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Abstract

In this paper, our main objective is to study the Hyers-Ulam-Gavruta stability of a Jensen’s type quadratic-quadratic
mapping in 2-Banach Spaces, that is, we prove the Hyers-Ulam-Gavruta stability of the Jensen’s type functional equation
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in 2-Banach spaces by Hyers direct method.
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1. Introduction

We say that a functional equation is stable, if for every approximate solution, there exists an exact
solution near to it. The concept of stability for a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. The first stability problem of
functional equation was raised by Ulam [50] in 1940. A simulating and famous talk presented by Ulam [50]
in 1940, motivated the study of stability problems for various functional equations. He gave a wide range
of talk before a Mathematical Colloquium at the University of Wisconsin in which he presented a list of
unsolved problems. Among those was the following question concerning the stability of homomorphisms.
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Theorem 1.1 ([50]). Let Gy be a group and let G, be a group endowed with a metric p. Given € > 0, does there
exists a & > 0 such that if f : G; — Gy satisfies

p(flxy), f(x)fly)) <9,
forall x,y € G, then we can find a homomorphism h : G; — Gy exists with p(f(x), h(x)) < € forall x € G1?

Since then, this question has attracted the attention of many researchers. If the answer is affirmative,
we say that the functional equation for homomorphisms is stable. In 1941, Hyers [19] was the first Math-
ematician to present the result concerning the stability of functional equations. He brilliantly answered
the question of Ulam, the problem for the case of approximately additive mappings, when G; and G, are
assumed to be Banach spaces. The result of Hyers is stated in the following celebrated Theorem.

Theorem 1.2 (Hyers [19]). Assume that Gy and Gy are Banach spaces. If a function f : Gy — Gy satisfies the
inequality
If(x+y) = f(x) = fly)l < e (1.1)

for some € > 0 and for all x,y € G, then the limit

A(x) = lim 27 "f(2™x)

n—oo

exists for each x € Gy and A : Gy — Gy is the unique additive function such that
If(x) —A(x)| < e (1.2)
for all x € Gy. Moreover, if f(tx) is continuous in t for each fixed x € Gy, then A is linear.

Taking the above fact into account, the additive functional equation f(x +y) = f(x) + f(y) is said
to have Hyers-Ulam stability on (G1, G2). In the above Theorem, an additive function A satisfying the
inequality (1.2) is constructed directly from the given function f and it is the most powerful tool to study
the stability of several functional equations. In course of time, the theorem formulated by Hyers was
generalized by Aoki [5] and Bourgin [7] for additive mappings.

There is no reason for the Cauchy difference f(x +y) — f(x) — f(y) to be bounded as in the expression
of (1.1). Towards this point, in the year 1978, Rassias [41] tried to weaken the condition for the Cauchy
difference and succeeded in proving what is now known to be the Hyers-Ulam-stability for the Additive
Cauchy Equation. This terminology is justified because the theorem of Rassias has strongly influenced
mathematicians studying stability problems of functional equation. In fact, Rassias proved the following
Theorem.

Theorem 1.3 ([41]). Let X and Y be Banach spaces. Let © € (0,00) and let p € [0,1). If a function f : X — Y
satisfies

[£0x +y) = F(x) = F)Il < O (IXI1° + [ly[IP)
forall x,y € X, then there exists a unique additive mapping A : X — Y such that

20
2-2p

[T(x) = A < [P

for all x € X. Moreover, if f(tx) is continuous in t for each fixed x € X, then A is linear.

The findings of Rassias have exercised a delectable influence on the development of what is addressed
as the generalized Hyers-Ualm-Rassias stability of functional equations. In 1982, Rassias [42] gave a
further generalization of the result of Hyers and proved a theorem using weaker conditions controlled by
a product of different powers of norms. His theorem is presented as follows.
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Theorem 1.4 ([42]). Let f : X — Y be a mapping from a normed vector space X into a Banach space Y subject to
the inequality
I(x+y) —f(x) = FW)Il < e [IXIP ylI? (1.3)
<

forall x,y € X, where € and p are constants with € > 0and 0 < p < % Then the limit

Alx) = T}grclx) if(ZnX)

exists for all x € X and A : X — Y is the unique additive mapping which satisfies
€
2-2?%p

forall x € X. If p < 0O, then the inequality (1.3) holds for x,y # 0 and (1.4) for x # 0. If p > 0, then the inequality
(1.3) holds for all x,y € X and the limit

1f(x) — A(x)|| < 1x|[*P (1.4)

exists for all x € X. If in addition f : X — Y is a mapping such that the transformation t — f(tx) is continuous in
t € R for each fixed x € X, then A is R-linear mapping.

This type of stability involving a product of powers of norms is called Hyers-Ulam-Gavruta stability
by Bouikhalence and Elquorachi [6], Nakmahachalasint [31, 32], Park and Nataji [36] and Sibaha et al.
[46]. In 1991, Gajda [13] answered the question for p > 1, which was raised by Rassias [41]. This new
concept is known as the Hyers-Ulam-Rassias stability of functional equations. The terminology, Hyers-
Ulam-Rassias stability, is originated from these historical backgrounds. The terminology can also be
applied to the case of other functional equations. In 1994, a further generalization of Rassias theorem was
obtained by Gavruta [14] (see also [15]).

The stability concept introduced by Rassias [41] is significantly influenced by a number of Mathemati-
cians to investigate the stability problem for various functional equations and there are many interesting
results concerning the Ulam stability problems in ([1-3, 12, 20-24, 27-30, 33, 37, 4345, 48, 49, 51]).

A square norm on an inner product space satisfies the important parallelogram equality

2 2 2 2
[+ ylI7 4 e =ylI* = 2 {x[I" + 2 [[y[I*-

The functional equation f(x +y) + f(x —y) = 2f(x) + 2f(y) is called a quadratic functional equation. In
particular, every solution of the quadratic functional equation is said to be a quadratic function.

A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [47] for
mappings f : X — Y, where X is a normed space and Y is a Banach space. Cholewa [8] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an Abelian Group. In [11], Czerwik
proved the Cauchy-Rassias stability of the quadratic functional equation. Then, in 2006, Park et al. [37]
are proved the general solution and Cauchy-Rassias stability of the Jensen’s type quadratic-quadratic
mapping in Banach spaces.

In 2010, by fixed point approach, Park [34] established the generalized Hyers-Ulam stability of the
following additive-quadratic-cubic-quartic functional equation

f(x +2y) + f(x —2y) =4[f(x +y) + f(x —y)] —6f(x) + f(2y) + f(—2y) —4f(y) — 4f(—y)

in non-Archimedean Banach spaces.

In 2014, Lee et al. [25] proved the generalized Hyers-Ulam stability of the mixed type additive-
quadratic functional equation in Banach spaces. In the same year, Shen and Lan proved the general
solution of a new quadratic functional equation of the form

f<x y; >+f< y;Z>+f(x+z):3f(x)+;f(y)+if(z)- (1.5)
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Also studied the Ulam stability of this functional equation (1.5) in a real normed space and a non-
Archimedean space. In 2018, Lee et al. [26] established the uniqueness theorems concerning the functional
inequalities involving with an n-dimensional cubic-quadratic-additive equation of the form

m
Y cif(aixa + aipxa+ -+ + QinXn) =0

i=1
by using the Hyers direct method. In the next year, Park and Rassias [37] solved the additive functional
equations
fx+y+z) —f(x +y) —f(z) = s[f(x +y —z) + f(x —y +z) — 2f(x]] (1.6)
and
fx4+y—z)+f(x —y+z)—2f(x) =s[f(x +y +z) — f(x +y) — ()], (1.7)

where s is a fixed nonzero complex number. Furthermore, they investigated the Hyers-Ulam stability of
the additive functional equations (1.6) and (1.7) in complex Banach spaces. This is applied to prove the
partial multipliers in Banach *-algebras, unital C*-algebras, Lie C*-algebras, JC*-algebras and C*-ternary
algebras, associated with the additive functional equations (1.6) and (1.7). In 2012, Chung and Park [9]
investigated the generalized Hyers-Ulam stability of the functional equations f(x +y) = f(x) + f(y),

2f (’i“) — f(x) + f(y)

and f(x +y) + f(x —y) = 2f(x) + 2f(y) in 2-Banach spaces. They also investigated the generalized Hyers-
Ulam stability of the same equations in 2-Banach spaces with different assumptions (see [9]). In 2013,
Patel and Patel [39] investigated the Hyers-Ulam stability of the functional equation

f(2x +y) — f(x +2y) = 3f(x) — 3f(y)

in 2-Banach spaces. In 2018, AL-Alia and Elkettani [4] introduced a new type of radical cubic functional
equation related to Jensen mapping of the form

F(V ) +1 (Ve — ) =2f(x)

and established general solution and some stability and hyper-stability results for the considered func-
tional equation in 2-Banach spaces. Very recently, in 2021, Krzysztof [10] proved the Ulam stability of two
general functional equations in several variables in 2-Banach spaces by applying fixed point method (see
also [40]).

In this paper, by using Hyers direct method, we establish the Hyers-Ulam-Gavruta stability of the
Jensen’s type quadratic-quadratic mapping of the form

9 <X;y +Z) +9g <x+2y_2) +9g <X;y+z> +9 <X;y—z> =g(x) +g(y) +4g(z), (1.8)

for all x,y,z € A, in 2-Banach spaces.

2. Preliminaries

In this section, we will provide some basic notations, definitions, and lemmas, which will be very
useful to prove the main results.
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Lemma 2.1 ([39]). Let A and B be real vector spaces, and let g : A — B be a function that satisfies (1.8) if and
only if g(x) = B(x,x) + C, for some symmetric bi-additive function B : A x A — B, for some C in B . Therefore
every solution g of functional equation (1.8) with g(0) = 0 is also a quadratic function.

In 1960, Gahler [16-18] introduced the concept of linear 2-normed spaces.

Definition 2.2 ([16]). Let A be a linear space over R with dim(A) > 1 and let ||.,.|| : Ax A — R be a
function satisfying the following properties:

. |Ix,y|l = 0 if and only if x and y are linearly dependent;
-yl = [y, xl;

. ”}\X/UH = Al ||X,'UH}

Ay +zl < oyl +x 2l

= W N =

for each x,y,z € A and A € R. Then the function ||.,.|| is called a 2-norm on A and the pair (A, ||.,.||) is a
called a linear 2-normed space. Sometimes the condition (4) is called the triangle inequality.

In 2011, Park [35] introduced a basic property of linear 2-normed spaces as follows.
Lemma 2.3 ([38]). Let (A, |.,.||) be a 2-normed space. If ||x,y|| =0, for all y € A, then x = 0.

Definition 2.4 ([18, 52, 53]). A sequence {x,,} in a linear 2-normed space A is called a Cauchy sequence if
there are two points y, z € A such that y and z are linearly independent, and

hm HXI_Xm,yH :0 and hm ||X1—Xm,2|| :O
1, m—oco L, m—oo

Definition 2.5 ([18, 52, 53]). A sequence {x,}in a linear 2-normed space A is called a convergent sequence
if there is an x € A such that

lim |[xn —x,y[[=0

n—oo

for all y € A. If {xn,} converges to x, write x, — x as n — oo and call x the limit of x,,. In this case, we

also write lim x, = x.
n—,oo

Lemma 2.6 ([18, 52, 53]). For a convergent sequence Xy, in a linear 2-normed space A,
dim eyl = | Jim,
forally € A.

Definition 2.7 ([18, 52, 53]). A linear 2-normed space in which every Cauchy sequence is a convergent
sequence is called a 2-Banach space.

)

Throughout this section, let us consider A be a real normed linear space and also consider that there is
a 2-norm on A which makes (A, ||.,.||) be a 2-Banach space. Suppose for a function g : (A, |.||) = (A, ||..]]),
we define a mapping Dy : A x A — A by

Dyl(xy,2) =g (”2”+z> +9 (X;” —z) +g ("2” +z> +g ("f—z) — g(x) — gly) —4g(2),

for each x,y,z € A.
In this section, we prove the Hyers-Ulam-Gavruta stability of the Jensen’s type quadratic-quadratic
mapping controlled by a product of powers of norms.

3. Stability of a Jensen’s type quadratic-quadratic mapping for functions g : (A, |.||) — (A,

..
4
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Theorem 3.1. Let € > 0,0 <s <2, u>0.Ifg: A — Aisa function satisfying
IDg(xy,2), wil < e[Ix[I* [[yll* [I2l* ™

forall x,y,z € A, then there exists a unique quadratic function Q : A — A satisfying the functional equation (1.8)
such that X
e [Ix]I”% [JwI™
960 — QU0 — g(0), wl < SV
4-2
forall x, w € A.

Proof. Let us assume that the function f : A — A be defined by f(x) = g(x) —g(0) for all x € A. Then

f(0) = 0. Consider
ety 2wl = ¢ (52 4z ) 4 (S5 ) (7w ) 4 (Y522

(3.1)
—f(x) = fy) —4f(2), w|| < ellx[* [yl® llzl* ™
for each x,w € A. Setting x =y = z in (3.1), we have
I1F(2x) — 4F(x), Wi < e [[x|** [|w]* (3.2)
for each x, w € A. Dividing the above equation (3.2) by 4, we get
1 € 3s u
fx) — 3 f2x),w < & NI w] 3.3
for each x,w € A. Now replacing x by 2x in the inequality (3.3), we have
1 € €23s
£(2x) — 2(4x), wi| < 7 2% w]l* = == [Ix[** [lwll* (34)
4 4 4
1
for each x, w € A. Again multiplying the above inequation (3.4) by 7 then one can have
1 1 e 2% o u
- - <=5 . .
|70 = gt < 5250 el ol 65)
By using the equations (3.3) and (3.5), we will have
f(x) —lf(sz) wil = ||f(x) —if(4x) wi| = ||f(x) — 11’(2x) wil + 11‘(2x) - if(élcx) w
42 S 16 N 4 ’ 4 16 ’
€ 3s u, € 2% 3s u
<= - —
< S Il I+ 7. Il Il
for all x, w € A. Then the above inequality can be written as
1 2 2% e 3s u
- < - |z .
[0 = gt < |14 20| § I Il 66)
for each x, w € A. By applying induction on n and using (3.6), we arrive at
1 € n—1 23sk
[ = gtz < § e i - 2
k=0 (3.7)
€ 3 1 _2(3572]n € 3
T e e
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for all x, w € A. For m,n € N and for x € A, we have

! f2mmtMy) — 1f(2“x),w”

fawttem gt | .

4Am—n+n
11
T 4n |[4mon

1 m—n—1 23Sk

€ 3s u
< — = |]2m i
g gl Y
m—n—1

€ 3 352 k
<[5 I Iwie] Y 2D,

k=0

f2m"2™x) — f(2nx),wH

for all x, w € A. Therefore, we have

(3.8)

2(35—2)n 1_2(35—2)(m—n)
Hfzm 1 somy) wH HxH?’SHwH“[ ( )

1— 233—2

for all x, w € A. Then the above inequality (3.8) vanishes as m,n approach to infinity, for all x, w € A.
Therefore, {;ﬂf(Z“X)} is a 2-Cauchy sequence in A, for all x € A. Now, we will define a function
Q:A—Aby

Q(x) = lim %f(znx),

n—oo

for all x € A. Then by using equation (3.7), we get

: 1 n € 3s uw 1

for all x, w € A. Therefore, from the equations (3.8) and (3.9), we get

3
€ [l [lwll™

||9(X)—Q(X)—g(0),w” < 4 —23s

(3.10)

for all x, w € A. Next, we have to show that the quadratic function Q satisfies the functional equation
(1.8). Now, for all x, w € A, we will have

_ - n n
HDQ(x,y,z),wH —nlgr;o IDf(2"x, 2™y, 2™z), w||
_ - n n, (IS |[|[AM .|| w
= Tim = (12" 2% 2 2)) ]
= lim 2072™e (||x[|* yl|* l|z/]°) [lw][* =0
n—oo
for all w € A. Thus HDQ(x,y,z),wH =0, for allw € A. Also we have Dq(x,y,z) = 0. Finally, to complete

the proof, we have to prove that the function Q is unique. Suppose that Q' is an another quadratic
function satisfying (3.1) and (3.10). Since Q and Q' are quadratic, then for all X € A,

Q(2™x) =4"Q(x),  Q'(2™x) =4"Q’'(x).

Hence, for all x € A, we have

Q00— Q'00, w = 4 1QE2™) — Q2w
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1
= [||Q (2™x) — F(2™x), w| + [|[f(2™x) — Q'(2™x), w]|]
_ L el wlt e fl2mxl w
4 4—23s 4 —23s

1 [2e f2nxPe fwl™
4n 4—23s

_231’18.26 ||XH35 HWHLL B 21’1(38—2).26 ||XH35 ”WHLL
= an 47235 - 47235

=0 asn—

for all w € A. Therefore, ||Q(x) —Q’(x),w| = 0. Then Q(x) = Q’(x) for all x € A. This completes the
theorem. O

Corollary 3.2. Suppose that 6 € [0,00), 0 <s <2, u>0.Ifg: A — A is a function satisfying the inequality
Dg(x,y,2), wil < 8 [x[I° yll> llzII® ™

forall x,y,z € A, then there exists a unique quadratic function Q : A — A satisfying the functional equation (1.8)
such that

0 Ilx 3s wi™
960~ QG0 — g0}, wl < TV
forall x, w € A.
Theorem 3.3. Let € > 0,s >2,u>0. If g: A — A is a function that satisfies the inequality
IDg(x,y,2), wil < e [Ix[I° [[yll® [Iz]1° [w]*

forall x,y,z € A. Then there exists a unique quadratic mapping Q : A — A satisfying the functional equation
(1.8) such that

3s u
lg(x) — Q(x) — g(0),w]| < w,

forall x, w € A.

Proof. By equation (3.2) of Theorem 3.1, we have

#(2x) — 4£(x), wll < € [xIP® w]* (3.11)
for each x, w € A. Now replacing x by ( 2) in (3.11), we get
X
00 =4 () w|| < 55 Il Il = 273 x| fw (3.12)
for all x, w € A. Again replacing x by (%) in (3.12), we have

x x —2(3s) 3s u
A I = < .
[1(5) =4 (5) w| < 272 x| wi (3.13)
for each x,w € A. Combining (3.12) and (3.13), we will have
00— () ] = 00 -6 (5).. WH—Hf -4(3). W\\+4!!f( ) =4 (3) ]
€2 Ix|** w|™ + 4.2 [[x||** [|w||*
= e[xIP* fwi (27 +4.2f2(3s>)
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for each x,w € A. By using induction on n, we arrive at

n—1
[0 —4mt (550) ]| < e lxl w3 4k23 0
k=0

1 | p2-35)n (3.14)

3 —3s)— 3 _ -
= el Y 240 e vl 2 [
k=0
for all x, w € A. For m,n € N and for x € A, we have
X X et X X
40 () =47 () ]| = [ e (gt ) =40 () |

_ X X
=4 H4m of (2"‘*“.2“)() -t (27) WH

X 1138 m—n—1
< 4" ¢ HZTH HWHu Z 2k(273s)73s

k=0
m—n—1
—¢ Hx”?as HWHuz(273s)n Z 2k(273s)73s
k=0
m—nm—1
—¢ HX||3S ||WHLL Z 2(n+k)(273s)73s
k=0
1_2(2—35)(m—n)

= e[x|P* [l 2n (2303 [ | 0 asn oo

for all x € A and w € A. Therefore, {4“f (2%) } is a 2-Cauchy sequence in A, for all x € A. Since A is a

2-Banach space, the sequence {4nf (2%)} is 2-converges for all x € A. We define a mapping Q: A — A
by
. X
Q(x) := lim 4™f <2—n) ,

n—oo

for all x € A. Now, from the equation (3.14), we get

| . 25\ el Il
lim Hf(x) —4nf (2—n> ,WH < ellx|* wl* <1 _22—35> - ’2‘35 —H4

n—oo

for all x, w € A. Hence,
3
e lIx|I”* [wl™

HQ(X)_Q(X)_Q(O)/WH < 235_4 7
for all x, w € A. The remaining part of the proof is similar to the above Theorem 3.1. O
Corollary 3.4. If 0 € [0,00), s > 2, u > 0and if g: A — A is a function which satisfies the inequality

g (x,y, 2), Wl < O[XI1° lylI* [Iz]]* [[w]™

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the functional equation (1.8)
such that 3
G X s w u
lg(x) — Q(x) — g(0), W] < w,
forall x,w € A.

Next, we will establish the Hyers-Ulam-Gavruta stability of the functional equation (1.8), which is
controlled by the product of different powers of norms.
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Theorem 3.5. Let € > 0,0 <1,s,t <2, u>0.If g: A — Aisa function satisfying the inequality
IDg (6 y,2), wil < ellx" Ihyll* 1z [lwi™

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen's type quadratic-
quadratic mapping (1.8) such that

r+s+t
X
900~ QUx) — g(0)w < P

forall x, w € A.

Proof. Suppose we define a function f: A — A by f(x) = g(x) — g(0) for all x € A. Then f(0) = 0. Assume

that
e (xty +y -y X—y
|ID¢(x,y,2),w| = f< 5 + >+f< 5 >+f< 5 + >—|—f( 5 z>
(3.15)
—f(x) = f(y) — 4f(2), w|| < e [lx|I" [yll* 1] w]*
for every x, w € A. Put x =y =z in (3.15), we have
[F(2x) — 4f(x), w|| < e |||t w|™ (3.16)
for each x, w € A. Dividing the above equation (3.16) by 4, we get
1 € THs+t u
flx) — 3 7(2x),wl| < S Il 3.17)
for all x, w € A. Now replacing x by 2x in the inequality (3.17), we have
1
Hf(Zx) — 4f(4x),wH < Zz“”t I ||" 50w (3.18)
1
for each x, w € A. Multiplying 1 to the above equation (3.18), we get
1 1 1e
- = < = Sortstt T4s+t u '
|50 g < 352 e o .19
By using (3.17) and (3.19), we can reach
1 1 1 1 1
— (2% = — —f(4 — (2 2x) — —f(4
1061 = gt =00 = frtan), wl = [0~ G| + 20— ftan) w]
€ 1le .
< g X w4 e 27 T

4'4

for all x, w € A. Thus also we have

1
e fae garesee g

»JMm
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for each x,w € A. Then by using induction method on n, we obtain that

n—1
1 € 1
‘ f(x) — 4nf(znx),wH < X o y 2l
k=0
€ 1__2(r+s+t72h1
< Z ||X||T‘+S+t HWHLL |: 1 _2T+S+t_2 :| (320)
€ 4 ||X”T+S+t
< SN I | e | € e I
for all x, w € A. Using (3.20), for m,n € IN and for all x € A, we have
g
1 1 1
Hf (2™x ——f(Z“ ), W H = H‘P““*“ (zm““x)—@f(Z“X),WH
1 1
= o ||gmw f2m—"2Mx) — f(2nx),wH
1 ¢ m—n—1 1
< 471 HWHu Z 4k2(r+s+t Tk Hzn Hr+s+t
k=0
m—n—1
< z HWHu Z 2(r+s+t72)(n+k) ‘|X”r+s+t
k=0
for all x, w € A. Thus, we have
1 € 1 —2(r+s+t=2)(m-n) .
Hf (2™x) = 5 F(2"x), H < g [l 2tz ( 1 st ) Il (3:21)
1 1 e
for all x, w € A. Then 4—mf(2mx) — 4—nf(2“x),w = 0 as m,n approach to infinity, for all x, w € A.

Therefore, {41nf(2nx)} is a 2-Cauchy sequence in A, for all x € A. We define a quadratic function
Q:A—= Aby

Q(x) = lim if(Z"X),

n—oo

for all x € A. Then by using equation (3.20), we will reach

y . e[ et ] ’
Jim, 160 = @] < 15 s v 622

for all x, w € A. Therefore, from the equations (3.21) and (3.22), we get

T+s+t
rmur4um—gmxw\<[ﬂﬂ;%wluwww 6.2

for all x, w € A. Next, we shall to prove that the quadratic function Q satisfies the functional equation
(1.8). Now, for all x, w € A, one can have

HDQ(X,y,z),wH = lim — HDf (2™x,2™y,2"z), w||

Tl—)OO

7 n n n_|t u
JTim = (27X 2y 1272 ) wl
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= Tim 207D (|| 12 ) [ e = 0

for allw € A. Thus HDQ (x,y,z),wH =0, for all w € A, it gives that Dg(x,y, z) = 0. To complete the proof
of this theorem, we have to prove that the uniqueness of the function Q. Let Q’ be another quadratic
function satisfying (3.15) and (3.23). Since Q and Q' are quadratic, then for all X € A,

Q(2™x) =4"Q(x), Q'(2™x) =4"Q'(x).
Hence, for all x € A, we have
Q0 ~ Q09w = 47 [1QE™) ~ Q2w

= 4 [1Q(2%) — F2mx),wil +[[f(2) — Q'(2™0), ]

2 Hznx||r+s+t 2(r+s+t72)n ||X||T‘+S+t
= m [W e flwl™ =2¢[w]* 1ot =0 asn — 00

for all w € A. Therefore, ||Q(x) — Q’(x), w|| = 0. Then Q(x) = Q’(x) for all x € A. Hence the proof of the
theorem. =

Corollary 3.6. If0 € [0,00),0 < 1,5,t <2, u>0andif g: A — A satisfies
IDg(x,y,2), Wl < 6x|" [lyll® llzIl* w]*

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen'’s type quadratic-
quadratic mapping (1.8) such that

O X"
[g(x) — Q(x) — g(0), w[| < 4 _orisit [wlI™,

forall x, w € A.
Theorem 3.7. Let € >0, 1,s,t > 2, u>0andif g: A — A is a function which satisfies the following inequality
IDg (6 y,2), wil < ellx" hyll* 1zl [lwi™

for all x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen’s quadratic-
quadratic mapping (1.8) such that

x T+s+t
90— Qx) — 9(0) Wl < oo wl*,

for all x, w € A.
Proof. By equation (3.16) of Theorem 3.5, we have

[f(2x) — 4f(x), w|| < e ||| w|™ (3.24)

for each x,w € A. Now replacing x by in (3.24), we get

A~
N x
~—

Hf(x) _4f

/N
N x
N—

|| <27 g e (3.25)

for all x, w € A. Again replacing x by in (3.25), we have

o)

VN
VN
R NI

) | €22 e e (3.26)
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for each x,w € A. Combining (3.25) and (3.26), we will have

o - (5) o = 105 o
=30 2) o+ () 1 ().

27 (s || TS |yt g 427 TS |y

_ oy (rts+t) HXHr+s+t lw|™ e [1 +4.2—(T+s+t)}

for each x, w € A. Now, we will apply the induction method on n, we get that

n—1
00 =47 (5 ) ]| < 27 R e 3 ke
k=0
—¢ HWH ”XHT‘+8+t Z 2k (r+s+t)]—(r+s+t) (327)

k=0

u T+s+t —(r+s+t) 1-2 (ris+tin
S el e (mrese [LE2 2t

for all x, w € A. For m,n € N and for x € A, we have

7t () 47 () vl = e () 7 (35) v

m—m—1

n u k22— (r+s+t)]—(r+s+t) || * TSt
el 3 Es X
m—n—1
— e |w|* Z [z(n—l—k)[2—(r+s+t)]—(r+s+t) HXHr+s+t]
k=0

_ o2 (rs+t)] = (r+s+t) 1— 2@~ (r#stt)j(m=n) TS+t u
= Y=y [l ellwl|

—0 asn — ©

for all x € A and w € A. Therefore, {4“1‘ (%) } is a 2-Cauchy sequence in A, for all x € A. Since A is a
2-Banach space, the sequence {4”1C (%)} is 2-converges, for all x € A. We define a mapping Q : A — A
by
n
Q)= lim 47 (),

for all x € A. Now, with the help of equation (3.27), we get

T ang (X < u 2~ (rostt) THstt
Jim 100 =47 (55) w] < el (= ) I

for all x, w € A. Hence,

[g(x) — Q(x) — g(0), w[| < (2”;’[—4> el ™ ol

for all x, w € A. The further part of the proof is similar to the above Theorem 3.5, which completes the
Theorem. O
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Corollary 3.8. Let 6 € [0,00), 1,5,t > 2, u> 0and g: A — A be a function which satisfies
IDg(x,y,2), Wl <O x[" [lyll* llzIl* w]*

for all x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen’s quadratic-
quadratic mapping (1.8) such that

0 t u
90— Q1) g(0) wl < | sy | 617" Il

forall x, w € A.

) — (A,

4. Stability of a Jensen’s type quadratic-quadratic mapping for functions g : (A,

)

In this section, we will study similar problems which we have discussed in the last section for the
function g : A — A, where (A, ||...||) is a 2-Banach space. First, we will establish the Hyers-Ulam-Gavruta
stability of a Jensen’s quadratic-quadratic functional equation (1.8), which is controlled by the product of
powers of norms on 2-Banach spaces.

.o .
2 7

Theorem 4.1. For every € > 0,0 < s < 2 and a function g : A — A satisfying the inequality
IDg(x,y,2), wll < €llx,wl* [ly, w* [lz,w]®

forall x,y,z € A, then there exists a unique quadratic function Q : A — A satisfying the functional equation (1.8)
such that s
€ |lx, wl||”®
9060 — Q) — g(0) ] < S

forall x, w € A.

Proof. Let us assume that the function f : A — A be defined by f(x) = g(x) — g(0) for all x € A. Then
f(0) = 0. Consider

Doy, 2),wl = (Y o) o (Y ) e (XY ) e (22,
2 2 2 2
4.1)
—f(x) = f(y) —4f(z), w|| < e |x,wl* [y, wl® llz,wl®
for each x,w € A. Setting x =y = z in (4.1), we have
[£(2x) — 4f(x), w|| < € [|lx, w|* (4.2)
for each x, w € A. Dividing the above equation (4.2) by 4, we get
1
' f(x) — f(2x),wH < S I w)? (4.3)
4 4
for each x,w € A. Now replacing x by 2x in the inequality (4.3), we have
1
Hf(2x) — 4f(4x),wH < 2235 Ix, w||* (4.4)
1
for each x,w € A. Again multiplying the above inequation (4.4) by 7 then one can have
1 1 e 23 3s
= —-— e . .
H4f(2x) 16f(4x),wH <171 lIx, w|| (4.5)
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Using (4.3) and (4.5), we will have

1
et = o ggren ]
1 1 1 € e 23 3
= |If(x) — =f(2 2x) — —f(4 <=k S o
[ = Getzxh |+ |20 = frtan) wl < § ™ + 527 I
for all x, w € A. Then the above inequality can be written as
10— 20| < [14. 2] € (46)
2 S 4 g™ '
for each x, w € A. By applying induction on n and using (4.6), we arrive at
—1
1 € 3s — 2K e 3 [1—203s2)n € 3s
Hf(x)—4nf(2TL ), H < ZHx,wH Z i S ZHX,WH T2 | S 10 [Ix, w| (4.7)

k=0

for all x, w € A. For m,n € N and for x € A, we have

1— 23572

1 1 _ 1
Hf (2™x) = 4 f2™x), H = H‘P““*“ (MmN — 4nf(2“x),WH

L ! f2m—"2™x) —f(2™x), w

- 4n || 4gm—m : ’
1 re m-—n-—1 73sk € m-—n-—1

< — |:7 ||2nX,WH3S} Z — <= ||X,W”3S Z 2(33—2)(n+k)/
4n 14 = 4 4 =

for all x, w € A. Therefore, we have
1 2(33—2)n 1— 2(33—2)(m—n)
Hf (2™x) — —f(Z“ WH = lx, [ ( ) (4.8)

for all x, w € A. Then the above inequality (4.8) vanishes as m,n approach to infinity, for all x, w € A.
Therefore, {;ﬂf(znx)} is a 2-Cauchy sequence in A, for all x € A. Now, we will define a function
Q:A = Aby

Q(x) = lim inf(Z"x),

n—oo

for all x € A. Then by using equation (4.7), we get

lim '
n—oo

1
for all x, w € A. Therefore, from (4.8) and (4.9), we get

e [x,w|**

HQ(X) - Q(X) - g(O)IW” < W (410)

for all x, w € A. Next, we have to show that the quadratic function Q satisfies the functional equation
(1.8). Now, for all x, w € A, we will have

1
HDQ(x,y,z),wH = nlgr;ozﬁ IDf(2"x, 2™y, 2™z), w||



S. Murugesan, et al., ]. Math. Computer Sci., 32 (2024), 295-317 310

i n n n
= Tim = (2wl 2%, w272 W)

= 1im 2072 (|, wi|* Jy, w]* [lz, w]*) = 0

for all w € A. Thus HDQ(X,y,z),wH =0, for allw € A. Also we have D (x,y, z) = 0. Finally, to complete
the proof, we have to prove that the function Q is unique. Suppose that Q' is an another quadratic
function satisfying (4.1) and (4.10). Since Q and Q' are quadratic, then for all X € A,

Q(2™x) =4"Q(x), Q'(2™x) =4"Q'(x).
Hence, for all x € A, we have
[Q(x) —Q'(x),w|| = 1 |Q(2™x) — Q'(2™x), w|

[1Q(2"™x) — £(2™x), wl| + [[f(2™x) — Q"(2™x), w|]

4TL

1 el2mow]P o e]l2mx w)

T4n | 423 423

1 [2e 2wl 2 [ 2se x w

T4n | 423 T 4n 423

_2e2m05 I wl*

= 1 0s =0 asn — o0
for all w € A. Therefore, ||Q(x) — Q’(x),w| = 0. Then Q(x) = Q’(x) for all x € A. This completes the
theorem. O

Corollary 4.2. Suppose 6 € [0,00), 0 < s < 2 and if a function g : A — A satisfying the inequality
Dg(x,y,2), wll < 8wl [ly, wl® [lz,wl®

forall x,y,z € A, then there exists a unique quadratic function Q : A — A satisfying the functional equation (1.8)
such that

0 |Ix, w|>
960 — Q) — g(0),wi < S
4-2
forall x, w € A.
Theorem 4.3. Let € > 0and s > 2. If g: A — A satisfies the inequality

IDg(x,y,2), Wl < e [x,w® [[y, wlI* ||z, wll*

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the functional equation (1.8)
such that

e [|x, wi|*
lg(x) = Q(x) — g(0), w|| < “To3s _g4
forall x, w € A.
Proof. By the equation (4.2) of the Theorem 4.1, we have

[£(2x) — 4F(x), wl| < e [lx, w]* (4.11)
for each x, w € A. Now replacing x by (%) in (4.11), we get

[0 =46 (3) w] < 555 IxowlP® = €27 fx, i (4.12)
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for all x, w € A. Again replacing x by (%) in (4.12), we have

[7(5) 47 (5) ]| < 220 e (4.13)

for each x,w € A. Combining (4.12) and (4.13), we will have

o (3). ] = 1016 2) o
a0 ) 4 ()40 G) o]

< €273 |, WS 4 4.2720535) I, W = ¢ |Jx, w|]** (z 35 4 4072 )

for each x, w € A. By using induction on n, we arrive at

Hf( 4“1‘( ) WH e llx, w|* Z gk p—3s(k+1)

(4.14)
3s = k(2—3s)—3s 3s n—3s 1- 2(273s)n
=elxw|* > 2 <ellx,w|*2 {1 = ]

k=0

7
for all x, w € A. For m,n € N and for x € A, we have
Jome () =47 () vl = e () 47 () ]
S G R CO R

3s m—nm—1
Z 2k(2—3s)—33
k=0

X
n
<avegew

m—n—1
:€HX/W||332(2—3S)TL Z 7k(2—3s)—3s
k=0
m—nm—1
:eHX,WIIBS Z 7 (n+k)(2-3s)—3s
k=0

1— 2(2735)(111771)
1—22-3s

= €HX/W||3S n(2-3s)=3s [ } — 0 asn — o©

for all x € A and w € A. Therefore, {4™f (5%)} is a 2-Cauchy sequence in A, for all x € A. Since A is a
2-Banach space, the sequence {4™f (5%)} is 2-converges, for all x € A. We define a mapping Q : A — A
by
n
Q(x) == lim 4™f ( - )

n—o0

for all x € A. Now, from the equation (4.14), we get

2738 3e ||Ix, w|*
. n B
nlg)r;on( —4 f(z ) WH e lpewif” <1—223s) T2k

for all x, w € A. Hence,

e [lx, w>*
[g(x) — Q(x) —g(0),w]| < To3s _g4

for all x, w € A. The remaining part of the proof is similar to the above Theorem 4.1. O
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Corollary 4.4. If 0 € [0,00) and s > 2, and if a mapping g : A — A satisfying the inequality
IDg(x,y,2), Wil <8 x,wi* [y, wl|* ||z, ]|’

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the functional equation (1.8)

such that s
S
0 lx, wl

HQ(X)_Q(X)—Q(O)/WH < 2Bs _4 ’

forall x, w € A.

Finally, we will prove the Hyers-Ulam-Gavruta stability of the Jensen’s type functional equation (1.8),
which is controlled by the product of different powers of norms on 2-Banach spaces.

Theorem 4.5. Let € > 0and 0 < r,s,t < 2. If g: A — A satisfies the inequality
IDg(x,y,2), Wil < e llx, W™y, wil* [|z, w*

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen’s type quadratic-
quadratic mapping (1.8) such that

e |lx, w T+s+t
960 — QG0 — g0),w] < S

forall x, w € A.

Proof. Suppose we define a function f: A — A by f(x) = g(x) — g(0) for all x € A. Then f(0) = 0. Assume

that
ID¢(x,y,z),w| = ||f Y ) (Y ) e (Y ) e (Y
2 2 2 2
(4.15)
—f(x) — fly) — 4f(2), w|| < e [x,w|" [y, W [lz,w]"*
for every x, w € A. Put x =y =z in (4.15), we have
|f(2x) — 4f(x), w|| < e [|x,w|""5*" (4.16)
for each x,w € A. Dividing the above equation (4.16) by 4, we get
1 € THs+t
f(x) — 1f(2x),w <7 %, Wl (4.17)
for all x, w € A. Now replacing x by 2x in the inequality (4.17), we have
1
Hf(Zx) — 4f(4x),wH < Zz"““ [|x, wi|"Hs*t (4.18)
1
for each x,w € A. Multiplying 1 to the above equation (4.18), we get
1 1 1e
- — (4 < -, T+s+t T+s+t ) )
H4f(2><) 161 X),WH 112 [[x, wll (4.19)

By using (4.17) and (4.19), we can reach

Hf(x) — 1f(22x),wH = '

2 f(x) — 1f(2x),w” + Hlf(Zx) — 1f(4x),w”

4 16

f(x) — 116f(4x),wH = ‘
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1
< z HX/WHr+s+t 4 T Z TSt Ix, W||r+s+t
for all x, w € A. Thus also we have
f(x) — lf(zz ), wil < < I, w7 |1+ 1.21”—0—5—0—’(
42 4 4

for each x,w € A. Then by using induction method on n, we obtain that

1 e 1
[0 - grtesi ] < Selmgrrert 3 s
k=0
el _2(r+s+t72)n
S 4 [ 1 pr+s+t—2 } ||XIWHr+S+t (4.20)
E 4 HX W||T'+S+t < ||XIVVHT+S+t €
S 4 |4 —ortstt / S| 4 rts+t

for all x, w € A. Using (4.20), for m,n € IN and for all x € A, we have

1
4m7n+n
1 1
= on ||gmw

m—

( mfnJrnX) o

1
fawem =gz | .

f(Z“X),wH

f(em m2Mx) — f(an),wH

»:;‘,_\ =

I\,I: »M

Z r+s+t)k HanIWHT+s+t
k=0
—1

m—
2(r+s+t 2)(n+k) HX WHT+5+t
7

/N

= m
~
II
o

for all x, w € A. Thus, we have

€2(r+s+t—2)n 1 —2(r+s+t=2)(m—n)
= e < (

1 ) [[x, w||" TSt (4.21)

1— 2r+s+t72

for all x, w € A. Then

1
’ %ﬂf(me) — 4TLf(Z“X),wH = 0 as m,n approach to infinity, for all x, w € A.

Therefore, {41nf(2nx)} is a 2-Cauchy sequence in A, for all x € A. We define a quadratic function
Q:A—=Aby
Q(x) = lim %f(Z“x),

n—oo

for all x € A. Then using equation (4.20), we will reach

€
I — 2™, W] < S
gtz <

n—oo

1— 2r+s+t72 (4‘22)

HX,W||T+S+t ]

for all x, w € A. Therefore, from (4.21) and (4.22), we get

c ||X,W T+s+t
90— QG0 — g0}, wl < S 423)
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for all x, w € A. Next, we shall to prove that the quadratic function Q satisfies the functional equation
(1.8). For all x, w € A, one can have

Do(x,y,z),w|| = lim i||D,c(2“x,2“1J|,2“z),1/v||
Q

n—oo 4M
. €
= lim = (2%, wl" 2™y, wil* 2"z, ")
= lim 22N oy, w2 Wl =0
n—oo

for allw € A. Thus HDQ (x,y,z),wH =0, for all w € A, it gives that Dg(x,y,z) = 0. To complete the proof
of this theorem, we have to prove that the uniqueness of the function Q. Let Q’ be another quadratic
function satisfying (4.15) and (4.23). Since Q and Q' are quadratic, then for all X € A,

Q(2™x) =4"Q(x), Q'(2™x) =4"Q'(x).
Hence, for all x € A, we have
1Q09 — Qtx)wll = 4 Q2™ ~ Q'(2),w|

1
=Im [1Q(2™x) —F(2™x), w| + || f(2™x) — Q' (2™x), W]
B i [Hznxlw”r+8+t] e (2(T+S+t2)ﬂ ”X’WHT‘JrSth

~4n 4 _Drts+t 4 _Dristt ) =0 asn — oo

for all w € A. Therefore, ||Q(x) — Q’(x),w| = 0. Then Q(x) = Q’(x) for all x € A. Hence the proof of the
theorem. O

Corollary 4.6. If 6 € [0,00), 0 < 1,s,t < 2 and let us define g : A — A that satisfies
IDg(x,y,2), Wil <0 flx,wll" [ly, w]* ||z, W]

forall x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen’s type quadratic-
quadratic mapping (1.8) such that

0 [[x, wl|" s+t
960 — QUx) — g(0)wi < S,

forall x, w € A.
Theorem 4.7. Let € > 0, 1,s,t > 2. If g: A — A is a function satisfying
IDg(xy, ), wl < ellx,wl™ [y, wl* [lz,w]*

for all x,y,z € A, then there exists a unique quadratic mapping Q : A — A satisfying the Jensen’s quadratic-
quadratic mapping (1.8) such that

€ X’W|T+S+t
960 — QO — g(0),w] < S

forall x, w € A.
Proof. By the equation (4.16) of the Theorem 4.5, we have

[£(2x) — 4f(x), w| < e [lx, w| """ (4.24)
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for each x,w € A. Now replacing x by (%) in (4.24), we get
[fo0 =4t (5) w]| <270 fpowl e e (4.25)
. . X\ .
for all x, w € A. Again replacing x by <§) in (4.25), we have

Hf (%) —A4f (2) ,WH < 2 2rts+t) HX,WHr+s+t c (4.26)

for each x,w € A. Combining (4.25) and (4.26), we will have

[0 =42 () ] = o0 =268 () |
=100 e () w4 (3) —2 (3) v

< 27(‘r+s+t) HX,W||T+S+‘E €+42 2(r+s+t) HX/W||r+S+t ¢

— 2 (s t) |y ||THS T ¢ [1 +4.2—(r+s+t)}

for each x,w € A. Now, we will apply the induction method on n, we get that

n—1

[0 —anf (o) ]| <27 F 0 o e 3 ki rrerek
k=0
n—1
—¢ HX WHr+s+t Z 2k (r+s+t)]—(r+s+t) (4.27)
k=0

1 72[2—(T+S+t]}n
T+s+t —(r+s+t)
<ellxwl <2 |: 1 —22—(r+s+t) ])
for all x, w € A. For m,n € N and for x € A, we have

47t ()~ (o >WH—4“H4‘“ " (gmvam) () ]

m— n—1
—(r4s+t)]—(r+s+t) TSt
ey [ |
m—n—1
=€ Z [2(n+k)[2—(T+s+t)]—(T+s+t) ”X,WHH_S_H]
k=0

_zn[Z—(r+s+t)1—(r+s+t 1— 22— (r+s+t)](m—n) r4s+t
- 1 —22—(r+s+t) HX’W” €

—0 asn — ©

for all x € A and w € A. Therefore, {4“1“ (2%) } is a 2-Cauchy sequence in A, for all x € A. Since A is a

2-Banach space, the sequence {4"f (%)} is 2-converges, for all x € A. We define a mapping Q : A — A
by
n
Q(x):= lim 4™f < o )

n—oo

for all x € A. Now, with the help of equation (4.27), we get

—(r+s+t)

2
. n T+s+t
Jim 60—t () w] < e <1—22(f+s+ﬂ> el
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for all x, w € A. Hence,

HMM—QM%@wmw<(mﬂi_4)mWWH“,

for all x, w € A. The further part of the proof is similar to the above Theorem 4.5, which completes the
Theorem. O

Corollary 4.8. Let 6 € [0,00), 1,5,t > 2 and g: A — A be a function which satisfies
IDg(x,y,2), W < O[x,wl" [y, w|* [z, w]"*

for all x,y,z € A. Then there exists a unique quadratic mapping Q : A — A satisfying the Jensen’s quadratic-
quadratic mapping (1.8) such that

0 T+s+t

910 Q) = (0} ] < | ety | I+,

forall x, w € A.

5. Conclusion

In this paper, we established the Hyers-Ulam-Gavruta stability of a Jensen’s type quadratic-quadratic
mapping in 2-Banach Spaces by Hyers direct method.
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