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Abstract

In this paper, we study some family of difference equations. The study involves the use of symmetries to find exact
solutions of difference equations with the aim of extending the studies that have been done in the literature. We also investigate
the periodic nature and behavior of the solutions in some cases. Finally, some numerical examples illustrating our findings are
presented.
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1. Introduction

During the nineteenth century, a prominent Norwegian mathematician, Sophus Lie (1842-1899) es-
tablished remarkable work that became an important part to the theory of groups of transformations
(continuous) that leave a differential equation invariant [14]. Lie aimed to create a theory of integrating
ordinary differential equations that is equivalent to the Abelian theory of computing algebraic equations.
He was inspired by Abel and Galois’ theory. He observed that the procedure in all exceptional cases
of a universal integration on differential equations is centered on the invariance of the differential equa-
tion under continuous symmetries. It is important to note that Lie’s group analysis classifies ordinary
differential equations in terms of the symmetry group associated with them.

Shigeru Maeda in 1987 showed that Lie’s method can be extended to also solve ordinary difference
equations. He showed that a set of functional equations amounted from the linearized symmetry condi-
tion of ordinary difference equations [15]. The philosophy of difference equations and their applications
have cemented a central importance in applicable analysis. Later, several authors studied ordinary dif-
ference equations and have obtained some interesting results, see [1–6, 8–13, 16, 17]. Maeda [15] showed
how to use symmetry methods to obtain the solution of a system of first-order difference equations. It is
now known that symmetries can be used to solve higher-order difference equations.
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In [18], the authors investigated the solutions of the fifth-order difference equation

xn+1 =
xn−2xn−3xn−4

xnxn−1(±1 +±xn−2xn−3xn−4)
,n ∈N0. (1.1)

In [10], the authors investigated the solutions and behavior of solutions of the difference equation

xn+1 =
xnxn−2xn−4

xn−1xn−3 (λ+ µxnxn−2xn−4)
, (1.2)

where λ and µ are real constants. In [7], the authors investigated the solutions and the properties of the
difference equation

xn+1 =
xn−3kxn−4kxn−5k

xn−kxn−2k (±1± xn−3kxn−4kxn−5k)
. (1.3)

We show in this paper that the left-hand side in the above equation is xn+1 and not xn as seen in [7].
Clearly, equations (1.1)-(1.3) are all special cases of

xn+1 =
xn−3kxn−4kxn−5k

xn−kxn−2k (an + bnxn−3kxn−4kxn−5k)
, (1.4)

for some arbitrary real sequences an and bn.
A symmetry based method will be employed to solve the generalized case (1.4) and compare the solu-

tions of the corresponding special cases to those of [7, 10, 18]. To achieve this, for the sake of definitions,
we will derive the solutions of the equivalent difference equation

xn+5k =
xnxn+kxn+2k

xn+3kxn+4k (An +Bnxnxn+kxn+2k)
, (1.5)

where (An)n∈N and (Bn)n∈N are non-zero real random sequences, using Lie group analysis technique.
Eventually, invariants of (1.5) are derived and a relationship between these invariants and the similarity
variables is given.

The paper is organized in the following manner. In Section 2, we revise some essential ideas that are
required for computing symmetries of difference equations and order reduction. In Section 3, symmetries
and solutions of (1.5) are obtained and a detailed analysis of some special cases is conducted. In Section
4, we study the periodicity and behavior of the solutions of (1.5).

2. Definitions and notation

The definitions and notations in this paper are similar to those that Hydon adopted in [13]. We
consider the general form of the ordinary difference equation

xn+5k = ω (n, xn, xn+k, xn+2k, xn+3k, xn+4k) , (2.1)

for some function ω with k ∈N.

Definition 2.1. We define S to be the shift operator acting on n as

S : n→ n+ 1.

Consider a one-parameter Lie group of point transformations given below

Ψε : (n, xn)→ (n, xn + εξ (n, xn)) , (2.2)

for the continuous characteristic function ξ = ξ(n, xn). It is known that the action of the Lie group can be
recovered from the corresponding infinitesimal generators.



J. T. Kubayi, M. Folly-Gbetoula, J. Math. Computer Sci., 32 (2024), 318–331 320

Definition 2.2. The symmetry generator, denoted by X, is given by

X = ξ(n, xn)
∂

∂xn
. (2.3)

The linearized symmetry condition [13] is given by

S5kξ− X̂ω = 0, (2.4)

provided (2.1) holds. Note that X̂ denotes the prolongation of X to all shifts of xn appearing in the
equation and is given by

X̂ = ξ
∂

∂xn
+ Skξ

∂

∂xn+k
+ · · ·+ S4kξ

∂

∂xn+4k
. (2.5)

Definition 2.3. A function v is an invariant under the group of transformation (2.2) if and only if Xv = 0.

The generator in (2.3) can be used to derive the canonical coordinate which in turn can be used to
obtain the invariant functions. The method for finding symmetries is explained at length in [13].

3. Symmetry analysis and exact solutions

Consider the difference equation (1.5). So, in this case, the function ω is given by

ω =
xnxn+kxn+2k

xn+3kxn+4k (An +Bnxnxn+kxn+2k)
.

Assuming that the prolonged symmetry generator takes the form in (2.5), the linearized symmetry con-
dition (2.4) on (1.5) gives

ξ(n+ 5k, xn+5k) − ξ(n, xn)
∂ω

∂xn
− ξ(n+ k, xn+k)

∂ω

∂xn+k

− ξ(n+ 2k, xn+2k)
∂ω

∂xn+2k
− ξ(n+ 3k, xn+3k)

∂ω

∂xn+3k
− ξ(n+ 4k, xn+4k)

∂ω

∂xn+4k
= 0,

that is to say,

ξ(n+ 5k, xn+5k) −
ξ(n, xn)Anxn+kxn+2k

xn+3kxn+4k(An +Bnxnxn+kxn+2k)2 −
ξ(n+ k, xn+k)Anxnxn+2k

xn+3kxn+4k(An +Bnxnxn+kxn+2k)2

+
ξ(n+ 3k, xn+3k)xnxn+kxn+2k

x2
n+3kxn+4k(An +Bnxnxn+2xn+2k)

+
ξ(n+ 4k, xn+4k)xnxn+kxn+2k

xn+3kx
2
n+4k(An +Bnxnxn+kxn+2k)

−
ξ(n+ 2k, xn+2k)Anxn+k

xn+3kxn+4k(An +Bnxnxn+kxn+2k)2 = 0.

(3.1)

We apply the operator ∂
∂xn

+ Anxn+3k
xn(An+Bnxnxn+kxn+2k)

∂
∂xn+3k

on (3.1). After clearing fractions and then dif-
ferentiating thrice with respect to xn, we obtain the following:

2(An + 2Bnxnxn+kxn+2k)ξ
(3)(n, xn) + (An +Bnxnxn+kxn+2k)xnξ

(4)(n, xn) = 0.

Now we separate the above, since ξ depends only on xn, to get

xn+kxn+2kxn+3k : xnξ
(4)(n, xn) + 4ξ(3)(n, xn) = 0, xn+3k : xnξ

(4)(n, xn) + 2ξ(3)(n, xn) = 0,

whose solution is given by
ξ(n, xn) = βnx2

n + γnxn + λn (3.2)



J. T. Kubayi, M. Folly-Gbetoula, J. Math. Computer Sci., 32 (2024), 318–331 321

for some functions βn, γn, and λn of n. Next, we substitute (3.2) into (3.1) and then separate the resulting
equation by the coefficients of products of shifts of un and then setting them to zero. It turns out that
λn = βn = 0 and γn must satisfy the following linear difference equation:

γn + γn+k + γn+2k = 0.

Solving the above equation yields

γn1(m) = exp
{
i

(
−

2nπ
3k

+
2mπn
k

)}
, γn2(m) = exp

{
i

(
2nπ
3k

+
2mπn
k

)}
,

where m = 0, 1, . . . , k− 1. From (3.2), we have the characteristics ξ1 = γn1(m)xn and ξ2 = γn2(m)xn,
m = 0, 1, . . . , k− 1. Hence, we obtain the following 2k symmetries:

X1m = γn1(m)xn
∂

∂xn
and X2m = γn2(m)xn

∂

∂xn
, m = 0, 1, . . . , k− 1.

The canonical coordinate that linearizes (1.5) is given by

Sn =

∫
dxn

ξ(n, xn)
=

1
γn

ln |xn|

and the function given by
Ṽn = γnSn + γn+kSn+k + γn+2kSn+2k

is invariant under the group of transformations admitted by (1.5) since X̂(Ṽn) = 0. For the sake of
convenience, we will use the invariant Vn = exp (−Ṽn) and one can easily verify that X̂(Vn) = 0. It
happens that,

Vn =
1

xnxn+kxn+2k
(3.3)

and applying the forward shift of 3k on Vn (and substituting xn+5k by its expression given in (1.5)) yields

Vn+3k = AnVn +Bn. (3.4)

By iterating (3.4), we obtain its solution in closed form

V3kn+i = Vi

 n−1∏
m1=0

A3km1+i

+

n−1∑
l=0

B3kl+i

n−1∏
m2=l+1

A3km2+i

 , (3.5)

where i = 0, 1, 2, . . . , 3k− 1. It follows from (3.3) that

xn+3k =
Vn

Vn+k
xn

and by iterating the above equation, we have that

x3kn+i = xi

(
n−1∏
s=0

V3ks+i

V3ks+i+k

)
, (3.6)

where i = 0, 1, 2, . . . , 3k− 1. To avoid any possible confusion, we rewrite (3.6) in the following forms:

x3kn+i = xi

(
n−1∏
s=0

V3ks+i

V3ks+i+k

)
, i = 0, . . . , 2k− 1 (3.7)
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and

x3kn+i = xi

(
n−1∏
s=0

V3ks+i

V3k(s+1)+i−2k

)
, i = 2k, . . . , 3k− 1. (3.8)

Using (3.5) in (3.7) and (3.8), remembering that Vi = 1/(xixi+kxi+2k), we have the following solutions of
(1.5):

x3kn+i =
xni+3k

xn−1
i

n−1∏
s=0

(
s−1∏
m1=0

A3km1+i

)
+ xixi+kxi+2k

s−1∑
l=0

(
B3kl+i

s−1∏
m2=l+1

A3km2+i

)
(

s−1∏
m1=0

A3km1+k+i

)
+ xi+kxi+2kxi+3k

s−1∑
l=0

(
B3kl+k+i

s−1∏
m2=l+1

A3km2+k+i

) , (3.9)

where i = 0, 1, 2, . . . , 2k− 1; and

x3kn+i =
xix

n
i−2kx

n
i−k

xni+kx
n
i+2k

×
n−1∏
s=0

(
s−1∏
m1=0

A3km1+i

)
+ xixi+kxi+2k

s−1∑
l=0

(
B3kl+i

s−1∏
m2=l+1

A3km2+i

)
(

s∏
m1=0

A3km1+i−2k

)
+ xi−2kxi−kxi

s∑
l=0

(
B3kl+i−2k

s∏
m2=l+1

A3km2+i−2k

) ,
(3.10)

where i = 2k, 2k+ 1, . . . , 3k− 1. We derive the solution of (1.4) by back shifting (3.9) and (3.10) 5k− 1
times. This yields

x3kn−5k+1+i

=
xni−2k+1

xn−1
i−5k+1

n−1∏
s=0

(
s−1∏
m1=0

a3km1+i

)
+ xi−5k+1xi−4k+1xi−3k+1

s−1∑
l=0

(
b3kl+i

s−1∏
m2=l+1

a3km2+i

)
(

s−1∏
m1=0

a3km1+k+i

)
+ xi−4k+1xi−3k+1xi−2k+1

s−1∑
l=0

(
b3kl+k+i

s−1∏
m2=l+1

a3km2+k+i

) ,
(3.11)

for i = 0, 1, 2, . . . , 2k− 1; and

x3kn−5k+1+i

=
xi−5k+1x

n
i−7k+1x

n
i−6k+1

xni−4k+1x
n
i−3k+1

×
n−1∏
s=0

(
s−1∏
m1=0

a3km1+i

)
+ xi−5k+1xi−4k+1xi−3k+1

s−1∑
l=0

(
b3kl+i

s−1∏
m2=l+1

a3km2+i

)
(

s∏
m1=0

a3km1+i−2k

)
+ xi−7k+1xi−6k+1xi−5k+1

s∑
l=0

(
b3kl+i−2k

s∏
m2=l+1

a3km2+i−2k

) ,

(3.12)

for i = 2k, 2k− 1, . . . , 3k− 1.

3.1. The case where an and bn are constant

Here, let an = a and bn = b, where a,b ∈ R. Thus, equations (3.11) and (3.12) reduce to

x3kn−5k+i+1 =
xni−2k+1

xn−1
i−5k+1

n−1∏
s=0

as + xi−5k+1xi−4k+1xi−3k+1b
s−1∑
l=0

al

as + xi−4k+1xi−3k+1xi−2k+1b
s−1∑
l=0

al
,
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for i = 0, 1, 2, . . . , 2k− 1; and

x3kn−5k+i+1 =
xi−5k+1x

n
i−7k+1x

n
i−6k+1

xni−4k+1x
n
i−3k+1

n−1∏
s=0

as + xi−5k+1xi−4k+1xi−3k+1b
s−1∑
l=0

al

as+1 + xi−7k+1xi−6k+1xi−5k+1b
s∑
l=0

al
,

for i = 2k, 2k+ 1, . . . , 3k− 1.

3.1.1. The case where a = 1
We have

x3kn−5k+i+1 =
xni−2k+1

xn−1
i−5k+1

n−1∏
s=0

1 + xi−5k+1xi−4k+1xi−3k+1bs

1 + xi−4k+1xi−3k+1xi−2k+1bs
, (3.13)

for i = 0, 1, 2, . . . , 2k− 1; and

x3kn−5k+i+1 =
xi−5k+1x

n
i−7k+1x

n
i−6k+1

xni−4k+1x
n
i−3k+1

n−1∏
s=0

1 + xi−5k+1xi−4k+1xi−3k+1bs

1 + xi−7k+1xi−6k+1xi−5k+1b(s+ 1)
, (3.14)

for i = 2k, 2k+ 1, . . . , 3k− 1.

Remark 3.1. The results in [7] (see Theorems 2.1.1 and 2.2.1) are special cases of ours. In fact,

x3kn+i = x3k(n+1)−5k+2k+i, i = 1, 2, . . . , k =
xi−3kx

n+1
i−5kx

n+1
i−4k

xn+1
i−2kx

n+1
i−k

n∏
s=0

1 + xi−3kxi−2kxi−kbs

1 + xi−5kxi−4kxi−3kb(s+ 1)

= xi−3k

n∏
s=0

xi−5kxi−4k + xi−5kxi−4kxi−3kxi−2kxi−kbs

xi−2kxi−k + xi−5kxi−4kxi−3kxi−2kxi−kb(s+ 1)

and similarly,

x3kn+i = x3k(n+2)−5k−k+i, i = k+ 1, 2, . . . , 3k− 1

=
xn+2
i−3k

xn+1
i−6k

n+1∏
s=0

1 + xi−6kxi−5kxi−4kbs

1 + xi−5kxi−4kxi−3kbs
= xi−3k

n∏
s=0

xi−3k + xi−6kxi−5kxi−4kxi−3kb(s+ 1)
xi−6k + xi−6kxi−5kxi−4kxi−3kb(s+ 1)

.

Consequently, Corollaries 3.1.1 and 3.2.1 are easily recovered from (3.13) and (3.14) by setting k = 2.

3.1.2. The case where a 6= 1
We have

x3kn−5k+i+1 =
xni−2k+1

xn−1
i−5k+1

n−1∏
s=0

as + xi−5k+1xi−4k+1xi−3k+1b
(1−as

1−a

)
as + xi−4k+1xi−3k+1xi−2k+1b

(1−as
1−a

) ,

for i = 0, 1, 2, . . . , 2k− 1; and

x3kn−5k+i+1 =
xi−5k+1x

n
i−7k+1x

n
i−6k+1

xni−4k+1x
n
i−3k+1

n−1∏
s=0

as + xi−5k+1xi−4k+1xi−3k+1b
(1−as

1−a

)
as+1 + xi−7k+1xi−6k+1xi−5k+1b

(
1−as+1

1−a

) ,

for i = 2k, 2k+ 1, . . . , 3k− 1.
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3.1.3. The case where k = 1
Assume an = λ and bn = µ, where λ,µ ∈ R. Thus, equations (3.11) and (3.12) simplify to

x3n−4 =
xn−1

xn−1
−4

n−1∏
s=0

λs + x−4x−3x−2µ
s−1∑
l=0

λl

λs + x−3x−2x−1µ
s−1∑
l=0

λl
,

x3n−3 =
xn0

xn−1
−3

n−1∏
s=0

λs + x−3x−2x−1µ
s−1∑
l=0

λl

λs + x−2x−1x0µ
s−1∑
l=0

λl
,

x3n−2 =
x−2x

n
−4x

n
−3

xn−1x
n
0

n−1∏
s=0

λs + x−2x−1x0µ
s−1∑
l=0

λl

λs+1 + x−4x−3x−2µ
s∑
l=0

λl
.

For λ = 1, using equations (3.11) and (3.12), we have that

x3n−4 =
xn−1

xn−1
−4

n−1∏
s=0

1 + x−4x−3x−2µs

1 + x−3x−2x−1µs
,

x3n−3 =
xn0

xn−1
−3

n−1∏
s=0

1 + x−3x−2x−1µs

1 + x−2x−1x0µs
,

x3n−2 =
x−2x

n
−4x

n
−3

xn−1x
n
0

n−1∏
s=0

1 + x−2x−1x0µs

1 + x−4x−3x−2µ(s+ 1)
.

(3.15)

The results in (3.15) were obtained by Yazlik in [18] (see Theorems 5 and 9). For λ 6= 1, equations (3.11)
and (3.12) become

x3n−4 =
xn−1

xn−1
−4

n−1∏
s=0

λs + x−4x−3x−2µ
(1−λs

1−λ

)
λs + x−3x−2x−1µ

(1−λs
1−λ

) ,

x3n−3 =
xn0

xn−1
−3

n−1∏
s=0

λs + x−3x−2x−1µ
(1−λs

1−λ

)
l

λs + x−2x−1x0µ
(1−λs

1−λ

) ,

x3n−2 =
x−2x

n
−4x

n
−3

xn−1x
n
0

n−1∏
s=0

λs + x−2x−1x0µ
(1−λs

1−λ

)
λs+1 + x−4x−3x−2µ

(
1−λs+1

1−λ

) .

In particular, when λ = −1, we have

x6n−4 =
x2n
−1

x2n−1
−4

(
−1 + x−4x−3x−2µ

−1 + x−3x−2x−1µ

)n
, x6n−3 =

x2n
0

x2n−1
−3

(
−1 + x−3x−2x−1µ

−1 + x−2x−1x0µ

)n
,

x6n−2 =
x−2x

2n
−4x

2n
−3

x2n
−1x

2n
0

(
−1 + x−2x−1x0µ

−1 + x−4x−3x−2µ

)n
, x6n−1 =

x2n+1
−1

x2n
−4

(
−1 + x−4x−3x−2µ

−1 + x−3x−2x−1µ

)n
,

x6n =
x2n+1

0

x2n
−3

(
−1 + x−3x−2x−1µ

−1 + x−2x−1x0µ

)n
, x6n+1 =

x−2x
2n+1
−4 x2n+1

−3

x2n+1
−1 x2n+1

0

(−1 + x−2x−1x0µ)
n

(−1 + x−4x−3x−2µ)n+1 .

(3.16)

The results in (3.16) were obtained by Yazlik in [18] (see Theorems 7 and 11). Also, by replacing n with
2n or 2n+ 1 in (3.11) and (3.12), we recover the results in equation (67) of [10].
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3.2. The case when k = 2
When k = 2, thanks to (3.11) and (3.12), the solution of

xn+1 =
xn−6xn−8xn−10

xn−2xn−4 (an + bnxn−6xn−8xn−10)

is given by

x6n−9+i =
xni−3

xn−1
i−9

n−1∏
s=0

(
s−1∏
m1=0

a6m1+i

)
+ xi−9xi−7xi−5

s−1∑
l=0

(
b6l+i

s−1∏
m2=l+1

a6m2+i

)
(
s−1∏
m1=0

a6m1+2+i

)
+ xi−7xi−5xi−3

s−1∑
l=0

(
b6l+2+i

s−1∏
m2=l+1

a6m2+2+i

) ,

for i = 0, 1, 2, 3; and

x6n−9+i

=
xi−9x

n
i−13x

n
i−11

xni−7x
n
i−5

n−1∏
s=0

(
s−1∏
m1=0

a6m1+i

)
+ xi−9xi−7xi−5

s−1∑
l=0

(
b6l+i

s−1∏
m2=l+1

a6m2+i

)
(

s∏
m1=0

a6m1+i−4

)
+ xi−13xi−11xi−9

s∑
l=0

(
b6l+i−4

s∏
m2=l+1

a6m2+i−4

) ,

for i = 4, 5.

3.2.1. The case where an = a and bn = b are constant
The case where a = 1 we have

x6n−9+i =
xni−3

xn−1
i−9

n−1∏
s=0

1 + xi−9xi−7xi−5bs

1 + xi−7xi−5xi−3bs
,

for i = 0, 1, 2, 3; and

x6n−9+i =
xi−9x

n
i−13x

n
i−11

xni−7x
n
i−5

n−1∏
s=0

1 + xi−9xi−7xi−5bs

1 + xi−13xi−11xi−9b(s+ 1)
.

for i = 4, 5. More explicitly,

x6n−9 =
xn−3

xn−1
−9

n−1∏
s=0

1 + x−9x−7x−5bs

1 + x−7x−5x−3bs
, x6n−8 =

xn−2

xn−1
−8

n−1∏
s=0

1 + x−8x−6x−4bs

1 + x−6x−4x−2bs
,

x6n−7 =
xn−1

xn−1
−7

n−1∏
s=0

1 + x−7x−5x−3bs

1 + x−5x−3x−1bs
, x6n−6 =

xn0

xn−1
−6

n−1∏
s=0

1 + x−6x−4x−2bs

1 + x−4x−2x0bs
,

x6n−5 =
x−5x

n
−9x

n
−7

xn−3x
n
−1

n−1∏
s=0

1 + x−5x−3x−1bs

1 + x−9x−7x−5b(s+ 1)
, x6n−4 =

x−4x
n
−8x

n
−6

xn−2x
n
0

n−1∏
s=0

1 + x−4x−2x0bs

1 + x−8x−6x−4b(s+ 1)
.

Setting b = ±1 and replacing n with n + 1 or n + 2 in the above equations, we recover the results in
[7] (see Corollaries 3.1.1 and 3.2.1). We note some typos in the formulas for x6n+3 (dn should be dn+2)
in Corollaries 3.1.1 and 3.2.1. In fact, x6n+3 = x6(n+2)−9 and it follows from the above expressions that
the power of x−3 must then be n+ 2. Another way to confirm that it should be n+ 2 is to set k = 2 in
equations (2.1.3) and (2.2.3) of [7].
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For the case where a 6= 1 we have

x6n−9+i =
xni−3

xn−1
i−9

n−1∏
s=0

as + xi−9xi−7xi−5b
(1−as

1−a

)
as + xi−7xi−5xi−3b

(1−as
1−a

) ,

for i = 0, 1, 2, 3; and

x6n−9+i =
xi−9x

n
i−13x

n
i−11

xni−7x
n
i−5

n−1∏
s=0

as + xi−9xi−7xi−5b
(1−as

1−a

)
as+1 + xi−13xi−11xi−9b

(
1−as+1

1−a

) ,

for i = 4, 5. More explicitly,

x6n−9 =
xn−3

xn−1
−9

n−1∏
s=0

as + x−9x−7x−5b
(

1−as
1−a

)
as + x−7x−5x−3b

(
1−as
1−a

) , x6n−8 =
xn−2

xn−1
−8

n−1∏
s=0

as + x−8x−6x−4b
(

1−as
1−a

)
as + x−6x−4x−2b

(
1−as
1−a

) ,

x6n−7 =
xn−1

xn−1
−7

n−1∏
s=0

as + x−7x−5x−3b
(

1−as
1−a

)
as + x−5x−3x−1b

(
1−as
1−a

) , x6n−6 =
xn0

xn−1
−6

n−1∏
s=0

as + x−6x−4x−2b
(

1−as
1−a

)
as + x−4x−2x0b

(
1−as
1−a

) ,

x6n−5 =
x−5x

n
−9x

n
−7

xn−3x
n
−1

n−1∏
s=0

as + x−5x−3x−1b
(

1−as
1−a

)
as+1 + x−9x−7x−5b

(
1−as+1

1−a

) , x6n−4 =
x−4x

n
−8x

n
−6

xn−2x
n
0

n−1∏
s=0

as + x−4x−2x0b
(

1−as
1−a

)
as+1 + x−8x−6x−4b

(
1−as+1

1−a

) .

For a = −1, the formulas reduce to

x12n−9 =
x2n
−3

x2n−1
−9

(
−1 + x−9x−7x−5b

−1 + x−7x−5x−3b

)n
, x12n−8 =

x2n
−2

x2n−1
−8

(
−1 + x−8x−6x−4b

−1 + x−6x−4x−2b

)n
,

x12n−7 =
x2n
−1

x2n−1
−7

(
−1 + x−7x−5x−3b

−1 + x−5x−3x−1b

)n
, x12n−6 =

x2n
0

x2n−1
−6

(
−1 + x−6x−4x−2b

−1 + x−4x−2x0b

)n
,

x12n−5 =
x−5x

2n
−9x

2n
−7

x2n
−3x

2n
−1

(
−1 + x−5x−3x−1b

−1 + x−9x−7x−5b

)n
, x12n−4 =

x−4x
2n
−8x

2n
−6

x2n
−2x

2n
0

(
−1 + x−4x−2x0b

−1 + x−8x−6x−4b

)n
,

x12n−3 =
x2n+1
−3

x2n
−9

(
−1 + x−9x−7x−5b

−1 + x−7x−5x−3b

)n
, x12n−2 =

x2n+1
−2

x2n
−8

(
−1 + x−8x−6x−4b

−1 + x−6x−4x−2b

)n
,

x12n−1 =
x2n+1
−1

x2n
−7

(
−1 + x−7x−5x−3b

−1 + x−5x−3x−1b

)n
, x12n =

x2n+1
0

x2n
−6

(
−1 + x−6x−4x−2b

−1 + x−4x−2x0b

)n
,

x12n+1 =
x−5x

2n+1
−9 x2n+1

−7

x2n+1
−3 x2n+1

−1

(−1 + x−5x−3x−1b)
n

(−1 + x−9x−7x−5b)n+1 , x12n+2 =
x−4x

2n+1
−8 x2n+1

−6

x2n+1
−2 x2n+1

0

(−1 + x−4x−2x0b)
n

(−1 + x−8x−6x−4b)n+1 .

If we set b = ±1 and we replace n with n + 1 in the above equations, we recover the results [7] (see
Corollaries 3.3.1 and 3.4.1). We note that the x12n+5 in the last equation in Corollaries 3.3.1 and 3.4.1
should be x12n+11.

4. Periodic nature and behavior of the solutions

Theorem 4.1. Let xn be a solution of

xn+5k =
xnxn+kxn+2k

xn+3kxn+4k(A+Bxnxn+kxn+2k)
(4.1)

for some constants A 6= 1 and B. If the initial conditions xi, i = 0, . . . , 5k − 1, are such that x3
i = x3

i+k =

(1 −A)/B, then xn = x = [(1 −A)/B]1/3 for all n.
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Proof. Suppose the initial conditions are such that xi = xi+k and x3
i = (1−A)/B for i = 0, . . . ,k− 1. From

(3.9) and (3.10), we have that

x3kn+i = xi

n−1∏
s=0

As + x3
iB
s−1∑
l=0

Al

As + x3
iB
s−1∑
l=0

Al
= xi,

where i = 0, 1, 2, . . . , 2k− 1; and

x3kn+i = xi

n−1∏
s=0

As + x3
iB
s−1∑
l=0

Al

As+1 + x3
iB

s∑
l=0

Al
=

xi

An + x3
iB
n−1∑
l=0

Al
= xi,

where i = 2k, 2k+ 1, . . . , 3k− 1. That is, x3kn+i = xi, i = 0, . . . , 3k− 1, and x3kn+i+k = xi, for all k.

Figure 1 illustrates Theorem 4.1. Note that x in Theorem 4.1 is a fixed point of (4.1). This theorem is
interesting in the sense that if any of the initial condition does not satisfy x3

i = (1 −A)/B, xn can neither
be a constant nor periodic even if the initial conditions are all the same (see Figure 2).

Figure 1: Graph of xn+10 =
xnxn+4xn+2

xn+6xn+8(3 + 0.25xnxn+2xn+4)
, where x0 = x1 = · · · = x9 = −2 = ((1 −A)/B)1/3.

Figure 2: Graph of xn+10 =
xnxn+4xn+2

xn+6xn+8(3 + 0.25xnxn+2xn+4)
, where x0 = x1 = · · · = x9 = −3 6= ((1 −A)/B)1/3.

Theorem 4.2. Let xn be non-zero solutions of

xn+5k =
xnxn+kxn+2k

xn+3kxn+4k(1 +Bxnxn+kxn+2k)
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for some constant B. If the initial conditions xi, i = 0, . . . , 5k− 1, are such that xi = xi+k, then the solution can
not be periodic. Furthermore, the limit of xn, as n→∞, does not exist.

Proof. Suppose the non-zero initial conditions are such that xi = xi+k. From (3.9) and (3.10), we have that

x3kn+i = xi

n−1∏
s=0

1 + x3
iBs

1 + x3
iBs

= xi,

where i = 0, 1, 2, . . . , 2k− 1; and

x3kn+i = xi

n−1∏
s=0

1 + x3
iBs

1 + x3
iB(s+ 1)

=
xi

1 + x3
iBn

6= xi,

where i = 2k, 2k+ 1, . . . , 3k− 1. It follows that lim
n→∞ x3kn+i = xi for i = 0, . . . , 2k− 1; and lim

n→∞ x3kn+i = 0
for i = 2k, . . . , 3k− 1. Thus, the limit does not exist.

Figure 3 illustrates Theorem 4.2.

Figure 3: Graph of xn+10 =
xnxn+4xn+2

xn+6xn+8(1 + xnxn+2xn+4)
, where x0 = x1 = · · · = x9 = −2.

Theorem 4.3. Let xn be a solution of

xn+5k =
xnxn+kxn+2k

xn+3kxn+4k(A+Bxnxn+kxn+2k)

for some constants A 6= 1 and B. If the initial conditions xi, i = 0, . . . , 5k− 1 are such that xi = xi+3k, then the
solution is periodic with period 3k if and only if xixi+kxi+2k = (1 −A)/B.

Proof. Suppose the initial conditions are such that xi = xi+3k and xixi+kxi+2k = (1 −A)/B. From (3.9)
and (3.10), we have that

x3kn+i = xi

n−1∏
s=0

As + xixi+kxi+2kB
s−1∑
l=0

Al

As + xixi+kxi+2kB
s−1∑
l=0

Al
= xi,

where i = 0, 1, 2, . . . , 2k− 1; and

x3kn+i = xi

n−1∏
s=0

As + xixi+kxi+2kB
s−1∑
l=0

Al

As+1 + xixi+kxi+2kB
s∑
l=0

Al
=

xi

An + xixi+kxi+2kB
n−1∑
l=0

Al
= xi,

where i = 2k, 2k+ 1, . . . , 3k− 1. That is, x3kn+i = xi, i = 0, . . . , 3k− 1, and x3kn+i+3k = xi, for all k.
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Figures 4 and 5 illustrate Theorem 4.3.

Figure 4: Graph of xn+10 =
xnxn+4xn+2

xn+6xn+8(3 + 0.25xnxn+2xn+4)
, where x0 = x6 = −2, x1 = x7 = −2/3, x2 = x8 = 1, x3 = x9 =

−3, x4 = 4, x5 = −4 and are such that x0x2x4 = x1x3x5 = (1 −A)/B.

Figure 5: Graph of xn+10 =
xnxn+4xn+2

xn+6xn+8(3 + 0.25xnxn+2xn+4)
, where x0 = −x6 = −7, x1 = −x7 = −7/3, x2 = −x8 = 1, x3 =

−x9 = −3, x4 = 4, x5 = −4 and are such that x0x2x4 6= x1x3x5 6= (1 −A)/B.

Theorem 4.4. Let xn be a non-zero solution of

xn+5k =
xnxn+kxn+2k

xn+3kxn+4k(1 +Bxnxn+kxn+2k)

for some constant B. If the initial conditions xi, i = 0, . . . , 5k− 1 are such that xi = xi+3k, then the solution can
not be periodic. Furthermore, the limit of xn, as n→∞, does not exist.

Proof. Suppose the non-zero initial conditions are such that xi = xi+3k. From (3.9) and (3.10), we have
that

x3kn+i = xi

n−1∏
s=0

1 + xixi+kxi+2kBs

1 + xixi+kxi+2kBs
= xi,

where i = 0, 1, 2, . . . , 2k− 1; and

x3kn+i = xi

n−1∏
s=0

1 + xixi+kxi+2kBs

1 + xixi+kxi+2kB(s+ 1)
=

xi
1 + xixi+kxi+2kBn

6= xi,

where i = 2k, 2k+ 1, . . . , 3k− 1. It follows that lim
n→∞ x3kn+i = xi for i = 0, . . . , 2k− 1; and lim

n→∞ x3kn+i = 0
for i = 2k, . . . , 3k− 1. Hence the limit does not exist.

Figure 6 illustrates Theorem 4.4.
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Figure 6: Graph of xn+10 =
xnxn+4xn+2

xn+6xn+8(1 + 0.01xnxn+2xn+4)
, where x0 = x6 = −2, x1 = x7 = −2/3, x2 = x8 = 1, x3 = x9 =

−3, x4 = 4, x5 = −4.

5. Conclusion

We investigated the difference equation (1.4) by finding the symmetry generators and we used the
canonical coordinates to find its invariants which led to the solutions in closed form. We showed that the
findings in [7, 10, 18] are special cases of our results and we pointed out some errors in [7]. As a matter
of fact, all the formulas solutions found in [7] are solutions of (1.4), when an = bn = 1, and not (1.3).
Finally, we studied the periodic nature and behavior of the solutions in some cases.
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