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Abstract
The oscillatory and non-oscillatory behavior of solutions of third-order neutral differential equations with distributed

deviating arguments is discussed. New sufficient conditions that guarantee the oscillation of solutions are deduced. The
obtained results improve and extend some recent criteria appeared in the literature. Two illustrative examples are given.
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1. Introduction

In this paper, we are concerned with the oscillation and asymptotic properties of solutions of a class
of third-order neutral differential equations of the type(

1
r1 (ε)

[(
1

r2 (ε)
w
′
(ε)

)′]α)′
+

∫d
c

q (ε,η) f (x (τ (ε,η)))dη = 0, ε > ε0, (E±)

where w(ε) = x (ε)± b (ε) x (δ (ε)) , and α is a quotient of odd positive integers. Moreover, we discuss the
existence of non-oscillatory solutions tending to zero of (E−) in the case of α = 1.

Throughout this study, we assume that the following conditions are satisfied.

(A1) r1 (ε) , r2 (ε) , b (ε) , δ (ε) ∈ C ([ε0,∞), (0,∞)) , δ (ε) 6 ε, and limt→∞ δ (ε) = ∞;

(A2)
∫∞
ε0
r

1
α

1 (ε)dε =
∫∞
ε0
r2 (ε)dε = ∞, r′2 (ε) > 0;

(A3) τ (ε,η) ∈ C ([ε0,∞)× (c,d) ,R) is a non-decreasing function for η and lim inft→∞ τ (ε,η) = ∞,
q (ε,η) ∈ C ([ε0,∞)× (c,d) , (0,∞));

(A4) 0 6 b (ε) 6 b < 1, f ∈ C (R,R) , f′ (x) > 0, f (x) /xα > λ for all x 6= 0 and for some λ > 0.
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Now, set w[0] (ε) = w (ε) , w[1] (ε) = 1
r2(ε)

w′ (ε) , w[2] (ε) = 1
r1(ε)

[(
w[1] (ε)

)′]α
.

By a solution of
(
E±
)

we understand a nontrivial real valued function x (ε), which satisfies that the

property 1
r1(ε)

(
1

r2(ε)
[x (ε)± b (ε) x (δ (ε))]′

)′
is continuously differentiable and satisfies

(
E±
)

for any ε1 >

ε0. A solution of
(
E±
)

is said to be oscillatory if it has an infinite set of zeros, otherwise it is termed
non-oscillatory. Equation

(
E±
)

is said to be oscillatory if all its solutions are oscillatory.
There are several applications to oscillation phenomena in real life, like as in the frame of continuous

partial differential equations, and in particular in dynamical models, delay and oscillatory type effects
are often modeled by external sources and/or nonlinear diffusion, perturbing the natural evolution of
the related systems and those connected to mathematical biology see, e.g., ([6, 20, 25, 27]). In the last
recent decades, the oscillatory behavior of solutions of various types of differential equations has received
considerable interest see, e.g., [1–5, 7–19, 21–24, 26, 28–39]. Although the case of nonnegative neutral
coefficients has recently received great interest by several authors (see [14, 30, 34, 35, 37]), however those
which have negative neutral coefficients has not been received similar surge of interest (see [18, 19, 31]).
To the best of our knowledge, we notice that the existence of nonoscillatory solutions has received less
interest as well (see [11, 15, 16, 31]). For instance we mention some related papers that were concerned
with some special cases of

(
E±
)
, and motivated this paper. Li [19] presented necessary and sufficient

conditions for testing the existence of non-oscillatory solutions of the differential equation(
r (ε) [y (ε) − p (ε)y (ε− σ)]′

)′
+ f (ε,y (ε− δ)) = 0.

In [29], Mojsej and Tartalova were concerned with showing the existence of bounded non-oscillatory
solutions of the differential equation(

1
r1(ε)

(
1

r2(ε)
y′ (ε)

)′)′
+ q (ε) f (y (ε)) = 0.

Zhang et al. [38] studied the differential equation(
v (ε)

[
y (ε) +

∫b
a

q (ε, s)y (σ (ε, s))ds

]′′)′
+

∫d
c

p (ε, ζ) f (y (δ (ε, ζ)))dζ = 0.

More recently Tian et al. [35] discussed the differential equationa (ε)([y (ε) + ∫b
a

r (ε, s)y (τ (ε, s))ds

]′′)δ′ + ∫d
c

b (ε, ζ) f (y (σ (ε, ζ)))dζ = 0,

where δ > 0 is a ratio of two odd positive integers. Meanwhile, Jiang et al. [18], were concerned with the
differential equation with non-positive neutral coefficients of the forma (ε)([y (ε) − ∫b

a

r (ε, s)y (τ (ε, s))ds

]′′)δ′ + ∫d
c

b (ε,γ) f (y (η (ε,γ)))dγ = 0,

where δ > 0 is a ratio of two positive integers. In 2017, Wang et al. [37] studied the asymptotic behavior
of solutions of the third order differential equation of the type

(
p (ε)

[(
r (ε) [y (ε) + b (ε)y (σ (ε))]′

)′]α)′
+

∫d
c

q (ε, s) f (y (σ (ε, s)))ds = 0,
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where α > 0 is a ratio of two odd positive integers. More recently, Zhao [39] discussed the oscillation of
solutions of the differential equation(

1
a (ε)

(
1

b (ε)
[y (ε) + r (ε)y (σ (ε))]′

)′)′
+ q (ε) f (y (δ (ε))) = 0.

Very recently, Thandapani et al. [34] presented new oscillation results for the differential equation(
r1 (ε)

(
r2 (ε)

[
x (ε) + p (ε) xβ (c (ε))

]′)′)′
+ f (ε) xα (σ (ε)) = 0,

where β,α are ratios of odd positive integers satisfying 0 < β 6 1,α > 1. In 2020, Qiu et al. [31]
studied the conditions guarantee the existence of non-oscillatory solutions tending to zero of the dynamic
equation on time scales of the type(

a (ε)
(
b (ε) [y (ε) + r (ε)y (f (ε))]∆

)∆)∆
+ g (ε,y (δ (ε))) = 0.

In this article, we aim to improve and extend some oscillation results of [39] for equation (E+) , and
those given by [18, 39] for equation (E−) . Further, we study the case when there exist non-oscillatory
solutions tending to zero of (E−) , using Knaster’s theorem [17].

2. Preliminaries

Before giving our oscillation criteria, we outline the following auxiliary lemmas.

Lemma 2.1. Let x (ε) be a non-oscillatory solution of (E+) . Then there may exist ε1 > ε0 such that w (ε) for ε
> ε1 > ε0 has only one of the following two cases

(C1) w (ε)w[1] (ε) < 0, w (ε)w[2] (ε) > 0;
(C2) w (ε)w[1] (ε) > 0, w (ε)w[2] (ε) > 0.

Proof. The proof can be deduced directly from the proof of Lemma 1 of [39].

Lemma 2.2 ([39]). Assume that x (ε) is a solution of (E+) ,w (ε) has the property (C2) . Then (1 − b) |w (ε)| 6
|x (ε)| 6 |w (ε)| , for ε > ε1 > ε0 and limε→∞ |w (ε)| = limε→∞ |x (ε)| = ∞.

Lemma 2.3. Assume that x (ε) is an eventually positive solution of (E−) . Then there may exist ε1 > ε0 such that
for ε > ε1 > ε0, w (ε) has one of the following four cases

(i) w (ε) > 0 w[1] (ε) > 0, w[2] (ε) > 0;
(ii) w (ε) > 0 w[1] (ε) < 0, w[2] (ε) > 0;

(iii) w (ε) < 0 w[1] (ε) < 0, w[2] (ε) > 0;
(iv) w (ε) < 0 w[1] (ε) < 0, w[2] (ε) < 0.

Proof. Let x (ε) be an eventually positive solution of (E−) . Then one can find ε1 > ε0 such that x (ε) > 0,
x (δ (ε)) > 0, x (τ (ε,η)) > 0,η = [c,d] for ε > ε1. Now since from (E−), it follows that

(
w[2] (ε)

)′
< 0

eventually, then w[2] (ε) is decreasing and is of one sign for ε > ε1. Now consider the case w[2] (ε) < 0,

then there exists a constant M > 0 such that 1
r1(ε)

[(
w[1] (ε)

)′]α
6 −M < 0.

Then
[(
w[1] (ε)

)′]
6−r

1
α

1 (ε)M
1
α . Integrating from ε1 to ε, we havew[1] (ε)6w[1] (ε1)−M

1
α

∫ε
ε1
r

1
α

1 (s)ds.

Thus as ε→∞, by (A2), we conclude that w[1] (ε) < 0.
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Now since r′2(ε) > 0 and

w[2] (ε) =

[
r2 (ε)w

′′ (ε) − r′2 (ε)w
′ (ε)

]α
(r2 (ε))

2α r1 (ε)
< 0,

we get w′′ (ε) < 0. But since w[1] (ε) = 1
r2(ε)

w′ (ε) < 0, then w′ (ε) < 0, which leads to w (ε) < 0, and so

we get w (ε) < 0,w[1] (ε) < 0, and w[2] (ε) < 0. Thus we have the possibility that case (iv) holds.

Case 2: Let w[2] (ε) > 0, Then either w[1] (ε) > 0 or w[1] (ε) < 0. If w[1] (ε) > 0, then w (ε) > 0, while if
w[1] (ε) < 0, then w (ε) > 0 or w (ε) < 0. This means that when w[2] (ε) > 0, and so we have the possibility
of the three cases (i), (ii), (iii). This completes the proof.

Lemma 2.4. Suppose that x (ε) is a solution of (E+) which is eventually positive. Suppose further that w (ε)

satisfies the property (C1) .If

∫∞
ε0

r2 (v)

∫∞
v

[
r1 (y)

∫∞
y

∫d
c

q (s,η)dηds

] 1
α

dydv = ∞, (2.1)

then limε→∞ x (ε) = 0.

Proof. The proof follows the same lines of the proof of the first part of [39, Theorem 1] and so it is
omitted.

Lemma 2.5. Assume that x (ε) is an eventually positive solution of (E−) and assume that the corresponding w (ε)

has the property (ii). If (2.1) holds, then limε→∞ x (ε) = 0.

Proof. From the property (ii) there may exist ε1 > ε0 such that w (ε) > 0,w[1] (ε) < 0,w[2] (ε) > 0. Going
through as in the proof of [39, Theorem 1] , we get limε→∞w (ε) = 0. Now the proof of the fact that x (ε)
is bounded and limε→∞ x (ε) = 0 follows from those of [18, Lemma 2.3] and so it is omitted.

3. Oscillation theorems

Theorem 3.1. Let the condition (2.1) be satisfied and τ (ε,η) < ε. If there exists a function $ (ε) such that
$ (ε) ∈ C ([ε0,∞),R), $ (ε) > ε, τ ($ (ε) ,η) 6 ε, and

lim
ε→∞

∫$(ε)

ε

∫d
c

q (s,η)

[∫τ(s,η)

ε0

r2 (y)

∫y
ε0

r
1
α

1 (v)dvdy

]α
dηds = ∞. (3.1)

Then any proper solution x of (E+) is either oscillatory or vanishes eventually.

Proof. Assume that x is an eventually positive solution of (E+). Then by Lemma 2.1, w (ε) has one
of the two properties (C1) or (C2). Suppose first that w (ε) has the property (C1) . Then by Lemma
2.4 we have limε→∞ x (ε) = 0. Now if w (ε) has the property (C2), then there exists ε1 > ε0 such that
w (ε) > 0,w[1] (ε) > 0 and w[2] (ε) > 0 for ε > ε1. Let ε2 be such that τ (ε,η) > ε2, for ε > ε2 > ε1. Since(
w[2] (ε)

)′
= −

∫d
c q (ε,η) f (x (τ (ε,η)))dη < 0 for ε > ε2, then w[2] (ε) is a positive decreasing function.

Now integrating both sides of (E+) from ε to ∞, we get

w[2] (ε) = w[2] (∞) +

∫∞
ε

∫d
c

q (s,η) f (x (τ (s,η)))dηds,

i.e.,

w[2] (ε) >
∫∞
ε

∫d
c

q (s,η) f (x (τ (s,η)))dηds > λ
∫∞
ε

∫d
c

q (s,η) xα (τ (s,η))dηds.
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Now by Lemma 2.2, we have

w[2] (ε) > λ (1 − b)α
∫∞
ε

∫d
c

q (s,η)wα (τ (s,η))dηds > λ (1 − b)α
∫$(ε)

ε

∫d
c

q (s,η)wα (τ (s,η))dηds. (3.2)

Integrating w[2] (ε) = w[2] (ε) twice from ε1 to ε, we get

w (ε) >
∫ε
ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)
(
w[2] (y)

) 1
α
dyds.

Now since for ε > ε1, we have

w (τ (ε,η)) >
∫τ(ε,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)
(
w[2] (y)

) 1
α
dyds,

then

wα (τ (ε,η)) >

[∫τ(ε,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)
(
w[2] (y)

) 1
α
dyds

]α
.

Substituting into (3.2), we get

w[2] (ε) > λ (1 − b)α
∫$(ε)

ε

∫d
c

q (s,η)

[∫τ(s,η)

ε1

r2 (y)

∫y
ε1

r
1
α

1 (v)
(
w[2] (v)

) 1
α
dvdy

]α
dηds.

Using the facts that w[2] (ε) is decreasing, w[2] (τ ($ (ε) ,η)) is nonincreasing, and ∂τ($(ε),η)
∂η > 0, we get

w[2] (ε) > λ (1 − b)αw[2] (τ ($ (ε) ,d))
∫$(ε)

ε

∫d
c

q (s,η)

[∫τ(s,η)

ε1

r2 (y)

∫y
ε1

r
1
α

1 (v)dvdy

]α
dηds.

But since w[2] (ε) is decreasing and positive, we have

1 >
w[2] (ε)

w[2] (τ ($ (ε) ,d))
> λ (1 − b)α

∫$(ε)

ε

∫d
c

q (s,η)

[∫τ(s,η)

ε1

r2 (y)

∫y
ε1

r
1
α

1 (v)dvdy

]α
dηds.

This is a contradiction with (3.1), and so the proof is completed.

Theorem 3.2. Assume that (2.1) holds. If∫∞
ε0

∫d
c

q (ε,η)

[∫τ(ε,η)

ε0

r2 (s)ds

]α
dηdε = ∞, (3.3)

then any proper solution of (E+), is either oscillatory or vanishes eventually.

Proof. Assume that x(ε) is an eventually positive solution. By Lemma 2.4, any solution x (ε) of (E+) tends
to zero as ε → ∞ in the case when w (ε) has the property (C1). Assume that w (t) has the property
(C2). Then there may exist ε1 > ε0 such that w (ε) > 0,w[1] (ε) > 0,w[2] (ε) > 0 for ε > ε1. Thus
w[1] (ε) > w[1] (ε1) . By integrating from ε1 to ε, we get

w (ε) > w[1] (ε1)

∫ε
ε1

r2 (s)ds = L

∫ε
ε1

r2 (s)ds,L > 0.

Moreover by Lemma 2.2, we have
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x (τ (ε,η)) > w (τ (ε,η)) (1 − b) > (1 − b)L

∫τ(ε,η)

ε1

r2 (s)ds. (3.4)

Let ε2 > ε1 be such that τ (ε,η) > ε2. Integrating Eq. (E+) from ε2 to ∞, we obtain

w[2] (ε2)−w[2] (∞)=

∫∞
ε2

∫d
c

q (s,η) f (x (τ (s,η)))dηds.

Therefore ∫∞
ε2

∫d
c

q (s,η) f (x (τ (s,η)))dηds<∞.

Using (A4), we have

λ

∫∞
ε2

∫d
c

q (s,η) xα (τ (s,η))dηds 6
∫∞
ε2

∫d
c

q (s,η) f (x (τ (s,η)))dηds,

i.e.,

λ

∫∞
ε2

∫d
c

q (s,η) xα (τ (s,η))dηds <∞.

Now using (3.4), we obtain

λ (1 − b)α Lα
∫∞
ε2

∫d
c

q (s,η)

(∫τ(ε,η)

ε1

r2 (s)ds

)α
dηds <∞.

This is a contradiction with (3.3), and so the proof is completed.

Theorem 3.3. Suppose that τ (ε,η) 6 ε, f (v1v2) > f (v1) f (v2) for v1, v2 ∈ R, and (2.1) holds. If
∫1

0
1

f
(
u

1
α

)du <
∞, and ∫∞

ε0

∫d
c

q (ε,η)

(∫τ(ε,η)

ε0

r2 (s)

∫s
ε0

r
1
α

1 (y)dyds

)α
dηdε = ∞, (3.5)

then any proper solution x (ε) of (E+) is either oscillatory or vanishes eventually.

Proof. Suppose that x is an eventually positive solution. By Lemma 2.4 any solution x (ε) tends to zero
as ε → ∞ in the case when w (ε) has the property (C1). Suppose that w (ε)has the property (C2). Then
there may exist ε1 > ε0 such that w (ε) > 0,w[1] (ε) > 0,w[2] (ε) > 0 for all ε > ε1. But since w[2] (ε) is
decreasing, we have

w[1] (ε)= w[1] (ε1)+

∫ε
ε1

r
1
α

1 (s)
(
w[2] (s)

) 1
α

ds >
(
w[2] (ε)

) 1
α
∫ε
ε1

r
1
α

1 (s)ds.

Therefore

w′ (ε)>
[
w[2] (ε)

] 1
α

r2 (ε)

∫ε
ε1

r
1
α

1 (s)ds.

Thus

w (ε) > w (ε) −w (ε1) >
∫ε
ε1

(
w[2] (s)

) 1
α

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds.

But since w[2] (ε) is decreasing, then

w (ε) >
(
w[2] (ε)

) 1
α
∫ε
ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds. (3.6)
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Now by Lemma 2.2, it follows from (E+) that

−
(
w[2] (ε)

)′
=

∫d
c

q (ε,η) f (x (τ (ε,η)))dη >
∫d
c

q (ε,η) f (1 − b) f (w (τ (ε,η)))dη.

So (3.6) leads to

−
[
w[2] (ε)

]′
>

∫d
c

q (ε,η) f (1 − b) f

([
w[2] (τ (ε,η))

] 1
α

)
f

(∫τ(ε,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds

)
dη.

This with (A4) leads to

−
[
w[2] (ε)

]′
> λf (1 − b)

∫d
c

q (ε,η) f
([
w[2] (τ (ε,η))

] 1
α

)[∫τ(ε,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds

]α
dη

> λf (1 − b) f

([
w[2] (ε)

] 1
α

) ∫d
c

q (ε,η)

[∫τ(ε,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds

]α
dη.

Thus
−
[
w[2] (ε)

]′
f
([
w[2] (ε)

] 1
α

) > λf ((1 − b))

∫d
c

q (ε,η)

[∫τ(ε,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds

]α
dη.

Integrating from ε1to ε,∫ε
ε1

−
(
w[2] (s)

)′
f
([
w[2] (s)

] 1
α

)ds > λf (1 − b)

∫ε
ε1

∫d
c

q (v,η)

[∫τ(v,η)

ε1

r2 (s)

∫s
ε1

r
1
α

1 (y)dyds

]α
dηdv.

Thus as ε→∞, we obtain

−

∫∞
ε1

(
w[2] (s)

)′
f
([
w[2] (s)

] 1
α

)ds = ∫w[2](ε1)

w[2](∞)

du

f
(
u

1
α

) <∞.

This is a contradiction with condition (3.5) and so the proof is completed.

Theorem 3.4. Suppose that (2.1) and (3.1) hold. Suppose further that τ (ε,η) < ε, and there may exist a function
$ (ε)such that $ (ε) ∈ C ([ε0,∞),R),$ (ε) > ε, τ ($ (ε) ,η) 6 ε. Then any proper solution x of (E−) is either
oscillatory or vanishes eventually.

Proof. Suppose that x is an eventually positive solution of (E−). By Lemma 2.3 we observe that for
ε > ε1 > ε0, we may have one of four cases (i), (ii), (iii) or (iv). Assume first that the case (i) is satisfied.
Then there exists ε1 > ε0 such that w (ε) > 0, w[1] (ε) > 0 and w[2] (ε) > 0 for ε > ε1. Then following the
lines of the proof of Theorem 3.1, we get a contradiction with (3.1) . Suppose that case (ii) holds. Then it
follows by Lemma 2.5 that limε→∞ x (ε) = 0. If case (iii) or (iv) holds, then as the proof of the last part of
[18, Theorem 3.1], it follows that x (ε) vanishes eventually and thus the proof is completed.

Theorem 3.5. Let (2.1) and (3.3) be satisfied. Then any proper solution x (ε) of (E−) is either oscillatory or vanishes
eventually.

Proof. Suppose that x is an eventually positive solution, and w (ε) has the property (i). Then there may
exist ε1 > ε0 such that w (ε) > 0,w[1] (ε) > 0,w[2] (ε) > 0 for ε > ε1. Following the lines of the proof of
Theorem 3.2, we get a contradiction with (3.3). The proof for the cases (ii), (iii), (iv) will be as in Theorem
3.4, and so it is omitted.
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Theorem 3.6. Suppose that τ (ε,η) 6 t, f (v1v2) > f (v1) f (v2) for v1, v2 ∈ R, and
∫1

0
1

f
(
s

1
α

)ds <∞. If (2.1) and

(3.5) hold, then any proper solution x (ε) of (E−) is either oscillatory or satisfies limε→∞ x (ε) = 0.

Proof. Suppose that x is an eventually positive solution of (E−), and w (ε) has the property (i). Then there
may exist ε1 > ε0 such that w (ε) > 0,w[1] (ε) > 0,w[2] (ε) > 0 for all ε > ε1. Following the lines of the
proof of Theorem 3.3, we get a contradiction with condition (3.5) and the proof of the cases (ii), (iii), (iv)
will go through as in Theorem 3.4.

Remark 3.7. Although our technique of the proof of our oscillation results depends on that given in
[39], however beside our results are dealing with negative neutral coefficients which was not consid-
ered by [39], the author there was dealing with the special case α = 1 and

∫d
c q (ε,η) f (x (τ (ε,η)))dη =

q (ε) f (x (δ (ε))) .

4. Non-oscillation theorems

Now, we study the existence of nonoscillatory solutions of (E−)in the case α = 1, we assume that (A1),
(A3), and (A4) hold. We also assume that limε→∞ b (ε) = b0, where 0 6 b0 < 1.

Theorem 4.1. Let R1 (ε0) <∞, and∫∞
ε0

∫s
ε0

∫d
c

r1 (s)q (u,η) f (kR1 (τ (u,η)))dηduds <∞, (4.1)

for some k 6= 0, and
lim
ε→∞R1 (δ (ε)) /R1 (ε) = 1,

where R1 (ε) =
∫∞
ε r2 (s)ds. Then there exists an eventually positive solution x(ε) of (E−), with limε→∞ x (ε) = 0,

where w[1] (ε) and w[2] (ε) are both eventually negative.

Proof. Assume that (4.1) holds for k > 0. The case k < 0 has similar arguments. Now since

lim
ε→∞R1 (δ (ε)) /R1 (ε) = 1,

we may choose b < B < 1 such that b (ε)R1 (δ (ε)) /R1 (ε) 6 B and ε1 > ε0 so large such that∫∞
ε1

∫s
ε1

∫d
c

r1 (s)q (u,η) f (kR1 (τ (u,η)))dηduds < (1 −B)a, (4.2)

where a = k
2 . Consider the equation

x (ε) = b (ε) x (δ (ε)) + (1 −B)aR1 (ε) +

∫∞
ε

∫y
ε1

∫s
ε1

∫d
c

r1 (s) r2 (y)q (u,η) f (x (τ (u,η)))dηdudsdy. (4.3)

It is easily proved that any solution of (4.3) also satisfies (E−) . Now consider the Banach space Φ of all
bounded real functions x (ε) with norm supε>ε1

|x (ε)|, endowed with the usual pointwise ordering 6: for
x1, x2 ∈ Φ, x1 6 x2 is equivalent to x1 (ε) 6 x2 (ε) for all ε > ε1. Then Φ is partially ordered. Define a
subset Ω1 of Φ as

Ω1 = {x ∈ Φ : (1 −B)aR1 (ε) 6 x (ε) 6 2aR1 (ε) , ε > ε1} .

For any subset Y ⊂ Ω1, it is clear that inf Y ∈ Ω1 and supY ∈ Ω1. Moreover, define an operator F: Ω1 → Φ

as

(Fx) (ε) = b (ε) x (δ (ε)) + (1 −B)aR1 (ε) +

∫∞
ε

∫y
ε1

∫s
ε1

∫d
c

r1 (s) r2 (y)q (u,η) f (x (τ (u,η)))dηdudsdy.

Then the mapping F satisfies the assumptions of Knaster’s fixed point theorem [17], and satisfies follow-
ing.
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(I) F maps Ω1 into itself. Indeed, if x ∈ Ω1, then by (4.2), we have

(1 −B)aR1 (ε) 6 (Fx) (ε) 6 2b (ε)aR1 (δ (ε)) + (1 −B)aR1 (ε) + (1 −B)aR1 (ε) .

Then

(1 −B)aR1 (ε) 6 (Fx) (ε) 6 2BaR1 (ε) + (1 −B)aR1 (ε) + (1 −B)aR1 (ε) = 2aR1 (ε) .

(II) Since f is increasing, F is nondecreasing. That is, for any x1, x2 ∈ Ω1, x1 6 x2 implies that Fx1 6 Fx2.
By Knaster’s fixed point theorem [17], there may exist an x ∈ Ω1 such that Fx = x, that is, x (ε) is a
non-oscillatory solution of (E−), with∫∞

ε

∫y
ε1

∫s
ε1

∫d
c

r1 (s) r2 (y)q (u,η) f (x (τ (u,η)))dηdudsdy

6 R1 (ε)

∫∞
ε1

∫s
ε1

∫d
c

r1 (s)q (u,η) f (kR1 (τ (u,η)))dηduds,

and

lim
ε→∞R1 (t)

∫∞
ε1

∫s
ε1

∫d
c

r1 (s)q (u,η) f (kR1 (τ (u,η)))dηduds = 0.

Thus we arrive at w (ε) vanishes eventually and by [31, Lemma 2.2], x (ε) vanishes eventually. Now for
ε ∈ [ε1,∞), we obtain

w
[1]
(ε) = − (1 −B)aR1 (ε) −

∫ε
ε1

∫s
ε1

∫d
c

r1 (s)q (u,η) f (x (τ (u,η)))dηduds < 0,

and

w
[2]
(ε) = −

∫ε
ε1

∫d
c

q (u,η) f (x (τ (u,η)))dηdu < 0.

This completes the proof.

Theorem 4.2. Suppose that R2 (ε0) <∞ and∫∞
ε0

∫d
c

q (ε,η) f (kR2 (τ (ε,η)))dηdε <∞. (4.4)

If limε→∞ R2 (δ (ε)) /R2 (ε) = 1, where R2 (ε) =
∫∞
ε

∫∞
y r1 (s) r2 (y)dsdy, then (E−) has an eventually positive

solution x(ε), with limε→∞ x (ε) = 0, where w[1] (ε) is eventually negative while w[2] (ε) is eventually positive.

Proof. Assume that (4.4) holds for k > 0. The proof of the case k < 0 is similar. Now since

lim
ε→∞R2 (δ (ε)) /R2 (ε) = 1,

we may choose b < M < 1 such that b (ε)R2 (δ (ε)) /R2 (ε) 6M and ε1 > ε0 so large such that∫∞
ε1

∫d
c

q (ε,η) f (kR2 (τ (ε,η)))dεdη < (1 −M)a,

where a = k
2 . Consider the equation

x (ε) = b (ε) x (δ (ε)) + (1 −M)aR2 (ε) +

∫∞
ε

∫∞
y

∫∞
s

∫d
c

r1 (s) r2 (y)q (u,η) f (x (τ (u,η)))dηdudsdy. (4.5)
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It is clear that any solution of (4.5) must satisfy (E−) . Consider the Banach space Φ as in Theorem 4.1.
Now define a subset Ω2 of Φ as

Ω2 = {x ∈ Φ : (1 −M)aR2 (ε) 6 x (ε) 6 2aR2 (ε) , ε > ε1} ,

for any subset Y ⊂ Ω2. It is clear that inf Y ∈ Ω2 and supY ∈ Ω2. Moreover define an operator F: Ω2 → Φ

as

(Fx) (ε) = b (ε) x (δ (ε)) + (1 −M)aR2 (ε) +

∫∞
ε

∫∞
y

∫∞
s

∫d
c

r1 (s) r2 (y)q (u,η) f (x (τ (u,η)))dηdudsdy,

ε ∈ [ε1,∞). As in the proof of Theorem 4.1, F satisfies the conditions of the fixed point theorem of Knaster

[17] and so there may exist an x ∈ Ω2 such that Fx = x, i.e., x (ε) is a non-oscillatory solution of (E−), but
since∫∞

ε

∫∞
y

∫∞
s

∫d
c

r1 (s) r2 (y)q (u,η) f (x (τ (u,η)))dηdudsdy 6 R2 (ε)

∫∞
ε1

∫d
c

q (u,η) f (kR2 (τ (u,η)))dηdu

and

lim
ε→∞R2 (ε)

∫∞
ε1

∫d
c

q (u,η) f (kR2 (τ (u,η)))dηdu = 0,

we conclude that w (ε) vanishes eventually and consequently due to [31, Lemma 2.2], x (ε) vanishes
eventually. Now we obtain for ε ∈ [ε1,∞),

w[1] (ε) = − (1 −M)

∫∞
ε

r1 (s)ds−

∫∞
ε

∫∞
s

∫d
c

r1 (s)q (u,η) f (x (τ (u,η)))dηduds < 0,

and

w[2] (ε) = (1 −M) +

∫∞
ε

∫d
c

q (u,η) f (x (τ (u,η)))dηdu > 0.

This completes the proof.

Remark 4.3. Although our nonoscillatory results depend on the technique of [31], the authors there consid-
ered a neutral dynamic third order equation in the special case

∫d
c q (ε,η) f (x (τ (ε,η)))dη = f (ε, x (g (ε))) .

5. Examples

Example 5.1. Consider the third-order differential equation

(
e−ε

(
x (ε) + e−πx (ε− π)

)′)′′
+
(
1 − e−2π) ∫−π

− 5
2π

e−ε−ηx (ε+ η)dη = 0. (5.1)

Here, r1 (ε) = 1, r2 (ε) = eε,α = 1,b (ε) = e−π, c = − 5
2π,d = −π,q (ε,η) = e−ε−η, τ (ε,η) = ε+ η, and

f (x (τ (ε,η))) =
(
1 − e−2π

)
x (ε+ η) . Thus clearly, the assumptions of Theorem 3.2 hold. Therefore, every

solution x (ε) of (5.1) is either oscillatory or vanishes eventually. In fact x (ε) = eε sin ε is an oscillatory
solution of (5.1).
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Example 5.2. Consider the differential equation(
ε4
(
ε2
[
x (ε) −

ε− 1
2ε

x (ε− 3)
]′)′)′

+
2

3π2

∫ 2π

π

η

ε2x
(ε

2

)
dη = 0, ε > 2. (5.2)

Here r1 (ε) = 1
ε4 , r2 (ε) = 1

ε2 ,b (ε) = ε−1
2ε , δ (ε) = ε − 3, τ (ε,η) = ε

2 , f (x) = x,q (ε,η) = 2η
3ε2π2 , c =

π,d = 2π. It is obvious that the coefficients of (5.2) satisfy (A1), (A3), and (A4). Moreover it is clear
that limε→∞ b (ε) = 1

2 . Now since
∫∞
ε0
r2 (u)du =

∫∞
2
dε
ε2 < 1, and R1 (ε) =

∫∞
ε r2 (u)du = 1

ε < 1, thus
limε→∞ R1 (δ (ε)) /R1 (ε) = limε→∞ ε

ε−3 = 1, f (kR1 (τ (ε,η))) = kR1 (τ (ε,η)) < k <∞, k > 0, and∫∞
ε0

∫s
ε0

∫d
c

r1 (u)q (u,η) f (kR1 (τ (u,η)))dηduds < k
∫∞

2

∫s
2

∫ 2π

π

2η
3s4u2π2dηduds <∞.

Thus by Theorem 4.1, it follows that (5.2) has an eventually positive solution x(ε) that vanishes eventually,
where w[1] (ε) < 0 ,w[2] (ε) < 0 eventually.
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