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Abstract

In this paper, it is shown, among other inequalities, that if A, B € B(IH), then, for p > 1, we have

1_ N 1 " « 0 A
2 A iBR| <200 (AT 4 B, + A —B\l%p)w%p([ D

B 0
w3, ({ g /3 D <21 (HlA\ZHP + H\B*F \p) v lo ‘szHp _ H|B*\2 ‘P'
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1. Introduction

Let B(IH) be the algebra of all bounded linear operators on a complex separable Hilbert space H with
inner product (-, ). For 0 <p < oo and A € B(H), define [|A[,, by

1/p

o
1AL, = { D_sP(A)
j=1

For 1 < p < oo, this is the Schatten p-norm. When p = 1 the Schatten p-norm ||A||; = tr|A| is the

1/2
trace norm, when p = 2 the Schatten p-norm ||A||, = (tr |A|2> is the Hilbert-Schmidt norm, and when
p = oo the Schatten p-norm ||A||, = ||A] is the spectral norm.
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For A € B(H), Yamazaki [13] showed that the numerical radius can be defined as

w(A) = sup HRe(eieA)H .
0eR

Let N(-) be a norm on B(IH), a generalization of the numerical radius has been introduced recently in

[1] as the following
wn(A) = sup N (Re(e'®A))
0c€R

for every A € B(IH). The norm N(-) is said to be self-adjoint if N(A) = N(A*) for every A € B(H)
and it is called unitarily invariant norm if it satisfies the invariant property N(UAV*) = N(A) for all
A € B(H) and for all unitary operators U,V € B(IH). Also, N(-) is called weakly unitarily invariant if
N(U*AU) = N(A) for every A € B(IH) and every unitary U € B(IH). Obviously, w(-) is self-adjoint and
weakly unitarily invariant norm. It is known that the numerical radius is equivalent to the spectral norm,
that is

1
SIAL < w(A) <A (1)
for every A € B(IH). Also, for every A € B(IH), the following estimate of the numerical radius

1
A2+ 1A < wA(A) < 5 [|AP + 1A

411 ‘ ‘ (1.2)

were given by Kittaneh (see [10, 11]). The inequality (1.2) refines the inequality (1.1). In [8], an improve-
ment of the inequality (1.2) was given by Ghasvareh and Omidvar. They proved that

()

for every A € B(H), where m(A) = inf{(Ax,x) : x € H, ||x|| = 1}. In [1], Abu-Omar and Kittaneh proved

AP+ |A*P

1
g (IA+A P+ IA =A%) <w?(A) < |55

the following inequality for the generalized numerical radius when N(-) = |[|-||,:
Al < wa(A) <A
ﬁ 2 X W2 X 2

For inequalities in different settings that give several generalizations, refinements and applications of both
w(-) and wy (+), one can refer to [1-3, 5, 7, 9, 12-14], and references therein.

In this paper, we give some inequalities that give upper and lower bounds of the generalized numerical
radius when N(-) is the Schatten p-norm.

2. Preliminary results

In this section, we want to give an upper and lower bound for the generalized numerical radius when
N(-) is the Schatten p-norm. First, we start with the following lemma. Part (a) can be found in [6],
while part (b) can be obtained by applying the fact that w(-) is weakly unitarily invariant to the operator
A= [ /2 g ] and the unitary operator U = % [ _II i
of unitarily invariant norms, we can obtain parts (c) and (d). Also, we can obtain part (e) from the
definition of [|-|,, .

, and using part (a). From the basic properties

Lemma 2.1. Let A,B € B(H),p > 1, and r > 0.

(@ w <[ /3 ]2 }) =max{w(A),w(B)}.
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([ 3])wn
(2 8Ll 2

@ A" = |A] and HAH =A%)
(d) [IAF, = Al

— (Al + 1BI2)

b
We want the following lemma from [2].

wof[ 4]

Also, we need with the following lemma (see [3]).

Lemma 2.2. Let A € B(H). Then

Lemma 2.3. Let A,B € B(H). Then

(s o))z ([s0n 7))

0 A 1 “u 0 el9A e 0B
WN B 0 2 eeﬁ eiOB 4+ e 1O 0 .

Depending on Lemma 2.3, we have the following corollary.

and

Corollary 2.4. Let A,B € B(IH). Then, for p > 1, we have

0 A 1 4 *
WP({B O]>>2p IA+B Hp

Proof. By taking N() = ||-[|,, in Lemma 2.3, we have

0 A 1 0 A+B* ) e\ /P
p([B 0]>>2H[B+A* ”' <||A+B I+ 1B +A% ) (by Lemma 2.1 (c))
— 2% 1||A~|—B”‘||]D (by Lemma 2.1 (d)).

0 A

To prove that wp < [ B 0

] > 25! |A—B*[|,,, we just replace A and B by iA and iB, respectively. [

Now, we are ready to give our first result in this paper.

Theorem 2.5. Let A, B € B(IH). Then, for p > 1, we have

Ll L sl . 0 A
252 w188 <2570 (1A +mig, 1A —1R,) <, ([ 5 5 ])-

Proof. The parallelogram law asserts that for A, B € B(IH), we have

A*2+|B? |A*+B[* |A*—BJ?
5 = 5 3 (2.1)
Therefore, we have
A* + B

252 [lAP 4 BP| =20
. 2
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* 2 «_ nl2
— 25 A + B ’A 5 B (by the inequality (2.1))
P
A* + B| A*—B|?
2
P
* * 2
A + B A —B (by Lemma 2.1 (e))
2y

1

1_ * * 2
20 (A +B||2p+uA ~BJ3,)

0 A
< w%p ([ B 0 ]) (by Corollary 2.4).
O
Using Theorem 2.5, we have the following corollaries.
Corollary 2.6. Let A € B(IH). Then, for p > 1, we have
22 IR AR| <2572 (A AR, + 1A - AR) <why (| 3 4 22)
Proof. The inequality (2.2) follows from Theorem 2.5 by taking A = B. O
Corollary 2.7. Let A, B € B(IH). Then
1 2 2 1 2 2 ([0 A
st (AP BR) <5 (IATB+IBIE) <w3 (| 5 5 |)- (2.3)
In particular,
1
— ||Al, <wa (A). 24
7 1Al < wz (A) (24)
Proof. The inequality (2.3) follows from Theorem 2.5 by taking p = 1. The inequality (2.4) follows from
the second inequality in the inequality (2.3) by taking A = B and applying Lemma 2.2. O
Corollary 2.8. Let A,B € B(H). Then
*|2 1 * 2 * 2 2 0 A
3| e] < g (1A + B A —) < w2 ([ 5 2 ]). 25)
In particular,
LB 1AR] < 5 (1A + AR+ 1A~ AJP) < w? (A (2.6)

Proof. The inequality (2.5) follows from Theorem 2.5 by taking p = co. Also, we obtain the inequality (2.6)
from the inequality (2.5) by taking A = B. O

The inequality (2.6) is similar to the first inequality in the inequality (1.3) given by Ghasvareh and
Omidvar in [8], which means that Theorem 2.5 gives a generalization to the lower bound of w? (A) given
by Ghasvareh and Omidvar in [8].

We need the following lemma (see [4]) to complete our work.

Lemma 2.9. Let a,b € [0, 00).
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a) If1 <r < oo, then
a"+b" < (a+b)"— (2" —2)min(a’,b").

b) If0 <t <1, then
a"+b" > (a+b)"— (2" —2)min(a’,b").

a’™+b"—|a"-Db"
2

After replacing min(a’, b") by Y1 the following corollary can be obtained from Lemma 2.9

by direct computations.
Corollary 2.10. Let a,b € [0, o0).
(a) If1 <1 < oo, then
27 @+ b)) — (2" =1)la"—=b"| < (a+b)T <27 Ha" +b").
(b) If0 < v <1, then
27 M a"+b") < (a+b)" <27 Ha"+b")— (2" —1)|a" —bT].
Now, we are ready to give our second result in this paper.

Theorem 2.11. Let A, B € B(IH). Then, for p > 1, we have

([3 ) <2 (e, + o], ) - ],

Proof. By taking N(:) = ||-[|,, in Lemma 2.3, we have
([0 AT\ _ (1 2p “u 0 et®A 4 e 10B* ||*P
2\ B 0])S\2) gerlll €®B+e A" 0 -
1\? i0 10 ||2P i0 10 5 % ||2P
= (> sup (He1 A+et B*H2 + He1 B+e " A*Hz ) (by Lemma 2.1 (c))
2] eer P P

1\ i0 —i0p« (2P
= (2> SUE (2 He A+e "B H2p> (by Lemma 2.1 (d))
€

<272 sup ([[eA]|,, + 0B, )"
0eR

2p
—l-2p (sup (HewAHzp + HeieB*Hm))
0cR
2p
<2 (sup leAll,,, +sup He_ieB*Hzp>
0€R 0€R
2p
=21-2p (sup || |All2p +sup Gl ”B*”2p>
0€R 0eR

_ wr \2P
=212 (|| ALy, + 1Bl )

P
< AL, +1B° 155 = IAP |+ 1BF]| by Lemma 21 (@)

A (8 3]) = (el +Iel) ™

Now, applying part (b) of Corollary 2.10 to the inequality (2.7) completes the proof. O

So, we have
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Using Theorem 2.11, we have the following corollary.

Corollary 2.12. Let A, B € B(IH), then, for p > 1, we have

2 0 A 1 2
w3, ({ Ao |) <2 Hp (2.8)
In particular,
wy (A) <Al (2.9)
Proof. The inequality (2.8) follows from Theorem 2.11 by taking A = B. The inequality (2.9) can be ob-
tained from the inequality (2.8) by taking p = 1, then applying Lemma 2.2. O
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