocal periodic
reaction-diffusion equation model is developed, explain that periodic delays can reduce the risk of disease
transmission under certain conditions. Different from the nonlinear incidence rate of other articles ([17,
19–21, 27, 42, 44, 45, 47]), we not only consider spatial diffusion, but also introduce the nonlinear infection
rate bIp (0 < p < 1) between infected individuals and infected vectors, therefore, the indirect infection
rate of susceptible and infected individuals can be expressed as αbSqIp, where α indicates the contact
rate between susceptible population and infection vector. This is related to the chemotaxis of mammals in
spatial movement, chemotaxis ([22, 23]), the process by which organisms (or cells) migrate according to an
external chemical gradient, in biological populations, orderly flocks of birds and fish occur by changing
the movement of individuals relative to their neighbors. In infectious diseases, there are also chemotaxis
phenomena among susceptible individuals, infected vectors and infected individuals. On the one hand,
susceptible individuals may indirectly become latent individuals in poultry by contacting with infectious
vectors. On the other hand, susceptible individuals may also become latent individuals by direct contact
with infected individuals in the spatial movement of the population. At the same time, compared with the
indirect infection, the direct infection rate will be higher than the indirect infection rate, so we use βSqI to
represent the direct infection rate of susceptible population and infected population, where β represents
the probability of direct contact between susceptible populations and infected populations. Based on the
above analysis, we will propose a diffusive Leishmaniasis model with direct and indirect infection rate.

The organizational structure of this paper is as follows. In Section 2, we establish a diffusive Leish-
maniasis model with direct and indirect infection rate, introduce the flow chart (Figure 1), and give
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parameter explanations in Table 1. In Section 3, we prove the uniform bounds of solutions of the system,
and investigate the sensitivity of the parameters. In Section 4, sufficient conditions for the existence of
the disease-free equilibrium and the endemic equilibrium are given, respectively. In addition, the local
stability analysis of the disease-free equilibrium and the endemic equilibrium are obtained, respectively.
In Section 5, by constructing various Lyapunov functions, the global stability analysis of the disease-free
equilibrium point and the endemic equilibrium are given, respectively. Some numerical simulations and
examples are presented in Section 6. Lastly, we end this paper with some conclusions and significance in
Section 7.

2. Formulation of model

In biology, spatial diffusion plays an important role in describing the spread of infectious diseases. In
order to design effective prevention and control measures, it is indispensable to study the spatial diffusive
behavior of individuals. The spatial diffusive model is widely used in the research of spatial transmission
of infectious diseases ([24, 26, 43, 46]). Therefore, we will propose a diffusive leishmaniasis model in this
section. On the other hand, in order to better describe the disease transmission between susceptible and
infected individuals, the nonlinear incidence form IpSq is used in certain situation, where 0 < p 6 1 and
q are positive constants. Several mathematical models with this incidence rate have been proposed to
investigate the dynamic of epidemic disease ([6, 20]). Different from the nonlinear incidence of the above
articles, we will also consider the direct infection rate and indirect infection rate between susceptible
individuals and infected individuals, which are represented by βSqI and αbSqIp, respectively. So we
proposed a diffusive Leishmaniasis model with direct and indirect infection rate as follows

∂S
∂t − dS∆S = Λ−αbSqIp −βSqI− δS, x ∈ Ω, t > 0,
∂L
∂t − dL∆L = αbSqIp +βSqI− (σ+ δ)L, x ∈ Ω, t > 0,
∂I
∂t − dI∆I = σL− (δ+ µ+ r)I, x ∈ Ω, t > 0,
∂R
∂t − dR∆R = rI− δR, x ∈ Ω, t > 0,
∂S(t,x)
∂n =

∂L(t,x)
∂n =

∂I(t,x)
∂n =

∂R(t,x)
∂n = 0, x ∈ ∂Ω, t > 0,

S(0, x) = S0(x) > 0, L(0, x) = L0(x) > 0, x ∈ Ω,
I(0, x) = I0(x) > 0, R(0, x) = R0(x) > 0, x ∈ Ω,

(2.1)

where Ω is a bounded smooth domain of RN (N > 1), the whole population is divided into four com-
partments named as: susceptible populations, latent populations (infected but not infectious), infected
and recovered populations, denoted by S(x, t),L(x, t),I(x, t) and R(x, t), respectively as shown in Figure
1. The parameters Λ, δ,σ,β,α,p,b,q, r and µ are positive constants, and Λ is the birth rate of the sus-
ceptible individuals, δ represented as mortality rate of people, σ signifies the transmission rate of latent
populations to infected populations and then again enter into infected class, β represents the probability
of direct contact between susceptible populations and infected populations, α represents the probability
of contact between susceptible individuals and infection vector, b is the infection parameter of infected
individuals to the vector, r signifies natural recovery rate of infected populations, µ represents the death
rate of infected populations due to leishmaniasis. The nonlinear infection rate βSqI denotes the direct
transmission of diseases between susceptible and infected individuals, and the nonlinear infection rate
αbSqIp denotes the indirect infection transmission between susceptible and infected individuals. The
positive constants dS,dL,dI, and dR are the diffusive rates of susceptible individuals, latent populations
(infected but not infectious), infectious, and recovered populations, respectively. The parameters and
physical relevance is summarized in Table 1. Homogeneous Neumann boundary conditions imply that
there is no population flow across the boundary ∂Ω. For any given continuous and nonnegative initial
data

(
S0(x),L0(x), I0(x),R0(x)

)
, system (2.1) admits a classical solution

(
S(x, t),L(x, t), I(x, t),R(x, t)

)
by

the standard existence theory of parabolic equations. We define the basic reproduction number:

R0 =

(
Λ

δ

)q (β+αb)σ

(σ+ δ)(δ+ µ+ r)
.
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By direct calculation it can be concluded that (2.1) has disease-free equilibrium (DFE) which is the only
non-negative constant equilibrium if R0 6 1. We use (S0,L0, I0,R0) to denote the DFE. The system (2.1)
has a constant endemic equilibrium (EE) if R0 > 1, which is unique. We use (S∗,L∗, I∗,R∗) to denote the
constant EE if it exists. The goal of this paper is to prove the global asymptotic stability of DFE and EE
by constructing various forms of Lyapunov functions.

Figure 1: System dynamic diagram of VL transmission model.

Table 1: Biological description of the parameters.
Parameter Environmental Interpretation Value

(S0,L0, I0,R0) Initial concentrations (sinπx,sinπx,sinπx,sinπx)
Λ Represented the birth rate of the susceptible individuals 1
δ Represented as mortality rate of people 0.5
σ Signifies the transmission rate of latent individuals to

infectious populations and then again enter into infected
class

0.4

β Represents the probability of direct contact between sus-
ceptible populations and infected populations

0.5(DFE) or 0.9(EE)

α Represents the probability of contact between suscepti-
ble individuals and infection vector

0.5

b Represents is the infection multiple of infected individ-
uals to the vector

0.4

r Signifies natural recovery rate of infected individuals 0.5
µ Represents the death rate of people due to leishmaniasis 0.5
dS Represents diffusive rates of susceptible individuals 1
dL Represents diffusive rates of latent populations(infected

but not infectious)
1

dI Represents diffusive rates of infectious populations 1
dR Represents diffusive rates of recovered populations 1
q Represents a positive constants -
p Represents a positive constants -

3. Analysis of model

3.1. Uniform bounds of solutions of system (2.1)

Proposition 3.1. According to the initial data, there is a positive number C1 such that the solution
(S,L, I,R) of (2.1) satisfies

‖S(., t)‖l∞(Ω) + ‖L(., t)‖l∞(Ω) + ‖I(., t)‖l∞(Ω) + ‖R(., t)‖l∞(Ω) 6 C1, ∀t > 0.
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In addition, there is a positive number C2 independent of the initial data such that

‖S(., t)‖l∞(Ω) + ‖L(., t)‖l∞(Ω) + ‖I(., t)‖l∞(Ω) + ‖R(., t)‖l∞(Ω) 6 C2, ∀t > T , (3.1)

for some large time T > 0.

Proof. Let

V(t) =

∫
Ω

[
S(x, t) + L(x, t) + I(x, t) + R(x, t)

]
dx, ∀t > 0.

According to (2.1), by calculation we have

dV(t)

dt
=

∫
Ω

[
Λ− δS− δL− (δ+ µ)I− δR

]
dx 6

∫
Ω

Λdx− δV(t).

Thus∫
Ω

[S(x, t)+L(x, t)+ I(x, t)+R(x, t)]dx 6 e−δt
∫
Ω

[S0(x)+L0(x)+ I0(x)+R0(x)]dx+
|Ω|Λ

δ
(1− e−δt), ∀t > 0.

In view of [13, Lemma 2.1] and the positiveness of S,L, I, and R, we obtain

‖S(., t)‖l∞(Ω) + ‖L(., t)‖l∞(Ω) + ‖I(., t)‖l∞(Ω) + ‖R(., t)‖l∞(Ω) 6 C1, ∀t > 0,

and

lim sup
t→∞

∫
Ω

[
S(x, t) + L(x, t) + I(x, t) + R(x, t)

]
dx 6

|Ω|Λ

δ
.

Combined with [13, Lemma 2.1], we can get that (3.1) holds.

3.2. Analysis of sensitivity of parameters

The parameters used in this model play a significant role in the dynamic process of disease. In this
section, we analyze the sensitivity of parameters as follows

ξnσ =

∂R0
R0
∂σ
σ

=
σ

R0
× ∂R0

∂σ
=

δ

σ+ δ
> 0, ξnβ =

∂R0
R0
∂β
β

=
β

R0
× ∂R0

∂β
=

β

β+αb
> 0,

ξnΛ =

∂R0
R0
∂Λ
Λ

=
Λ

R0
× ∂R0

∂Λ
= q > 0, ξnδ =

∂R0
R0
∂δ
δ

=
δ

R0
× ∂R0

∂δ
= −q−

δ

δ+ µ+ r
< 0,

ξnµ =

∂R0
R0
∂µ
µ

=
µ

R0
× ∂R0

∂µ
=

−µ

δ+ µ+ r
< 0, ξnr =

∂R0
R0
∂r
r

=
r

R0
× ∂R0

∂r
=

−r

δ+ µ+ r
< 0,

ξnα =

∂R0
R0
∂p
p

=
α

R0
× ∂R0

∂α
=

αb

δ+ µ+ r
> 0, ξnb =

∂R0
R0
∂b
b

=
b

R0
× ∂R0

∂b
=

αb

δ+ µ+ r
> 0.

The above results conclude that σ,β,Λ,α,b are sensitive, and the rest are insensitive.

4. Local stability analysis

In this section, we will use the following recognized results to study the local stability of the spatial
diffusive model of leishmaniasis at the equilibrium point of the model.

We first study the existence and uniqueness of nonnegative equilibria, which fulfills

Λ−αbSqIp −βSqI− δS = 0, αbSqIp +βSqI− (σ+ δ)L = 0, σL− (δ+ µ+ r)I = 0, rI− δR = 0.
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Obviously, system (2.1) always has a disease-free equilibrium:

E0 = (S0,L0, I0,R0) = (
Λ

δ
, 0, 0, 0).

Next, we need to determine the existence of endemic equilibrium (EE). It is clear that the EE of (2.1)
satisfies: {

rI = δR, σL = (δ+ µ+ r)I, αbSqIp +βSqI = (σ+ δ)L,
Λ = αbSqIp +βSqI+ δS = δS+ (σ+ δ)L.

So, we have R = rI
δ , I = σ

(δ+µ+r)L, and S = (
(σ+δ)(δ+µ+r)pL

αbσpLp+(βσ)(δ+µ+r)p−1L
)

1
q . Therefore, L satisfies

Λ− (σ+ δ)L− δ(
(σ+ δ)(δ+ µ+ r)pL

αbσpLp + (βσ)(δ+ µ+ r)p−1L
)

1
q = 0.

Let us take function as F(L) = Λ− (σ+ δ)L− δ(
(σ+δ)(δ+µ+r)pL

αbσpLp+(βσ)(δ+µ+r)p−1L
)

1
q = 0, F ′(L) can be obtained by

taking the derivative, which is

F ′(L) = −(σ+ δ) −
δ

q
(

(σ+ δ)(δ+ µ+ r)pL

αbσpLp + (βσ)(δ+ µ+ r)p−1L
)

1
q−1[

αbσpLp(σ+ δ)(δ+ µ+ r)p(1 − p)

(αbσpLp + (βσ)(δ+ µ+ r)p−1L)
2 ].

Obviously, when 0 < p < 1 or p = 1, F ′(L) < 0. That is, when 0 < p < 1, F(L) is monotonically
decreasing in [0,+∞) with F(0) = Λ > 0 and lim

L→+∞ F(L) < 0, then there exists a unique positive constant

L∗ such that F(L∗) = 0. To sum up, when 0 < p < 1 or p = 1 is satisfied, there will be a unique positive
equilibrium point E∗. For the case 0 < p < 1, the unique endemic equilibrium (S∗,L∗, I∗,R∗) can be
explicitly expressed as

(S∗, L∗, I∗, R∗) = ( (
(σ+ δ)(δ+ µ+ r)p

αbσpL∗
p−1 + (βσ)(δ+ µ+ r)p−1 )

1
q , L∗,

σ

δ+ µ+ r
L∗,

rσ

δ(δ+ µ+ r)
L∗).

For the case p = 1, it is evident that (2.1) has a unique EE

(S∗, L∗, I∗, R∗) = ( (
(σ+ δ)(δ+ µ+ r)

(αb+β)σ
)

1
q ,

Λ[(αb+β)σ]
1
q − δ[(σ+ δ)(δ+ µ+ r)]

1
q

[(αb+β)σ]
1
q (σ+ δ)

,

σ

δ+ µ+ r
(
Λ[(αb+β)σ]

1
q − δ[(σ+ δ)(δ+ µ+ r)]

1
q

[(αb+β)σ]
1
q (σ+ δ)

),

rσ

δ(δ+ µ+ r)
(
Λ[(αb+β)σ]

1
q − δ[(σ+ δ)(δ+ µ+ r)]

1
q

[(αb+β)σ]
1
q (σ+ δ)

)),

the sufficient and necessary condition is Λ[(αb+β)σ]
1
q − δ[(σ+ δ)(δ+ µ+ r)]

1
q > 0, i.e., R0 > 1. On the

other hand, when the coefficients satisfy Λ[(αb+β)σ]
1
q − δ[(σ+ δ)(δ+ µ+ r)]

1
q 6 0, i.e., R0 6 1, system

(2.1) has a unique equilibrium, which is the DFE, E0 = (S0,L0, I0,R0) = (Λδ , 0, 0, 0).
Before developing our argument, let us set up the following notations.

(i) 0 = µ0 < µ1 < µ2 < · · · < µi → +∞ are the eigenvalues of −∆ on Ω under homogeneous Neumann
boundary condition.

(ii) E(µi) is the space of eigenfunctions corresponding to µi for i = 0, 1, 2, . . ..
(iii) Xij := {c · φij|c ∈ R4}, where φij are orthonormal basis of E(µi) for j = 1, 2, . . . ,dimE(µi).
(iv) X := {E = (S,L, I,R) ∈ C1(Ω)| ∂S∂n = ∂L

∂n = ∂I
∂n = ∂R

∂n = 0, x ∈ ∂Ω}, and so X =
⊕∞
i=1 Xi, where

Xi =
⊕dimE(µi)
j=1 Xij.
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We next investigate the local stability of DFE and EE in Theorems 4.1 and 4.2, respectively.

Theorem 4.1. The disease-free equilibrium E0 = (S0,L0, I0,R0) = (Λδ , 0, 0, 0) is locally asymptotical stable (LAS)
if R0 6 1.

Proof. Now, we discuss the local stability of the disease-free equilibrium (DFE) state E0 = (Λδ , 0, 0, 0) of
system (2.1). Let G = diag(dS,dL,dI,dR), H = G∆+ FE(E0) = G∆+ (aij)4×4, where

FE(E0) =


−δ 0 −β(Λδ )

q
0

0 −(σ+ δ) β(Λδ )
q

0
0 σ −(δ+ µ+ r) 0
0 0 r −δ

 .

The linearization of (2.1) at the disease-free equilibrium E0 = (Λδ , 0, 0, 0) can be expressed by Et = HE,
and for each i > 1, Xi is invariant under the operator H, so λ is the eigenvalue of H in Xi if and only if it
is the eigenvalue of matrix −µiG+ FE(E0). Consider the characteristic equation

ϕi(λ) := |λI+ µiG− FE(E0)| = (λ+ µidS + δ)(λ+ µidR + δ)(λ
2 + aiλ+ bi), (4.1)

where

ai = µidL + µidI + (σ+ δ) + (δ+ µ+ r),

bi = µi
2dLdI + µidL(δ+ µ+ r) + µidI(σ+ δ) + (σ+ δ)(δ+ µ+ r) −βσ

(
Λ

δ

)q
.

Obviously, (4.1) has two roots λ1 = −dSµi − δ and λ2 = −dRµi − δ. Notice if R0 6 1, we can obtain
(β+ αb)σ

(
Λ
δ

)q
6 (σ+ δ)(δ+ µ+ r) and βσ

(
Λ
δ

)q
< (σ+ δ)(δ+ µ+ r), then ai > 0 and bi > 0. Thus, it

follows from Routh-Hurwitz criterion that any root of the following equation

g(λ) = λ2 + aiλ+ bi = 0

has negative real part for R0 6 1. Therefore, DFE is locally asymptotically stable.

Theorem 4.2. The endemic equilibrium EE is locally asymptotical stable (LAS) if R0 > 1.

Proof. When R0 > 1, system (2.1) has a unique positive endemic equilibrium (EE). Now, we discuss the
local stability of the endemic equilibrium (EE) state of system (2.1), the endemic equilibrium (EE) is as
follows

(S∗, L∗, I∗, R∗) = ( (
(σ+δ)(δ+µ+r)p

αbσpL∗
p−1+(βσ)(δ+µ+r)p−1 )

1
q , L∗, σ

δ+µ+rL∗,
rσ

δ(δ+µ+r)L∗).

Let G = diag(dS,dL,dI,dR), H = G∆+ FE(E∗) = G∆+ (aij)4×4, where

FE(E∗) =


−qαbS∗

q−1I
p
∗ − qβS∗

q−1 − δ 0 −pαbS∗
qI
p−1
∗ −βS∗

q 0
qαbS∗

q−1I
p
∗ + qβS∗

q−1 −(σ+ δ) pαbS∗
qI
p−1
∗ +βS∗

q 0
0 σ −(δ+ µ+ r) 0
0 0 r −δ

 .

The linearization of (2.1) at the endemic equilibrium E∗ = (S∗,L∗, I∗,R∗) can be expressed by Et = HE,
and for each i > 1, Xi is invariant under the operator H, so λ is the eigenvalue of H in Xi if and only if it
is the eigenvalue of matrix −µiG+ FE(E∗). Consider the characteristic equation

ϕi(λ) :=
∣∣λI+ µiG− FE(E∗)

∣∣ = (λ+ dRµi + δ)(λ
3 +Aiλ

2 +Biλ+Ci) = 0, (4.2)

for the convenience of calculation, we also make the following marks

m = qαbS∗
q−1I

p
∗ + qβS∗

q−1 + δ > 0, n = pαbS∗
qI
p−1
∗ > 0,
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where

Ai = µi(dS + dL + dI) +m+ (σ+ δ) + δ+ (δ+ µ+ r),

Bi = µi
2(dSdL + dSdI + dLdI) + µi[dS(σ+ 2δ+ µ+ r) + dL(m+ δ+ µ+ r) + dI(m+ σ+ δ)]

+m(σ+ 2δ+ µ+ r) + δ(δ+ µ+ r) + ((β+αb)σ+ 1)2Sq∗ − (σ+ δ)2(δ+ µ+ r)2,

Ci = µi
3dSdLdI + µi

2[dSdL(δ+ µ+ r) + dSdI(σ+ δ) + dLdIm]

+ µi{dS[δ(δ+ µ+ r) + (δ+ µ+ r+n+βSq∗ )σ] + dLm(δ+ µ+ r) + dIm(σ+ δ)}

+mδ(δ+ µ+ r) + ((β+αb)σ+ 1)2Sq∗ − (σ+ δ)2(δ+ µ+ r)2.

By direct calculation, we can obtain

AiBi −Ci = µi
3(dS

2dL + dS
2dI + dSdL

2 + dSdI
2 + dL

2dI + dLdI
2 + 2dSdLdI)

+ µi
2[dS

2(σ+ 2δ+ µ+ r) + (dSdL + dSdI)(2m+ 2σ+ 2µ+ 2r+ 5δ)]

+ µi
2dLdI(m+ σ+ 2µ+ 2r+ 4δ)

+ µi{dL
2(m+ δ+ µ+ r) + dI

2(m+ σ+ δ) + dS[(σ+ 2δ+ µ+ r)(m+ 1)]}

+ µidL[(m+ δ+ µ+ r)(δ+ 1) +m+ ((β+αb)σ)2Sq∗ − (σ+ δ)2(δ+ µ+ r)2]

+ µidI[(m+ δ)(δ+ µ+ r) + (δ+ µ+ r+n+βSq∗ )σ]

+m[(σ+ δ)2 + (2δ+ µ+ r)2] + (σ+ δ)(δ+ µ+ r)(σ+ 2δ+m)

+ ((β+αb)σ)2Sq∗ − (σ+ δ)2(δ+ µ+ r)2 + (m+n+βSq∗ )σ(2δ+ µ+ r).

Obviously, equation (4.2) has a root λ1 = −(dRµi + δ). Notice Sq∗ = (Λδ )
q 1
R0

, when [(β+ αb)σ]2Sq∗ − (σ+

δ)2(δ+ µ+ r)2 > 0, that is, when (Λδ )
q (β+αb)σ
(α+δ)(δ+µ+r) = R0 > 1 we can get Ai > 0, Bi > 0, Ci > 0 and

AiBi −Ci > 0. Thus, it follows from Routh-Hurwitz criterion that any root of the following equation

g(λ) = λ3 +Aiλ
2 +Biλ+Ci = 0

has negative real part. Therefore, if R0 > 1, EE is locally asymptotically stable.

5. Global stability analysis

Theorem 5.1. Assume that p = 1, the disease-free equilibrium E0 = (S0,L0, I0,R0) = (Λδ , 0, 0, 0) is globally
asymptotical stable (GAS) if R0 6 1.

Proof. For the disease-free equilibrium of (2.1), there are two cases. We define two different Lyapunov
functions.

Case 1: p = q = 1, we define

V1(t) =
∫
Ω [S− S0 lnS+ L+ σ+δ

σ I+ βS0
r R]dx.

For all t > 0, by some straightforward computations, it follows from R0 6 1 that

dV1(t)

dt
= −

∫
Ω

dS|∇S|2(
S0

S2 )dx+

∫
Ω

{(1 −
S0

S
)[Λ− (αb+β)SI− δS] + (αb+β)SI− (σ+ δ)L

+
σ+ δ

σ
[σL− (δ+ µ+ r)I] +

βS0

r
(rI− δR)}dx

= −

∫
Ω

dS|∇S|2(
S0

S2 )dx+

∫
Ω

{Λ(2 −
S0

S
−
S

S0
) + [(αb+β)(

Λ

δ
) −

(σ+ δ)(δ+ µ+ r)

σ
]I}dx.

From the relationship between geometric mean and arithmetic mean, we can obtain Λ(2 − S0
S − S

S0
) 6 0.

Further we obtain dV1(t)
dt 6 0 and dV1(t)

dt = 0 if and only if (S0,L0, I0,R0) = (Λδ , 0, 0, 0). Therefore, we can
get that DFE is globally asymptotically stable when p = q = 1.
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Case 2: p = 1, q 6= 1, we define

V2(t) =
∫
Ω {S[1 − 1

1−q(
S0
S )
q
] + L+ σ+δ

σ I+ βS0
r R}dx.

Since R0 6 1 again, by direct computation, we have

dV2(t)

dt
= −

∫
Ω

qdS|∇S|2(
S0
q

Sq+1 )dx+

∫
Ω

{[1 − (
S0

S
)
q

][Λ− (αb+β)SqI− δS] + (αb+β)SqI− (σ+ δ)L

+
σ+ δ

σ
[σL− (δ+ µ+ r)I] +

βS0

r
(rI− δR)}dx

= −

∫
Ω

qdS|∇S|2(
S0
q

Sq+1 )dx+

∫
Ω

{Λ(1 −
S

S0
)[1 − (

S0

S
)q] + [(αb+β)(

Λ

δ
)q −

(σ+ δ)(δ+ µ+ r)

σ
]I}dx.

From the relationship between geometric mean and arithmetic mean, we can obtain Λ(1− S
S0
)[1−(S0

S )
q] 6

0. Further we obtain dV2(t)
dt 6 0 and dV2(t)

dt = 0 if and only if (S0,L0, I0,R0) = (Λδ , 0, 0, 0). Therefore, we
can get that DFE is globally asymptotically stable when p = 1, q 6= 1.

To sum up, the above four situations are analyzed. Note that dVi(t)dt = 0 (i = 1, 2) if and only if
E0 = (S0,L0, I0,R0) = (Λδ , 0, 0, 0). Thus, Vi(t) (i = 1, 2) are Lyapunov functions of (2.1) for four cases,
respectively. By some standard arguments, it is evident that

(S(x, t),L(x, t), I(x, t),R(x, t))→ (
Λ

δ
, 0, 0, 0) in [L2(Ω)]4, as t→ +∞.

From the uniform boundedness (3.2) in Proposition 3.1, the parabolic Lp-theory, sobolev embedding
theorem and a standard compactness argument guarantee that there exist a positive constant C and
T0 > 0 such that

‖S(., t)‖C2(Ω) + ‖L(., t)‖C2(Ω) + ‖I(., t)‖C2(Ω) + ‖R(., t)‖C2(Ω) 6 C, ∀t > T0.

Therefore, the Sobolev embedding theorem allows one to assert

(S(x, t),L(x, t), I(x, t),R(x, t))→ (
Λ

δ
, 0, 0, 0) in [L2(Ω)]4, as t→ +∞.

This implies that the DFE, E0 = (S0,L0, I0,R0) = (Λδ , 0, 0, 0) attracts all solutions of (2.1).

Theorem 5.2. Assume that 0 < p < 1 or p = 1 and R0 > 1. Then the EE is globally asymptotically stable.

Proof. For the endemic equilibrium of (2.1), there are four cases. We define four different Lyapunov
functions.

Case 1: p = q = 1, we define

V3(t) =
∫
Ω [S− S∗ lnS+ L− L∗ lnL+ σ+δ

σ (I− I∗ ln I) + βS∗
r (R− R∗ lnR)]dx.

For all t > 0, a direct calculation yields

dV3(t)

dt
= −[

∫
Ω

dS|∇S|2(
S∗
S2 )dx+

∫
Ω

dL|∇L|2(
L∗
L2 )dx+

σ+ δ

σ

∫
Ω

dI|∇I|2(
I∗
I2
)dx+

βS∗
r

∫
Ω

dR|∇R|2(
R∗
R2 )dx]

+

∫
Ω

{(1 −
S∗
S
)[Λ− (αb+β)SI− δS] + (1 −

L∗
L
)[(αb+β)SI− (σ+ δ)L]

+
σ+ δ

σ
(1 −

I∗
I
)[σL− (δ+ µ+ r)I] +

βS∗
r

(1 −
R∗
R
)(rI− δR)}dx

= −[

∫
Ω

dS|∇S|2(
S∗
S2 )dx+

∫
Ω

dL|∇L|2(
L∗
L2 )dx+

σ+ δ

σ

∫
Ω

dI|∇I|2(
I∗
I2
)dx+

βS0

r

∫
Ω

dR|∇R|2(
R∗
R2 )dx]
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+

∫
Ω

{δS∗(2 −
S∗
S

−
S

S∗
) +αbS∗I∗(3 −

S∗
S

−
LI∗
L∗I

−
SIL∗
S∗I∗L

)

+βS∗I∗(4 −
S∗
S

−
LI∗
L∗I

−
IR∗
I∗R

−
SRL∗
S∗R∗L

)}dx,

where we used the fact Λ = (αb+ β)S∗I∗ + δS∗, (αb+ β)S∗I∗=(σ+ δ)L∗, σL∗=(δ+ µ+ r)I∗, rI∗=δR∗.
From the relationship between geometric mean and arithmetic mean, we can get δS∗(2 − S∗

S − S
S∗
) 6

0, αbS∗I∗(3 − S∗
S − LI∗

L∗I
− SIL∗
S∗I∗L

) 6 0, βS∗I∗(4 − S∗
S − LI∗

L∗I
− IR∗
I∗R

− SRL∗
S∗R∗L

) 6 0, and δS∗(2 − S∗
S − S

S∗
) =

0, αbS∗I∗(3 − S∗
S − LI∗

L∗I
− SIL∗
S∗I∗L

) = 0, βS∗I∗(4 − S∗
S − LI∗

L∗I
− IR∗
I∗R

− SRL∗
S∗R∗L

) = 0 if and only if (S,L, I,R) =

(S∗,L∗, I∗,R∗), i.e., dV3(t)
dt 6 0 and dV3(t)

dt = 0 if and only if (S,L, I,R) = (S∗,L∗, I∗,R∗). According to the
limit theory and Theorem 4.2, we can get that EE is globally asymptotically stable when p = q = 1.

Case 2: p = 1, q 6= 1, we define

V4(t) =
∫
Ω {S[1 − 1

1−q(
S∗
S )
q
] + L− L∗ lnL+ σ+δ

σ (I− I∗ ln I) + βS
q
∗
r (R− R∗ lnR)}dx.

Through some elementary calculations, noting that Λ = (αb+ β)Sq∗ I∗ + δS∗, (αb+ β)Sq∗ I∗=(σ+ δ)L∗,
σL∗=(δ+ µ+ r)I∗, rI∗=δR∗, we have

dV4(t)

dt
= −[

∫
Ω
qdS|∇S|2(

S
q
∗

Sq+1 )dx+

∫
Ω
dL|∇L|2(

L∗
L2 )dx+

σ+ δ

σ

∫
Ω
dI|∇I|2(

I∗
I2
)dx+

βS
q
∗
r

∫
Ω
dR|∇R|2(

R∗
R2 )dx]

+

∫
Ω

{[1 − (
S∗
S
)
q

][Λ− (αb+β)SqI− δS] + (1 −
L∗
L
)[(αb+β)SqI− (σ+ δ)L]

+
σ+ δ

σ
(1 −

I∗
I
)[σL− (δ+ µ+ r)I] +

βS
q
∗
r

(1 −
R∗
R
)(rI− δR)}dx

= −[

∫
Ω
qdS|∇S|2(

S
q
∗

Sq+1 )dx+

∫
Ω
dL|∇L|2(

L∗
L2 )dx+

σ+ δ

σ

∫
Ω
dI|∇I|2(

I∗
I2
)dx+

βS
q
∗
r

∫
Ω
dR|∇R|2(

R∗
R2 )dx]

+

∫
Ω
{δS∗(1 −

S

S∗
)[1 − (

S∗
S
)q] +αbSq∗ I∗(3 −

S
q
∗
Sq

−
LI∗
L∗I

−
SqIL∗
S
q
∗ I∗L

)

+βSq∗ I∗(4 −
S
q
∗
Sq

−
LI∗
L∗I

−
IR∗
I∗R

−
SqRL∗
S
q
∗R∗L

)}dx,

where we used the fact Λ = (αb+ β)Sq∗ I∗ + δS∗, (αb+ β)Sq∗ I∗=(σ+ δ)L∗, σL∗=(δ+ µ+ r)I∗, rI∗=δR∗.
From the relationship between geometric mean and arithmetic mean, we can get δS∗(1− S

S∗
)[1− (S∗S )q] 6

0, αbSq∗ I∗(3− S
q
∗
Sq −

LI∗
L∗I

− SqIL∗
S
q
∗ I∗L

) 6 0, βSq∗ I∗(4− S
q
∗
Sq −

LI∗
L∗I

− IR∗
I∗R

− SqRL∗
S
q
∗R∗L

) 6 0, and δS∗(1− S
S∗
)[1−(S∗S )q] =

0, αbSq∗ I∗(3 − S
q
∗
Sq − LI∗

L∗I
− SqIL∗
S
q
∗ I∗L

) = 0, βSq∗ I∗(4 − S
q
∗
Sq − LI∗

L∗I
− IR∗
I∗R

− SqRL∗
S
q
∗R∗L

) = 0, if and only if (S,L, I,R) =

(S∗,L∗, I∗,R∗), i.e., dV4(t)
dt 6 0 and dV4(t)

dt = 0 if and only if (S,L, I,R) = (S∗,L∗, I∗,R∗). According to the
limit theory and Theorem 4.2, we can get that EE is globally asymptotically stable when p = 1, q 6= 1.

Case 3: p 6= 1, q = 1, we define

V5(t) =
∫
Ω {S− S∗ lnS+ L− L∗ lnL+ αbS∗I

p−1
∗

δ+µ+r I[1 − 1
1−p(

I∗
I )
p] + βS∗

r (R− R∗ lnR)}dx.

In view of Λ = (αbIp∗ +βI∗)S∗ + δS∗, (αbIp∗ +βI∗)S∗=(σ+ δ)L∗, σL∗=(δ+ µ+ r)I∗, rI∗=δR∗, we have

dV5(t)

dt
= −[

∫
Ω

dS|∇S|2(
S∗
S2 )dx+

∫
Ω

dL|∇L|2(
L∗
L2 )dx+

αbS
q
∗ I
p−1
∗

δ+ µ+ r

∫
Ω

pdI|∇I|2(
I
p
∗

Ip+1 )dx

+
βS∗
r

∫
Ω

dR|∇R|2(
R∗
R2 )dx]

+

∫
Ω

{(1 −
S∗
S
)[Λ− (αbIp +βI)S− δS] + (1 −

L∗
L
)[(αbIp +βI)S− (σ+ δ)L]
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+
αbS∗I

p−1
∗

δ+ µ+ r
[1 − (

I∗
I
)p][σL− (δ+ µ+ r)I] +

βS∗
r

(1 −
R∗
R
)(rI− δR)}dx

= −[

∫
Ω

dS|∇S|2(
S∗
S2 )dx+

∫
Ω

dL|∇L|2(
L∗
L2 )dx+

αbS∗I
p−1
∗

δ+ µ+ r

∫
Ω

pdI|∇I|2(
I
p
∗

Ip+1 )dx

+
βS∗
r

∫
Ω

dR|∇R|2(
R∗
R2 )dx]

+

∫
Ω

{δS∗(2 −
S∗
S

−
S

S∗
) +αbS∗I∗

p[3 −
S∗
S

−
LI
p
∗

L∗Ip
−
SIpL∗
S∗I

p
∗L

+ (
Ip

I
p
∗
− 1)(1 −

I1−p

I
1−p
∗

)]

+βS∗I∗(3 −
S∗
S

−
RI∗
R∗I

−
SIR∗
S∗I∗R

)}dx.

From the relationship between geometric mean and arithmetic mean, we can get δS∗(2 − S∗
S − S

S∗
) 6

0, αbS∗I∗p[3 − S∗
S − LI

p
∗

L∗Ip
− SIpL∗
S∗I

p
∗L

+ (I
p

I
p
∗
− 1)(1 − I1−p

I
1−p
∗

)] 6 0, βS∗I∗(3 − S∗
S − RI∗

R∗I
− SIR∗
S∗I∗R

) 6 0, and δS∗(2 −

S∗
S − S

S∗
) = 0, αbS∗I

p
∗ [3− S∗

S − LI
p
∗

L∗Ip
− SIpL∗
S∗I

p
∗L

+(I
p

I
p
∗
−1)(1− I1−p

I
1−p
∗

)] = 0, βS∗I∗(3− S∗
S − RI∗

R∗I
− SIR∗
S∗I∗R

) = 0, if and

only if (S,L, I,R) = (S∗,L∗, I∗,R∗), i.e., dV5(t)
dt 6 0 and dV5(t)

dt = 0 if and only if (S,L, I,R) = (S∗,L∗, I∗,R∗).
According to the limit theory and Theorem 4.2, we can get that EE is globally asymptotically stable when
p 6= 1, q = 1.

Case 4: p 6= 1, q 6= 1, we define

V6(t) =
∫
Ω {S[1 − 1

1−q(
S∗
S )
q
] + L− L∗ lnL+ αbS

q
∗ I
p−1
∗

δ+µ+r I[1 − 1
1−p(

I∗
I )
p] + βS

q
∗
r (R− R∗ lnR)}dx.

As Λ = (αbSq∗ I
p
∗ +βS∗I∗) + δS∗, (αbSq∗ I

p
∗ +βS∗I∗)=(σ+ δ)L∗, σL∗=(δ+µ+ r)I∗, rI∗=δR∗, we can check

that

dV8(t)

dt
= −[

∫
Ω

qdS|∇S|2(
S
q
∗

Sq+1 )dx+

∫
Ω

dL|∇L|2(
L∗
L2 )dx+

αbS
q
∗ I
p−1
∗

δ+ µ+ r

∫
Ω

pdI|∇I|2(
I
p
∗

Ip+1 )dx

+
βS
q
∗
r

∫
Ω

dR|∇R|2(
R∗
R2 )dx]

+

∫
Ω

{(1 −
S∗
S
)[Λ− (αbIp +βI)Sq − δS] + (1 −

L∗
L
)[(αbIp +βI)Sq − (σ+ δ)L]

+
αbS

q
∗ I
p−1
∗

δ+ µ+ r
[1 − (

I∗
I
)p][σL− (δ+ µ+ r)I] +

βS
q
∗
r

(1 −
R∗
R
)(rI− δR)}dx

= −[

∫
Ω

qdS|∇S|2(
S
q
∗

Sq+1 )dx+

∫
Ω

dL|∇L|2(
L∗
L2 )dx+

αbS
q
∗ I
p−1
∗

δ+ µ+ r

∫
Ω

pdI|∇I|2(
I
p
∗

Ip+1 )dx

+
βS
q
∗
r

∫
Ω

dR|∇R|2(
R∗
R2 )dx]

+

∫
Ω

{δS∗(1 −
S

S∗
)[1 − (

S∗
S
)q] +αbSq∗ I

p
∗ [3 −

S
q
∗
Sq

−
LI
p
∗

L∗Ip
−
SqIpL∗
S
q
∗ I
p
∗L

+ (
Ip

I
p
∗
− 1)(1 −

I1−p

I
1−p
∗

)]

+βSq∗ I∗(3 −
S
q
∗
Sq

−
RI∗
R∗I

−
SqIR∗
S
q
∗ I∗R

)}dx.

From the relationship between geometric mean and arithmetic mean, we can get δS∗(1− S
S∗
)[1− (S∗S )q] 6

0, αbSq∗ I
p
∗ [3 − S

q
∗
Sq − LI

p
∗

L∗Ip
− SqIpL∗
S
q
∗ I
p
∗L

+ (I
p

I
p
∗
− 1)(1 − I1−p

I
1−p
∗

)] 6 0, βSq∗ I∗(3 − S
q
∗
Sq − RI∗

R∗I
− SqIR∗
S
q
∗ I∗R

) 6 0, and δS∗(1 −

S
S∗
)[1−(S∗S )q] = 0, αbSq∗ I

p
∗ [3− S

q
∗
Sq −

LI
p
∗

L∗Ip
− SqIpL∗
S
q
∗ I
p
∗L

+(I
p

I
p
∗
− 1)(1− I1−p

I
1−p
∗

)] = 0, βSq∗ I∗(3− S
q
∗
Sq −

RI∗
R∗I

− SqIR∗
S
q
∗ I∗R

) =

0, if and only if (S,L, I,R) = (S∗,L∗, I∗,R∗), i.e., dV6(t)
dt 6 0 and dV6(t)

dt = 0 if and only if (S,L, I,R) =
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(S∗,L∗, I∗,R∗). According to the limit theory and Theorem 4.2, we can get that EE is globally asymptoti-
cally stable when p 6= 1, q 6= 1.

As a result, Vi(t) (i = 3, 4, 5, 6) are Lyapunov functionals for (2.1), namely, Vi(t) 6 0 for i = 3, 4, 5, 6,
∀t > 0 along all trajectories except at (S∗,L∗, I∗,R∗) where Vi(t) = 0 for i = 3, 4, 5, 6, ∀t > 0. By a similar
argument as in the proof of Theorem 5.1, we can get

(S(x, t),L(x, t), I(x, t),R(x, t))→ (S∗,L∗, I∗,R∗) in [L∞(Ω)]4, as t→ +∞.

Thus, the EE (S∗,L∗, I∗,R∗) is globally attractive.

Remark 5.3.

(i) For the case p = 1, we can follow the theory in [44] to derive an explicit expression for the basic
reproduction number R0 =

(
Λ
δ

)q (β+αb)σ
(σ+δ)(δ+µ+r) . Therefore, from Theorems 5.1 and 5.2, the threshold

dynamics in terms of the basic reproduction number is established: the DFE is globally asymptoti-
cally stable if R0 6 1, and the EE is globally asymptotically stable if R0 > 1.

(ii) For the case p 6= 1, from the discussion in Section 5, it is clear that the system (2.1) admits a unique
EE. It follows from Theorem 5.2 that the unique EE is globally attractive, which indicates that the
infectious disease always exists in this case.

(iii) For the case 0 < p < 1, due to the difficulty in judging the global stability of DFE, it is hoped that
this difficulty can be overcome in the future to make the article more complete.

6. Numerical simulation

Here we show numerical simulations regarding our model to illustrate and support the theoretical
results of the previous sections. From Section 4, we can see that R0 is the threshold parameter of disease
persistence in the relevant population. Next, we will give some simulations to show that DFE is globally
asymptotically stable when R0 6 1, and EE is globally asymptotically stable when R0 > 1.

In order to show that the DFE is globally asymptotically stable if the basic reproduction number is
less than 1, we provide an example and set a set of parameters as follows.

Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.5, b = 0.4, α = 0.5, q = 1, p = 1, r = 0.5. (6.1)

Setting the initial value of this model as S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx, and dS = dL = dI =
dR = 1, then we obtain R0 = 0.860 < 1. It implies that (S0,L0, I0,R0) = (2, 0, 0, 0) is globally asymptotically
stable by Theorem 5.1, where VL will extinct and Figure 2 confirms this. In order to further observe the
influence of q and p on the stability of DFE, on the premise of keeping other parameters unchanged, we
change q = 1 to q = 5, as shown in Figure 3. On the other hand, we only change p = 1 i0 (6.1) to p = 0.8,
and other parameters remain unchanged, as shown in Figure 4. In order to show that the EE is globally
asymptotically stable if the basic reproduction number is greater than 1, we provide an example and set
a set of parameters as follows.

Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.9, b = 0.4, α = 0.5, q = 1, p = 1, r = 0.5. (6.2)

Setting the initial value of this model as S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx, and dS = dL = dI =
dR = 1, then we obtain R0 = 1.019 > 1. It implies that (S∗,L∗, I∗,R∗) = (1.250, 0.4167, 0.1111, 0.1111) is
globally asymptotically stable by Theorem 5.2. This indicates that VL will continue to spread in the world
and Figure 5 confirms this.

In order to further observe the influence of q and p on the stability of EE, on the premise of keeping
other parameters unchanged, we change q = 1 to q = 5, as shown in Figure 6. On the other hand, we
only change p = 1 in (6.2) to p = 0.8, and other parameters remain unchanged, as shown in Figure 7.

To explore the impact of α and b on the stability of DFE, let’s keep the parameter data in Figure 2
unchanged, change α = 0.5 to α = 0.8, and change b = 0.4 to b = 0.8, as shown in Figure 8.
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By comparing Figure 2 with Figure 3, we can see that under S(0, x) = L(0, x) = I(0, x) = R(0, x) =
sinπx, Λ = 1, δ = 0.5,σ = 0.4,µ = 0.5,β = 0.5,b = 0.4,α = 0.5,q = 1,p = 1, r = 0.5, and dS = dL =
dI = dR = 1, we change q = 1 to q = 5, the values of q will not affect the stability of the disease-free
equilibrium (DFE) of the system (2.1).

By comparing Figure 2 with Figure 4, we can see that under S(0, x) = L(0, x) = I(0, x) = R(0, x) =
sinπx, Λ = 1, δ = 0.5,σ = 0.4,µ = 0.5,β = 0.5,b = 0.4,α = 0.5,q = 1,p = 1, r = 0.5, and dS = dL =
dI = dR = 1, we change p = 1 to p = 0.8, the values of p will not affect the stability of the disease-free
equilibrium (DFE) of the system (2.1).

By comparing Figures 5 and Figure 6 with Figure 7, we can see that under S(0, x) = L(0, x) = I(0, x) =
R(0, x) = sinπx, Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.9, b = 0.4, α = 0.5, q = 1, p = 1, r = 0.5, and
dS = dL = dI = dR = 1, changing the values of q and p will slightly affect the position of the endemic
equilibrium (EE) of the system (2.1), but it will not affect the stability of EE.

By comparing Figure 2 with Figure 5, we can see that when other parameters are the same, VL will
extinct if β = 0.5, and VL will exist in the world if β = 0.9. From this we can get the value of β may have
some influence on the propagation of VL.

By comparing Figure 2 with Figure 8, we can see that when other parameters are the same, if α = 0.5
and b = 0.4, VL will extinct, if α = 0.8 and b = 0.8, VL will exist in the world. From this we can get the
value of α and b may have some influence on the propagation of VL.

To sum up the analysis of the above examples, direct or indirect contact between susceptible individ-
uals and infected individuals can also affect the spread of the disease, so we can further reduce the risk
of infection through appropriate isolation measures.
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Figure 2: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5,σ = 0.4,µ = 0.5,β = 0.5,b = 0.4,α = 0.5,q = 1,p = 1, r = 0.5.
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Figure 3: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5,σ = 0.4,µ = 0.5,β = 0.5,b = 0.4,α = 0.5,q = 5,p = 1, r = 0.5.
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Figure 4: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5,σ = 0.4,µ = 0.5,β = 0.5,b = 0.4,α = 0.5,q = 1,p = 0.8, r = 0.5.
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Figure 5: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.9, b = 0.4, α = 0.5, q = 1, p = 1, r = 0.5.
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Figure 6: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.9, b = 0.4, α = 0.5, q = 5, p = 1, r = 0.5.
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Figure 7: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.9, b = 0.4, α = 0.5, q = 1, p = 0.8, r = 0.5.
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Figure 8: Dynamics behavior of system (2.1) with S(0, x) = L(0, x) = I(0, x) = R(0, x) = sinπx; dS = dI = dC = dR = 1;
Λ = 1, δ = 0.5, σ = 0.4, µ = 0.5, β = 0.5, b = 0.8, α = 0.8, q = 1, p = 1, r = 0.5.
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7. Conclusions and discussions

In this paper, we study a class of leishmaniasis infection epidemic model with direct and indirect
infection rate and spatial diffusion. Firstly, we prove the boundedness of the solution of the system, and
analyze the sensitivity of the parameters. Secondly, sufficient conditions for the existence of the disease-
free equilibrium and the endemic equilibrium are given, respectively. In addition, the local stability
analysis of the disease-free equilibrium and the endemic equilibrium are obtained, respectively. Thirdly,
by constructing various Lyapunov functions, we prove that when the reproduction number R0 6 1, the
disease-free equilibrium is globally asymptotically stable and the virus will be eliminated. When the
reproduction number R0 > 1, the endemic equilibrium is globally asymptotically stable, the infection will
continue, and the number of infected people will eventually tend to a constant value. Finally, we give
some numerical simulations to confirm the theoretical analysis. The results show that the virus could be
eliminated by controlling the incidence rate and making the reproduction number R0 6 1. Theorem 4.1,
Theorem 4.2, Theorem 5.1 and Theorem 5.2 show that the diffusive rates of individuals have no impact
on the basic reproduction number and the stability of the equilibria, but the diffusive rates of individuals
makes the spatial density of infected individuals tend to be uniform over time. From the perspective
of numerical simulation, we can also draw the conclusion that the direct or indirect contact between
susceptible people and infected people may affect the spread of disease. We can draw inspiration from
it, and we can also develop some appropriate isolation strategies to further reduce the risk of disease
transmission.

On the other hand, most epidemic models rely on a hypothesis called the law of mass action or bilinear
incidence rate SI. It suggests that the incidence rate is proportional to susceptibility to S and infection
I. By extension, Severo [38] assumed that the number of new infections is represented by the term SqIp,
which is commonly known as the nonlinear incidence rate. It can be observed that when p = q = 1, the
incidence rate becomes the bilinear incidence rate SI. As is shown in [25], there is a much wider range
of dynamical behaviors of the nonlinear incidence rate than the bilinear incidence rate. Different from
the simple nonlinear incidence, we introduce direct and indirect infection rates to describe the spread
of leishmaniasis, and it is found that direct or indirect contact may affect the prevalence of the disease.
It is worth noting that, in order to capture the influence of spatial heterogeneity of environment and
individual motion on the persistence and extinction of disease, Allen et al. [4] studied the asymptotic
distribution of the steady-state solution of a class of SIS infectious disease reaction-diffusion model. Allen
et al. [5] then proposed a spatial SIS (susceptible-infected-susceptible) reaction-diffusion model to study
the existence, uniqueness, especially asymptotic behavior of susceptible individuals when the diffusive
rate tends to zero in the case of producing so-called low-risk subhabitats. Therefore, it is necessary to
analyze the impact of the spread of susceptible and infected populations on the asymptotic behavior of
epidemic equilibrium in other heterogeneous environments, which will be considered in our future work.

References

[1] N. Ahmad, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability analysis of a novel reaction-
diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1–18. 1

[2] F. B. Agusto, I. M. ELmojtaba, Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection,
PLOS ONE, 12 (2017), 1–31. 1

[3] E. O. Agyingi, D. S. Ross, K. Bathena, A model of the transmission dynamics of Leishmaniasis, J. Biol. Syst., 19 (2011),
237–250. 1

[4] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch
model, SIAM J. Appl. Math., 67 (2007), 1283–1309. 7

[5] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-
diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1–20. 7

[6] N. D. Barlow, Non-linear transmission and simple models for bovine tuberculosis, J. Anim. Ecol., 69 (2000), 703–713. 2
[7] S. Biswas, A. Subramanian, I. M. ELMojtaba, J. Chattopadhyay, R. R. Sarkar, Optimal combinations of control strate-

gies and cost-effective analysis for visceral leishmaniasis disease transmission, PLoS One, 12 (2017), 1–15. 1
[8] F. Boukhalfa, M. Helal, A. Lakmeche, Mathematical analysis of visceral leishmaniasis model, Res. Appl. Math., 1 (2017),

1–16. 1

https://doi.org/10.1007/s11071-021-06623-9
https://doi.org/10.1007/s11071-021-06623-9
https://doi.org/10.1371/journal.pone.0171102
https://doi.org/10.1371/journal.pone.0171102
https://doi.org/10.1142/S0218339011003841
https://doi.org/10.1142/S0218339011003841
https://epubs.siam.org/doi/abs/10.1137/060672522
https://epubs.siam.org/doi/abs/10.1137/060672522
https://doi.org/10.3934/dcds.2008.21.1
https://doi.org/10.3934/dcds.2008.21.1
https://doi.org/10.1046/j.1365-2656.2000.00428.x
https://doi.org/10.1371/journal.pone.0172465
https://doi.org/10.1371/journal.pone.0172465
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mathematical+analysis+of+visceral+leishmaniasis+model&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mathematical+analysis+of+visceral+leishmaniasis+model&btnG=


Y. Yang, J. Math. Computer Sci., 32 (2024), 358–376 375

[9] L. E. Coffeng, E. A. Le Rutte, J. Munoz, E. R. Adams, J. M. Prada, S. J. de Vlas, G. F. Medley, Impact of changes in
detection effort on control of visceral Leishmaniasis in the Indian subcontinent, J. Infect. Dis., 221 (2020), S546–S553. 1

[10] O. Courtenay, R. J. Quinnell, L. M. Garcez, J. J. Shaw, C. Dye, Infectiousness in a cohort of Brazilian dogs: why culling
fails to control visceral leishmaniasis in areas of high transmission, J. Infect. Dis., 186 (2002), 1314–1320. 1

[11] M. C. De Almeida, H. N. Moreira, A mathematical model of immune response in cutaneous Leishmaniasis, J. Biol. Syst.,
15 (2007), 313–354. 1

[12] A. Dires, P. Kumar, S. Gedamu, W. Yimam, S. Ademe, Knowledge, attitude and prevention measures of students towards
cutaneous leishmaniasis in Delanta district, Northeast Ethiopia, Parasite Epidemiol. Control., 17 (2022), 1–8. 1

[13] Z. Du, R. Peng, A priori L∞ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016),
1429–1439. 3.1

[14] C. Dye, The logic of visceral leishmaniasis control, Am. J. Trop. Med. Hyg., 55 (1996), 125–130. 1
[15] I. M. ELmojtaba, J. Y. T. Mugisha, M. H. A. Hashim, Mathematical analysis of the dynamics of Visceral Leishmaniasis

in the Sudan, Appl. Math. Comput., 217 (2010), 2567–2578. 1
[16] P. Ghosh, P. Roy, S. J. Choudhuri, N. K. Das, Epidemiology of post-kala-azar dermal Leishmaniasis, Indian J. Dermatol.,

66 (2021), 12–23. 1
[17] Z. Guo, F.-B. Wang, X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local

infections, J. Math. Biol., 65 (2012), 1387–1410. 1
[18] K. B. Helel, M. B. Rejeb, Z. Habboul, N. Khattat, H. Mejaouel, H. Said-Latiri, B. Kaabi, E. Zhioua, Risk factors for

mortality of children with zoonotic visceral leishmaniasis in Central Tunisia, PLoS ONE, 12 (2017), 1–9. 1
[19] A. Korobeinikov, P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with

nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57–60. 1
[20] C. Lei, F. Li, J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous

environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499–4517. 2
[21] B. Li, H. Li, Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017),

25 pages. 1
[22] T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary

conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages. 1
[23] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ.

Integral Equ., 34 (2021), 315–336. 1
[24] H.-l. Lin, F.-B. Wang, On a reaction-diffusion system modeling the dengue transmission with nonlocal infections and

crowding effects, Appl. Math. Comput., 248 (2014), 184–194. 2
[25] W. M. Liu, H. W. Hethcote, S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J.

Math. Biol., 25 (1987), 359–380. 7
[26] Y. Lou, X.-Q. Zhao, A reaction diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62

(2011), 543–568. 2
[27] P. Magal, G. Webb, Y. Wu, On a vector-host epidemic model with spatial structure, Nonlinearity, 31 (2018), 5589–5614.

1
[28] A. Mubayi, M. Paredes, J. Ospina, A comparative assessment of epidemiologically different cutaneous leishmaniasis

outbreaks in Madrid, Spain and Tolima, Colombia: an estimation of the reproduction number via a mathematical model,
Trop. Med. Infect. Dis., 3 (2018), 1–22. 1

[29] M. Naveed, D. Baleanu, M. Rafiq, A. Raza, A. H. Soori, N. Ahmed, Dynamical behavior and sensitivity analysis of a
delayed coronavirus epidemic model, Comput. Mater. Contin., 65 (2020), 225–241. 1

[30] M. Naveed, M. Rafiq, A. Raza, N. Ahmed, I. Khan, K. S. Nisar, A. H. Soori, Mathematical analysis of novel coronavirus
(2019-nCov) delay pandemic model, Comput. Mater. Contin., 64 (2020), 1401–1414. 1

[31] C. B. Palatnik-de-Sousa, M. J. Day, One Health: the global challenge of epidemic and endemic leishmaniasis, Parasites
Vectors., 4 (2011), 197–209. 1

[32] M. Podaliri Vulpiani, L. Iannetti, D. Paganico, F. Iannino, N. Ferri, Methods of Control of the Leishmania infantum
Dog Reservoir: State of the Art, Vet. Med. Int., 2011 (2011), 13 pages. 1

[33] A. Raza, A. Ahmadian, M. Rafiq, S. Salahshour, M. Ferrara, An analysis of a nonlinear susceptible-exposed-infected-
quarantine-recovered pandemic model of a novel coronavirus with delay effect, Results Phys., 21 (2021), 1–7. 1

[34] A. Raza, A. Ahmadian, M. Rafiq, S. Salahshour, M. Naveed, M. Ferrara, A. H. Soori, Modeling the effect of delay
strategy on transmission dynamics of HIV/AIDS disease, Adv. Difference Equ., 2020 (2020), 1–13.

[35] A. Raza, U. Fatima, M. Rafiq, N. Ahmed, I. Khan, K. S. Nisar, Z. Iqbal, Mathematical analysis and design of the
nonstandard computational method for an epidemic model of computer virus with delay effect: application of mathematical
biology in computer science, Results Phys., 23 (2021), 1–8. 1

[36] L. M. Ribas, V. L. Zaher, H. J. Shimozako, E. Massad, Estimating the optimal control of zoonotic visceral Leishmaniasis
by the use of a mathematical model, Sci. World J., 2013 (2013), 1–6. 1

[37] A. P. Seva, F. G. Ovallos, M. Amaku, E. Carrillo, J. Moreno, E. A. B. Galati, E. G. Lopes, R. M. Soares, F. Ferreira,
Canine-based strategies for prevention and control of visceral leishmaniasis in Brazil, PLOS ONE, 11 (2016), 1–20. 1

[38] N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969), 395–402. 7
[39] H. J. Shimozako, J. Wu, E. Massad, The preventive control of zoonotic visceral leishmaniasis: efficacy and economic

evaluation, Comput. Math. Methods Med., 2017 (2017), 21 pages. 1

https://doi.org/10.1093/infdis/jiz644
https://doi.org/10.1093/infdis/jiz644
https://doi.org/10.1086/344312
https://doi.org/10.1086/344312
https://doi.org/10.1142/S0218339007002209
https://doi.org/10.1142/S0218339007002209
https://doi.org/10.1016/j.parepi.2022.e00241
https://doi.org/10.1016/j.parepi.2022.e00241
https://doi.org/10.1007/s00285-015-0914-z
https://doi.org/10.1007/s00285-015-0914-z
https://europepmc.org/article/med/8780448
https://doi.org/10.1016/j.amc.2010.07.069
https://doi.org/10.1016/j.amc.2010.07.069
https://doi.org/10.4103%2Fijd.IJD_651_20
https://doi.org/10.4103%2Fijd.IJD_651_20
https://doi.org/10.1007/s00285-011-0500-y
https://doi.org/10.1007/s00285-011-0500-y
https://doi.org/10.1371/journal.pone.0189725
https://doi.org/10.1371/journal.pone.0189725
https://doi.org/10.3934/mbe.2004.1.57
https://doi.org/10.3934/mbe.2004.1.57
https://doi.org/10.3934/dcdsb.2018173
https://doi.org/10.3934/dcdsb.2018173
https://doi.org/10.1007/s00033-017-0845-1
https://doi.org/10.1007/s00033-017-0845-1
https://doi.org/10.1007/s00033-019-1130-2
https://doi.org/10.1007/s00033-019-1130-2
https://projecteuclid.org/journalArticle/Download?urlid=die%2Fdie034-0506-315
https://projecteuclid.org/journalArticle/Download?urlid=die%2Fdie034-0506-315
https://doi.org/10.1016/j.amc.2014.09.101
https://doi.org/10.1016/j.amc.2014.09.101
https://doi.org/10.1007/BF00277162
https://doi.org/10.1007/BF00277162
https://doi.org/10.1007/s00285-010-0346-8
https://doi.org/10.1007/s00285-010-0346-8
https://doi.org/10.1088/1361-6544/aae1e0
https://doi.org/10.3390/tropicalmed3020043
https://doi.org/10.3390/tropicalmed3020043
https://doi.org/10.3390/tropicalmed3020043
http://hdl.handle.net/20.500.12416/4556
http://hdl.handle.net/20.500.12416/4556
https://www.researchgate.net/profile/Kottakkaran-Nisar/publication/342598685_Mathematical_Analysis_of_Novel_Coronavirus_2019-nCov_Delay_Pandemic_Model/links/5efda24b4585155050849ec4/Mathematical-Analysis-of-Novel-Coronavirus-2019-nCov-Delay-Pandemic-Model.pdf
https://www.researchgate.net/profile/Kottakkaran-Nisar/publication/342598685_Mathematical_Analysis_of_Novel_Coronavirus_2019-nCov_Delay_Pandemic_Model/links/5efda24b4585155050849ec4/Mathematical-Analysis-of-Novel-Coronavirus-2019-nCov-Delay-Pandemic-Model.pdf
https://doi.org/10.1186/1756-3305-4-197
https://doi.org/10.1186/1756-3305-4-197
https://doi.org/10.4061/2011/215964
https://doi.org/10.4061/2011/215964
https://doi.org/10.1016/j.rinp.2020.103771
https://doi.org/10.1016/j.rinp.2020.103771
https://doi.org/10.1186/s13662-020-03116-8
https://doi.org/10.1186/s13662-020-03116-8
https://doi.org/10.1016/j.rinp.2020.103750
https://doi.org/10.1016/j.rinp.2020.103750
https://doi.org/10.1016/j.rinp.2020.103750
https://doi.org/10.1155/2013/810380
https://doi.org/10.1155/2013/810380
https://doi.org/10.1371/journal.pone.0162854
https://doi.org/10.1371/journal.pone.0162854
https://doi.org/10.1016/0025-5564(69)90019-4
https://doi.org/10.1155/2017/4797051
https://doi.org/10.1155/2017/4797051


Y. Yang, J. Math. Computer Sci., 32 (2024), 358–376 376

[40] R. K. Topno, V. N. R. Das, A. Ranjan, K. Pandey, D. Singh, N. Kumar, N. A. Siddiqui, V. P. Singh, S. Kesari, N.
Kumar, S. Bimal, A. J. Kumar, C. Meena, R. Kumar, P. Das, Asymptomatic infection with visceral leishmaniasis in a
disease-endemic area in Bihar, India, Am. J. Trop. Med. Hyg., 83 (2010), 502–506. 1

[41] W. Wang, G. Wu, X. Fan, X. Lai, Transmission dynamics of visceral leishmaniasis with PKDL and periodic delays, Math.
Methods Appl. Sci., 46 (2023), 13352–13374. 1

[42] J. Wang, F. Xie, T. Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment,
Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 20 pages. 1

[43] W. Wang, X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl.
Math., 71 (2011), 147–168. 2

[44] W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11
(2012), 1652–1673. 1, i

[45] Y. Wu, X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equ., 264
(2018), 4989–5024. 1

[46] Z. Xu, Y. Zhao, A diffusive dengue disease model with nonlocal delayed transmission, Appl. Math. Comput., 270 (2015),
808–829. 2

[47] Y. Yang, J. Zhou, C.-H. Hsu, Threshold dynamics of a diffusive SIRI model with nonlinear incidence rate, J. Math. Anal.
Appl., 478 (2019), 874–896. 1

https://doi.org/10.4269%2Fajtmh.2010.09-0345
https://doi.org/10.4269%2Fajtmh.2010.09-0345
https://doi.org/10.4269%2Fajtmh.2010.09-0345
https://doi.org/10.1002/mma.9256
https://doi.org/10.1002/mma.9256
https://doi.org/10.1016/j.cnsns.2019.104951
https://doi.org/10.1016/j.cnsns.2019.104951
https://doi.org/10.1137/090775890
https://doi.org/10.1137/090775890
https://doi.org/10.1137/120872942
https://doi.org/10.1137/120872942
https://doi.org/10.1016/j.jde.2017.12.027
https://doi.org/10.1016/j.jde.2017.12.027
https://doi.org/10.1016/j.amc.2015.08.079
https://doi.org/10.1016/j.amc.2015.08.079
https://doi.org/10.1016/j.jmaa.2019.05.059
https://doi.org/10.1016/j.jmaa.2019.05.059

	Introduction
	Formulation of model
	Analysis of model
	Uniform bounds of solutions of system 

	Local stability analysis
	Global stability analysis
	Numerical simulation
	Conclusions and discussions

