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Abstract

In this paper, it is shown, among other inequalities, that if A,B ∈ B(H), then, for p > 1, we have
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1. Introduction

Let B(H) be the algebra of all bounded linear operators on a complex separable Hilbert space H with
inner product 〈·, ·〉. For 0 < p 6 ∞ and A ∈ B(H), define ‖A‖p by

‖A‖p =

 ∞∑
j=1

s
p
j (A)

1/p

.

For 1 6 p 6 ∞, this is the Schatten p-norm. When p = 1 the Schatten p-norm ‖A‖1 = tr |A| is the

trace norm, when p = 2 the Schatten p-norm ‖A‖2 =
(
tr |A|

2
)1/2

is the Hilbert-Schmidt norm, and when
p = ∞ the Schatten p-norm ‖A‖∞ = ‖A‖ is the spectral norm.
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For A ∈ B(H), Yamazaki [13] showed that the numerical radius can be defined as

w(A) = sup
θ∈R

∥∥Re(eiθA)
∥∥ .

Let N(·) be a norm on B(H), a generalization of the numerical radius has been introduced recently in
[1] as the following

wN(A) = sup
θ∈R

N
(
Re(eiθA)

)
for every A ∈ B(H). The norm N(·) is said to be self-adjoint if N(A) = N(A∗) for every A ∈ B(H)
and it is called unitarily invariant norm if it satisfies the invariant property N(UAV∗) = N(A) for all
A ∈ B(H) and for all unitary operators U,V ∈ B(H). Also, N(·) is called weakly unitarily invariant if
N(U∗AU) = N(A) for every A ∈ B(H) and every unitary U ∈ B(H). Obviously, w(·) is self-adjoint and
weakly unitarily invariant norm. It is known that the numerical radius is equivalent to the spectral norm,
that is

1
2
‖A‖ 6 w(A) 6 ‖A‖ (1.1)

for every A ∈ B(H). Also, for every A ∈ B(H), the following estimate of the numerical radius
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were given by Kittaneh (see [10, 11]). The inequality (1.2) refines the inequality (1.1). In [8], an improve-
ment of the inequality (1.2) was given by Ghasvareh and Omidvar. They proved that
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(1.3)

for every A ∈ B(H), where m(A) = inf{〈Ax, x〉 : x ∈ H, ‖x‖ = 1}. In [1], Abu-Omar and Kittaneh proved
the following inequality for the generalized numerical radius when N(·) = ‖·‖2:

1√
2
‖A‖2 6 w2(A) 6 ‖A‖2 .

For inequalities in different settings that give several generalizations, refinements and applications of both
w(·) and wN(·), one can refer to [1–3, 5, 7, 9, 12–14], and references therein.

In this paper, we give some inequalities that give upper and lower bounds of the generalized numerical
radius when N(·) is the Schatten p-norm.

2. Preliminary results

In this section, we want to give an upper and lower bound for the generalized numerical radius when
N(·) is the Schatten p-norm. First, we start with the following lemma. Part (a) can be found in [6],
while part (b) can be obtained by applying the fact that w(·) is weakly unitarily invariant to the operator

Ã =

[
0 A

A 0

]
and the unitary operator U = 1√

2

[
I I

−I I

]
, and using part (a). From the basic properties

of unitarily invariant norms, we can obtain parts (c) and (d). Also, we can obtain part (e) from the
definition of ‖·‖p .

Lemma 2.1. Let A,B ∈ B(H),p > 1, and r > 0.

(a) w

([
A 0
0 B

])
= max{w(A),w(B)}.
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(b) w
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(d) ‖A∗‖ = ‖A‖ and ‖A‖p = ‖A∗‖p .
(d) ‖|A|

r‖p = ‖A‖rrp .

We want the following lemma from [2].

Lemma 2.2. Let A ∈ B(H). Then

w2
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])
=
√

2w2 (A) .

Also, we need with the following lemma (see [3]).

Lemma 2.3. Let A,B ∈ B(H). Then
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.

Depending on Lemma 2.3, we have the following corollary.

Corollary 2.4. Let A,B ∈ B(H). Then, for p > 1, we have

wp
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B 0

])
> 2

1
p−1 ‖A±B∗‖p .

Proof. By taking N(·) = ‖·‖p in Lemma 2.3, we have
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(by Lemma 2.1 (c))

= 2
1
p−1 ‖A+B∗‖p (by Lemma 2.1 (d)).

To prove that wp

([
0 A

B 0

])
> 2

1
p−1 ‖A−B∗‖p , we just replace A and B by iA and iB, respectively.

Now, we are ready to give our first result in this paper.

Theorem 2.5. Let A,B ∈ B(H). Then, for p > 1, we have
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Proof. The parallelogram law asserts that for A,B ∈ B(H), we have
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Using Theorem 2.5, we have the following corollaries.

Corollary 2.6. Let A ∈ B(H). Then, for p > 1, we have
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Proof. The inequality (2.2) follows from Theorem 2.5 by taking A = B.

Corollary 2.7. Let A,B ∈ B(H). Then
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In particular,
1√
2
‖A‖2 6 w2 (A) . (2.4)

Proof. The inequality (2.3) follows from Theorem 2.5 by taking p = 1. The inequality (2.4) follows from
the second inequality in the inequality (2.3) by taking A = B and applying Lemma 2.2.

Corollary 2.8. Let A,B ∈ B(H). Then
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In particular,
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Proof. The inequality (2.5) follows from Theorem 2.5 by taking p = ∞. Also, we obtain the inequality (2.6)
from the inequality (2.5) by taking A = B.

The inequality (2.6) is similar to the first inequality in the inequality (1.3) given by Ghasvareh and
Omidvar in [8], which means that Theorem 2.5 gives a generalization to the lower bound of w2 (A) given
by Ghasvareh and Omidvar in [8].

We need the following lemma (see [4]) to complete our work.

Lemma 2.9. Let a,b ∈ [0,∞).
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(a) If 1 6 r < ∞, then
ar + br 6 (a+ b)r − (2r − 2)min(ar,br).

(b) If 0 < r 6 1, then
ar + br > (a+ b)r − (2r − 2)min(ar,br).

After replacing min(ar,br) by ar+br−|ar−br|
2 , the following corollary can be obtained from Lemma 2.9

by direct computations.

Corollary 2.10. Let a,b ∈ [0,∞).

(a) If 1 6 r < ∞, then

2r−1(ar + br) − (2r−1 − 1) |ar − br| 6 (a+ b)r 6 2r−1(ar + br).

(b) If 0 < r 6 1, then

2r−1(ar + br) 6 (a+ b)r 6 2r−1(ar + br) − (2r−1 − 1) |ar − br| .

Now, we are ready to give our second result in this paper.

Theorem 2.11. Let A,B ∈ B(H). Then, for p > 1, we have
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Now, applying part (b) of Corollary 2.10 to the inequality (2.7) completes the proof.
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Using Theorem 2.11, we have the following corollary.

Corollary 2.12. Let A,B ∈ B(H), then, for p > 1, we have
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A 0

])
6 2
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p

. (2.8)

In particular,
w2 (A) 6 ‖A‖2 . (2.9)

Proof. The inequality (2.8) follows from Theorem 2.11 by taking A = B. The inequality (2.9) can be ob-
tained from the inequality (2.8) by taking p = 1, then applying Lemma 2.2.
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