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Abstract
This paper signifies the existence and uniqueness of fixed points for some classes of mappings on general settings. Indeed,

we prove existence and uniqueness results for Reich and Chatterjea type cyclic contractions using the perception of sequentially
convergence mappings in metric spaces. We also present an example to illustrate our results.
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1. Introduction and preliminaries

The Banach Contraction Principle (BCP) has undergone significant extensions and generalizations
since its inception, see [1, 3, 4, 7, 13], etc. One of the notable extension of the BCP was obatined by
Kannan [6] which states that a self-mapping T of a complete metric space (X,d) has a unique fixed point
in X, if for all x,y ∈ X and α ∈

(
0, 1

2

)
,

d(Tx, Ty) 6 α[d(x, Tx) + d(y, Ty)].

In 1971, Reich [11] unified the BCP and Kannan fixed point result. He [12] further generalized his theo-
rem by replacing the contraction constants with monotonically decreasing functions. Another important
extension of the BCP was obtained by Chatterjea [3] which states that a self-mapping T of a complete
metric space (X,d) has a unique fixed point in X, if for all x,y ∈ X and α ∈

(
0, 1

2

)
,

d(Tx, Ty) 6 α[d(x, Ty) + d(y, Tx)].

In 2003, the idea of cyclic representation of mappings was introduced by Kirk et al. [8] as follows.
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Definition 1.1 ([8]). Let X be a nonempty set and let T : X→ X be a mapping. If

(1) Xi, i = 1, 2, 3, . . . ,m are non-empty sets;
(2) T(X1) ⊂ X2, . . . , T(Xm−1) ⊂ Xm, T(Xm) ⊂ X1,

then X =
m⋃
i=1

Xi is a cyclic representation of X with respect to T .

Eventually, they defined cyclical contraction and presented fixed point results for such mappings.
Later, in 2013, Chandok and Postalache [2] defined a version of cyclic weakly contraction of Chatter-
jea type in the setting of metric spaces. Recently, [5], Das et al. discussed the iterative algorithm and
theoretical treatment for existence of solution of (k, z)-Riemann-Liouville fractional integral equations.

Definition 1.2. Let Φ be the set of all monotone increasing functions ν : [0,∞)→ [0,∞) with ν(t) = 0 iff
t = 0. Suppose Ω represents the set of all lower semi continuous functions ω : [0,∞)× [0,∞) → [0,∞)
with ω(t1, t2) > 0 for t1, t2 ∈ (0,∞) and ω(0, 0) = 0.

Definition 1.3 ([2]). Let (X,d) be a metric space and X1,X2, . . . ,Xm be non empty subsets of X and Y =
m⋃
i=1

Xi. An operator G : Y → Y is called a Chatterjea type cyclic weakly contraction if

(a)
m⋃
i=1

Xi is a cyclical representation of Y with respect to G;

(b) ν(d(Gx,Gy)) 6 ν
(1

2 [d(x,Gy) + d(y,Gx)]
)
−ω(d(x,Gy),d(y,Gx)) for all x ∈ Xi,y ∈ Xi+1, and i =

1, 2, . . . ,m, where Xm+1 = X1.

In 2016, Malceskii [9] proved some results on fixed point for Kannan type contractions and Chatterjea
type contractions using notion of sequentially convergent mappings. In this paper, we have extended
Reich type fixed point results and weakly cyclical Chatterjea type fixed point results using the notion of
sequentially convergence mapping.

Definition 1.4 ([10]). Let (X,d) be a metric space. A mapping G : X → X is said to be sequentially
convergent if for every sequence (yr) in X, convergence of (Gyr) implies convergence of (yr).

2. Extension of Reich type contraction mapping

Theorem 2.1. Let (X,d) be a complete metric space and let H : X→ X be a continuous, injection, and sequentially
convergent mapping. Suppose G : X→ X is a mapping such that x,y ∈ X with x 6= y,

d(HGx,HGy) 6 a(d(x,y))d(Hx,HGx) + b(d(x,y))d(Hy,HGy) + c(d(x,y))d(Hx,Hy), (2.1)

where a,b, c are monotonic decreasing functions defined from (0,∞) into [0, 1) such that a(t) + b(t) + c(t) < 1.
Then, there exists a unique fixed point of G.

Proof. Let x0 ∈ X. Define xr such that xr+1 = Gxr for r = 0, 1, 2, 3 . . .. Then, by (2.1), we get

d(Hxr+1,Hr) = d(HGxr,HGxr−1) 6 a(d(xr, xr−1))d(Hxr,HGxr) + b(d(xr, xr−1))d(Hxr−1,HGxr−1)

+ c(d(xr, xr−1))d(Hxr,Hxr−1)

= a(d(xr, xr−1))d(Hxr,Hxr+1) + b(d(xr, xr−1))d(Hxr−1,Hxr)
+ c(d(xr, xr−1))d(Hxr,Hxr−1).

Let λ(d(xi, xi−1)) =
b(d(xi,xi−1))+c(d(xi,xi−1))

1−a(d(xi,xi−1))
for i = 1, 2, . . .. Then 0 < λ < 1 and

d(Hxr+1,Hr) 6 λ(d(xr, xr−1))d(Hxr,Hxr−1) 6 λ(d(xr, xr−1))λ(d(xr−1, xr−2)) · · · λ(d(x1, x0))d(Hx1,Hx0).
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If λ(t) = max{λ(d(xr, xr−1)), λ(d(xr−1, xr−2)), . . . , λ(d(x1, x0))}, then the above inequality reduces to

d(Hxr+1,Hr) 6 (λ(t))rd(Hx1,Hx0).

Now, for all p,q ∈N with p > q, we have

d(Hxp,Hq) 6 d(Hxp,Hp−1) + · · ·+ d(Hxq+1,Hq) 6
(λ(t ′))q

1 − λ(t ′)
d(Hx1,Hx0),

where λ(t ′) = max{λ(t1), λ(t2), . . . , λ(tp−q)}. So, {Hxr} is a Cauchy sequence. Since X is complete, the
sequence {Hxr} converges to some point in X. Further, H being sequentially convergent, the sequence {xr}

is also convergent. Therefore lim
r→∞ xr = z for some z ∈ X. Since H is continuous, we have

lim
r→∞Hxr = Hz.

Again by (2.1), we get

d(HGz,Hz) 6 d(HGz,Hxr) + d(Hxr,Hxr+1) + d(Hxr+1,Hz)
= d(HGz,HGrx0) + d(Hxr,Hxr+1) + d(Hxr+1,Hz)

6 a(d(z,Gr−1x0))d(Hz,HGz) + b(d(z,Gr−1x0))d(HG
r−1x0,HGrx0)

+ c(d(z,Gr−1x0))d(Hz,HGr−1x0) + d(Hxr,Hxr+1) + d(Hxr+1,Hz)

6 a(d(z,Gr−1x0))d(Hz,HGz) + b(d(z,Gr−1x0))d(HGxr−1,HGxr)

+ c(d(z,Gr−1x0))d(Hz,HGxr−1) + d(Hxr,Hxr+1) + d(Hxr+1,Hz).

Making r→∞, gives
d(HGz,Hz) 6 a(d(z,Gr−1x0))d(Hz,HGz).

Since a(t) < 1, we get d(HGz,Hz) = 0 =⇒ HGz = Hz. Further, since H is injective, Gz = z. Thus, G has
fixed point.

Next, we show that fixed point of G is unique. Assume that G has two fixed points in X, say z and z ′.
Then by (2.1), we have

d(Hz,Hz ′) = d(HGz,HGz ′) 6 a(d(z, z ′))d(Hz,HGz) + b(d(z, z ′))d(Hz ′,HGz ′) + c(d(z, z ′))d(Hz,Hz ′)
= c(d(z, z ′))d(Hz,Hz ′).

Since c < 1, d(Hz,Hz ′) = 0 =⇒ Hz = Hz ′, which further implies z = z ′.

Corollary 2.2. Let (X,d) be a complete metric space. Let H : X → X be an injection, which is continuous and
sequentially convergent mapping. Let G : X→ X be a mapping such that

d(HGx,HGy) 6 a(d(x,y))d(Hx,HGx) + b(d(x,y))d(Hy,HGy),

where x,y ∈ X,x 6= y and a,b are monotonic decreasing functions defined from (0,∞) into [0, 1) such that
a(t) + b(t) < 1. Then, G has a unique fixed point.

Remark 2.3. If a(t) = b(t) = α and c(t) = β, and if a,b, c are defined from (0,∞) into (0, 1), then Theorem
2.1 reduces to Theorem 1 of Malčeskii ([9, p. 2]).

Remark 2.4. If H(x) = x in Theorem 2.1, then it reduces to Theorem 3 of Reich ([12, p. 2]).

Theorem 2.5. Let (X,d) be a complete metric space. Let H : X → X be a continuous, injection, and sequentially
convergent mapping. Let G : X→ X be a mapping such that x,y ∈ X with x 6= y,

d(HGx,HGy) 6 a(d(x,y))d(Hx,HGy) + b(d(x,y))d(Hy,HGx) + c(d(x,y))d(Hx,Hy), (2.2)

where a,b, c are monotonic decreasing functions defined from (0,∞) into [0, 1) such that a(t) + b(t) + c(t) < 1
and a(t) > b(t). Then, there exists a unique fixed point of G.
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Proof. Let x0 ∈ X be arbitrary. Define xr such that xr+1 = Gxr for r = 0, 1, 2, 3 . . .. Then, by (2.2), we have

d(Hxr+1,Hr)

= d(HGxr,HGxr−1)

6 a(d(xr, xr−1))d(Hxr,HGxr−1) + b(d(xr, xr−1))d(Hxr−1,HGxr) + c(d(xr, xr−1))d(Hxr,Hxr−1)

= a(d(xr, xr−1))d(Hxr,Hxr) + b(d(xr, xr−1))d(Hxr−1,Hxr+1) + c(d(xr, xr−1))d(Hxr,Hxr−1)

6 b(d(xr, xr−1))d(Hxr−1,Hxr) + b(d(xr, xr−1))d(Hxr,Hxr+1) + c(d(xr, xr−1))d(Hxr,Hxr−1).

If λ(d(xj, xj−1)) =
b(d(xj,xj−1))+c(d(xj,xj−1))

1−b(d(xj,xj−1))
< 1 for j = 1, 2, . . ., then

d(Hxr+1,Hr) 6 λ(d(xr, xr−1))d(Hxr,Hxr−1)

6 λ(d(xr, xr−1))λ(d(xr−1, xr−2)) · · · λ(d(x1, x0)).d(Hx1,Hx0).

Let λ(t) = max{λ(d(xr, xr−1)), λ(d(xr−1, xr−2)), . . . , λ(d(x1, x0))}. Then the above inequality reduces to

d(Hxr+1,Hr) 6 (λ(t))rd(Hx1,Hx0).

Next, for all p,q ∈N,p > q,

d(Hxp,Hq) 6 d(Hxp,Hp−1) + · · ·+ d(Hxq+1,Hq) 6
(λ(t ′))q

1 − λ(t ′)
d(Hx1,Hx0),

where λ(t ′) = max{λ(t1), λ(t2), . . . , λ(tp−q)}. Thus, {Hxr} is a Cauchy sequence and hence convergent.
Further, H being sequentially convergent, {xr} is convergent. So, lim

r→∞ xr = z for some z ∈ X,

lim
r→∞Hxr = Hz.

Thus

d(HGz,Hz) 6 d(HGz,Hxr) + d(Hxr,Hxr+1) + d(Hxr+1,Hz)
= d(HGz,HGrx0) + d(Hxr,Hxr+1) + d(Hxr+1,Hz)

6 a(d(z,Gr−1x0))d(Hz,HGrx0) + b(d(z,Gr−1x0))d(HG
r−1x0,HGz)

+ c(d(z,Gr−1x0))d(Hz,HGr−1x0) + d(Hxr,Hxr+1) + d(Hxr+1,Hz)

6 a(d(z,Gr−1x0))d(Hz,Hxr) + b(d(z,Gr−1x0))d(Hxr−1,HGz)

+ c(d(z,Gr−1x0))d(Hz,Hxr−1) + d(Hxr,Hxr+1) + d(Hxr+1,Hz).

Making r→∞, gives
d(HGz,Hz) 6 b(d(z,Gr−1x0))d(Hz,HGz).

Since b < 1, d(HGz,Hz) = 0. Since H is injective, we have Gz = z. Thus, G has fixed point. Uniqueness of
fixed point can be proved easily.

Corollary 2.6. Let (X,d) be a complete metric space. Let H : X → X be an injection which is continuous and
sequentially convergent mapping. Let G : X→ X be a mapping such that x,y ∈ X with x 6= y,

d(HGx,HGy) 6 a(d(x,y))d(Hx,HGy) + b(d(x,y))d(Hy,HGx),

where a,b are monotonic decreasing functions defined from (0,∞) into [0, 1) such that a(t) + b(t) < 1. Then, G
has a unique fixed point.

Remark 2.7. If a(t) = b(t) = α and c(t) = β, and if a,b, c are defined from (0,∞) into (0, 1), then Theorem
2.5 reduces to Theorem 2 of Malčeskii ([9, p. 2]).
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Theorem 2.8. Let (X,d) be a complete metric space. Let V andW be two nonempty subsets of X. Let H : V ∪W →
V ∪W be a continuous, injection, and sequentially convergent mapping such that H(V) ⊆W and H(W) ⊆ V . Let
G : V ∪W → V ∪W be a mapping such that G(V) ⊆W, G(W) ⊆ V and

d(HGx,HGy) 6 a(d(x,y))d(Hx,HGx) + b(d(x,y))d(Hy,HGy) + c(d(x,y))d(Hx,Hy),

for x ∈ V ,y ∈W, x 6= y, where a,b, c are monotonic decreasing functions defined from (0,∞) into [0, 1) such that
a(t) + b(t) + c(t) < 1. Then, there exists a unique fixed point of G.

Theorem 2.9. Let(X,d) be a complete metric space and let V and W be two nonempty subsets of X. Let H :
V ∪W → V ∪W be a continuous, injection, and sequentially convergent mapping such that H(V) ⊆ W and
H(W) ⊆ V . Let G : V ∪W → V ∪W be a mapping such that G(V) ⊆W, G(W) ⊆ V , and

d(HGx,HGy) 6 a(d(x,y))d(Hx,HGy) + b(d(x,y))d(Hy,HGx) + c(d(x,y))d(Hx,Hy),

for x ∈ V ,y ∈W with x 6= y, where a,b, c are monotonic decreasing functions defined from (0,∞) into [0, 1) such
that a(t) + b(t) + c(t) < 1 and a(t) > b(t). Then, there exists a unique fixed point of G.

3. Extension of cyclic Chatterjea type mapping

Let X1,X2, . . . ,Xp be non-empty closed subsets of X such that Y =
p⋃

i=1
Xi.

Consider the two self mappings H : Y → Y and G : Y → Y satisfying the following properties:

(P1)
p⋃

i=1
Xi is cyclic with respect to H and G, that is, for 1 6 i 6 p,

H(Xi) ⊆ Xi+1 and G(Xi) ⊆ Xi+1;

(P2) for any x ∈ Xi,y ∈ Xi+1,

ν(d(HGx,HGy)) 6 ν
(

1
2
[d(Hx,HGy) + d(Hy,HGx)]

)
−ω(d(Hx,HGy),d(Hy,HGx)), (3.1)

where ν ∈ Φ and ω ∈ Ω.

Theorem 3.1. If H and G are self mappings in Y satisfying properties (P1) and (P2), then, for any x0 ∈ Y,
d(Hxr+1,Hxr)→ 0, where xr+1 = Gxr.

Proof. Let x0 ∈ Y. Define {xr} such that xr+1 = Gxr for r = 0, 1, 2, 3 . . .. Then by (3.1) we have

ν(d(Hxr+1,Hxr)) = ν(d(HGxr,HGxr−1))

6 ν

(
1
2
[d(Hxr,HGxr−1) + d(Hxr−1,HGxr)]

)
−ω(d(Hxr,HGxr−1),d(Hxr−1,HGxr))

= ν

(
1
2
[d(Hxr,Hxr) + d(Hxr−1,Hxr+1)]

)
−ω(d(Hxr,Hxr),d(Hxr−1,Hxr+1))

6 ν

(
1
2
d(Hxr−1,HGxr)

)
−ω(0,d(Hxr−1,Hxr+1)).

(3.2)

This implies that

ν(d(Hxr+1,Hxr)) 6 ν
(

1
2
d(Hxr−1,Hxr+1)

)
.
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Since ν is a monotone increasing function, we have

d(Hxr+1,Hxr) 6
1
2
d(Hxr−1,Hxr+1) 6

1
2
[d(Hxr−1,Hxr) + d(Hxr,Hxr+1)] 6 d(Hxr−1,Hxr).

Thus, {d(Hxr,Hxr+1)} is a monotonic decreasing sequence. So, it is convergent. Let d(Hxr,Hxr+1) → c,
for some c > 0. Then

lim
r→∞d(Hxr−1,Hxr+1) = 2c.

Since ν is continuous and ω is lower semi-continuous, from (3.2),

ν(c) 6 ν(c) −ω(0, 2c) as r→∞.

This implies ω(0, 2c) = 0 =⇒ c = 0. Hence d(Hxr+1,Hxr)→ 0.

Theorem 3.2. Corresponding to every λ > 0, a number r ∈N can be found such that d(Hxm,Hxn) < λ whenever
m,n > r with m−n ≡ 1 (modk).

Proof. On the contrary, let us assume that there exists a λ > 0 for which a natural number r can be found
such that d(Hxmr ,Hxnr) > λ for some mr > nr > r with mr − nr ≡ 1 (modk). Let r > 2k. Now,
corresponding to nr > r, choose the smallest mr > nr satisfying mr −nr ≡ 1 (modk) and

d(Hxmr ,Hxnr) > λ.

Therefore, d(Hxmr−k
,Hxnr) < λ. Now,

λ 6 d(Hxmr ,Hxnr) 6 d(Hxnr ,Hxmr−k
) +

k∑
i=1

d(Hxmr−i
,Hxmr−i+1) < λ+

k∑
i=1

d(Hxmr−i
,Hxmr−i+1).

Using Theorem 3.1, lim
r→∞d(Hxnr ,Hxmr) = λ. Also, by the triangular inequality,

λ 6 d(Hxnr ,Hxmr) 6 d(Hxnr ,Hxnr+1) + d(Hxnr+1 ,Hxmr+1) + (Hxmr+1 ,Hxmr)

6 d(Hxnr ,Hxnr+1) + d(Hxnr+1 ,Hxnr) + d(Hxnr ,Hxmr)

+ d(Hxmr ,Hxmr+1) + d(Hxmr+1 ,Hxmr).

Again, by Theorem 3.1,
lim
r→∞d(Hxnr+1 ,Hxmr+1) = λ.

Further,
d(Hxnr ,HGxmr) = d(Hxnr ,Hxmr+1) 6 d(Hxnr ,Hxmr) + d(Hxmr ,Hxmr+1).

Making r→∞, gives
lim
r→∞d(Hxnr ,HGxmr) = λ.

Similarly, we have
lim
r→∞d(Hxmr ,HGxnr) = λ.

Now,
λ 6 d(Hxnr+1 ,Hxmr+1).

Since ν is monotone increasing,

ν(λ) 6 ν(d(Hxnr+1 ,Hxmr+1))

= ν(d(HGxnr ,HGxmr))
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6 ν

(
1
2
[d(Hxnr ,HGxmr) + d(Hxmr ,HGxnr)]

)
−ω(d(Hxnr ,HGxmr),d(Hxmr ,HGxnr)).

Making r→∞, gives

ν(λ) 6 ν

(
1
2
(λ+ λ)

)
−ω(λ, λ) = ν(λ) −ω(λ, λ).

Thus ω(λ, λ) 6 0, which is not possible as λ > 0. Hence the result.

Theorem 3.3. Let H : Y → Y be a continuous, injective, and sequentially convergent mapping. Let G : Y → Y be
a self mapping such that H and G satisfy properties (P1) and (P2). Then, G has a unique fixed point in ∩Xi.

Proof. By virtue of Theorem 3.1, an integer r0 ∈N can be found such that

d(Hxr+1,Hxr) 6
λ

2k
,∀r > r0.

Also, by Theorem 3.2, a positive integer r1 exists such that for m,n > r1 with m−n ≡ 1 (modk),

d(Hxm,Hxn) 6
λ

2
.

Let s > m > max(r0, r1). Then, an l ∈ {1, 2, . . . , k} can be found satisfying s−m ≡ l (modk). Moreover,
taking j = k− l+ 1, we get s−m+ j ≡ 1 (modk). Thus,

d(Hxm,Hxs) 6 d(Hxs,Hxm+j) + d(Hxm+j,Hxm+j−1) + · · ·+ d(Hxm+1,Hxm)

6
λ

2
+ j

λ

2k
6
λ

2
+ k

λ

2k
= λ.

Thus, {Hxr} is a Cauchy sequence in Y. Also, Y, being closed in a complete space, is complete. Hence
{Hxr} is convergent. Further, as H is sequentially convergent, {xr} is also convergent. That is, Y has a
member, say z, such that lim

r→∞ xr = z. Further, G being continuous, gives

lim
r→∞Gxr = Gz.

Now

µ(d(HGz,Hz)) = ν(d(HGz,Hxr))
= ν(d(HGz,HGxr+1))

6 ν

(
1
2
[d(Hz,HGxr+1) + d(Hxr+1,HGz)]

)
−ω(d(Hz,HGxr+1),d(Hxr+1,HGz))

= ν

(
1
2
[d(Hz,Hxr) + d(Hxr+1,HGz)]

)
−ω(d(Hz,Hxr),d(Hxr+1,HGz)).

Since H and ν are continuous and ω is lower semi-continuous, the above inequality reduces to

ν(d(HGz,Hz)) 6 ν
(

1
2
d(Hz,HGz)

)
−ω(0,d(Hz,HGz)),

as r→∞. This leads to a contradiction unless

d(Hz,HGz) = 0 =⇒ Hz = HGz.

This implies z = Gz and H being injective. Thus, G has a fixed point z. Uniqueness of fixed point can be
proved easily.
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If ν(t) = t, then Theorem 3.3 gives the following result.

Corollary 3.4. Let (X,d) be a complete metric space. Let X1,X2, . . . ,Xp be non-empty closed subsets of X and

Y =
p⋃

i=1
Xi. Let H : Y → Y be a continuous, injective, and sequentially convergent mapping. Also, let G : Y → Y

be a self mapping such that property (P1) holds. If, for any x ∈ Xi, y ∈ Xi+1 and ω ∈ Ω,

d(HGx,HGy) 6
1
2
[d(Hx,HGy) + d(Hy,HGx)] −ω(d(Hx,HGy),d(Hy,HGx)),

then G has a unique fixed point in ∩Xi.

If ω(s, t) = ( 1
2 − k)(s+ t), where k ∈ [0, 1

2), then Theorem 3.3 gives the following result.

Corollary 3.5. Let (X,d) be a complete metric space. Let X1,X2, . . . ,Xp be non-empty closed subsets of X and

Y =
p⋃

i=1
Xi. Let H : Y → Y be a continuous, injective, and sequentially convergent mapping. Also, let G : Y → Y

be a self mapping such that property (P1) holds. If, for any x ∈ Xi, y ∈ Xi+1 and ω ∈ Ω,

d(HGx,HGy) 6 k[d(Hx,HGy) + d(Hy,HGx)],

where k ∈ [0, 1
2), then G has a unique fixed point in ∩Xi.

We now present an example to illustrate our results.

Problem 3.6. Consider a metric space X in R with the standard metric d defined by d(x,y) = |x− y|. Let

X1 = [0, 1], X2 = [0, 1
2 ], and Y =

2⋃
i=1

Xi. Define a mapping H : Y → Y by

Hx =
x

9
, ∀x ∈ Y.

It can easily be seen that F is sequentially convergent, injective, and continuous. Define ω : [0,∞) ×
[0,∞)→ [0,∞) by ω(s, t) = s+t

9 and ν : [0,∞)→ [0,∞) by ν(t) = t. Then ω ∈ Ω and ν ∈ Φ. Also, define
mapping G : Y → Y by Gx = x

3 for all x ∈ Y. Clearly, H and G satisfy property (P1). Now, let us prove
that H and G also satisfy property (P2). So,

ν(d(HGx,HGy)) = ν
(
|H(

x

3
) −H(

y

3
)|
)
= ν

(∣∣∣ x
27

−
y

27

∣∣∣) =
∣∣∣ x
27

−
y

27

∣∣∣ , (3.3)

and

ν

(
1
2
[d(Hx,HGy) + d(Hy,HGx)]

)
−ω(d(Hx,HGy),d(Hy,HGx))

= ν

(
1
2
[|Hx−HGy|+ |Hy−HGx|]

)
−ω(|Hx−HGy|, |Hy−HGx|) =

7
162

[∣∣∣x− y
3
|+ |y−

x

3

∣∣∣] .
(3.4)

Now, let us examine the following four cases.

Case I: x > y and y < x
3 . Then (3.3) gives

ν(d(HGx,HGy)) =
∣∣∣∣x− y27

∣∣∣∣ .
Also, (3.4) gives

ν

(
1
2
[d(Hx,HGy) + d(Hy,HGx)]

)
−ω(d(Hx,HGy),d(Hy,HGx))

=
7

162

∣∣∣[x− y
3
− y+

x

3

]∣∣∣ = ∣∣∣∣ 14
243

(x− y)

∣∣∣∣ .
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Case II: x > y and y > x
3 . Then (3.3) gives

ν(d(HGx,HGy)) =
∣∣∣∣x− y27

∣∣∣∣ .
Also, (3.4) gives

ν

(
1
2
[d(Hx,HGy) + d(Hy,HGx)]

)
−ω(d(Hx,HGy),d(Hy,HGx))

=
7

162

∣∣∣[x− y
3
+ y−

x

3

]∣∣∣ = ∣∣∣∣ 7
243

(x+ y)

∣∣∣∣ .
Case III: x 6 y and x < y

3 . Then (3.3) gives

ν(d(HGx,HGy)) =
∣∣∣∣y− x27

∣∣∣∣ .
Also, 3.4 gives

ν

(
1
2
[d(Hx,HGy) + d(Hy,HGx)]

)
−ω(d(Hx,HGy),d(Hy,HGx))

=
7

162

∣∣∣[y
3
− x+ y−

x

3

]∣∣∣ = ∣∣∣∣ 14
243

(y− x)

∣∣∣∣ .
Case IV: x 6 y and x > y

3 . Then (3.3) gives

ν(d(HGx,HGy)) =
∣∣∣∣y− x27

∣∣∣∣ .
Also, (3.4) gives

ν

(
1
2
[d(Hx,HGy) + d(Hy,HGx)]

)
−ω(d(Hx,HGy),d(Hy,HGx))

=
7

162

∣∣∣[x− y
3
+ y−

x

3

]∣∣∣ = ∣∣∣∣ 7
243

(y+ x)

∣∣∣∣ .
Therefore in all the cases, we get

ν(d(HGx,HGy)) 6 ν(
1
2
[d(Hx,HGy) + d(Hy,HGx)]) −ω(d(Hx,HGy),d(Hy,HGx)).

Hence H and G also satisfy property (P2). Since all the conditions of the Theorem 3.3 are fulfilled, G must
have a unique fixed point. In this example, G(0) = 0 and 0 ∈ X1 ∩X2.

4. Conclusion

In this article, we expanded the Reich-type fixed point results and weakly cyclical Chatterjea-type
fixed point results in metric space using the idea of sequential convergence mapping. Also, we provided
existence and uniqueness results for cyclic contractions of the Reich and Chatterjea type using the percep-
tion of sequentially convergent mappings in metric spaces. Finally, we demonstrated our findings with
the help of an example.
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