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Abstract
By defining a new kind of h-extorial function with constant coefficient, this research seeks to solve discrete fractional

Bloch equations. By using an extorial function of the Mittag-Leffler type, we are able to discover the general solutions for
the magnetization’s Bx,By, and Bz components. These findings demonstrate the innovative method of fractional order Bloch
equations. In addition, we offer a graphical representation of our results.
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1. Introduction

For the past few decades, fractional calculus has attracted a lot of attention. The findings that some aca-
demics discovered when they used fractional operators to model some dynamic systems are the sources of
this interest [7, 8, 12, 14, 15]. In recent years, the study of boundary value problems for partial differential
equations is also a very strong instrument to describe the behavior of biological populations [6, 9–11].

The Bloch equation is a collection of differential equations. Nucleic acids, proteins, RNA, and DNA
are some of the costly biological components that may be investigated effectively. Only a few of its
practical uses include process control, liquid media, petrochemical plants, and process optimisation in
oil refineries. The water content of the saturated and unsaturated zones can be estimated using surface
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magnetic resonance measurements, which are based on the NMR principle. The standard system of the
Bloch equations is listed below:

dMz(t)

dt
=
M0 −Mz(t)

T1
,

dMx(t)

dt
= ω̄0My(t) −

Mx(t)

T2
,

dMy(t)

dt
= −ω̄0Mx(t) −

My(t)

T2
.

The discrete fractional calculus, on the other hand, has also caught the interest of many academics.
Numerous applications exist in numerous domains for this kind of calculus that deals with sums and
differences of non-integer numbers [1, 3–5].

2. Basic Results on Fractional Difference Operators

For the values a,b ∈ R and h ∈ R+, we define and use the sets of the following notation Na,h and
b,hN by

Na,h := {a,a+ h,a+ 2h, . . .}, b,hN := {b,b− h,b− 2h, . . .}.

Definition 2.1. Let f(ξ), ξ ∈ [0,∞), be a real or complex valued function and h > 0 be a fixed shift value.
Then, the backward nabla difference operator on the time scale hZ is defined by

∇hf(ξ) =
f(ξ) − f(ξ− h)

h

and the forward nabla difference operator is defined by

∆hf(ξ) =
f(ξ+ h) − f(ξ)

h
.

Definition 2.2. The definitions of the forward jump operator and the backward jump operator for the hZ

are respectively ρh(xi) = ξ− h and σh(ξ) = ξ+ h.

Definition 2.3 ([13]). The (generalized) nabla h-rising function is defined by

ξ
µ̄
h = hµ

Γ(ξh + µ)

Γ(ξh)
, (2.1)

for those values of ξ and µ so that the right-hand side of equation (2.1) is defined. We also use the
convention that if ξh ∈ {0,−1,−2, . . .}, but ξh + µ /∈ {0,−1,−2, . . .}, then ξµ̄h := 0. In particular, ξ0̄

h = 1, ξh /∈
{0,−1,−2, . . .}.

Remark 2.4. By using the nabla operator in equation (2.1), we arrive at

∇hξµ̄h = µ ξµ−1
h (2.2)

for those values of ξ and µ so that the expressions in equation (2.2) are well-defined.

Definition 2.5. The nabla h-discrete Mittag-Leffler functions for the values λ ∈ R, |λ| < 1 and θ,β, ρ, ξ ∈ C
with Re(θ) > 0, is defined by

hE
ρ

θ,β
(λ, ξ) =

∞∑
k=0

λk
ξ
kθ+β−1
h (ρ)k
Γ(θk+β)k!

. (2.3)

For h = β = ρ = 1, we can write it as

Eθ(λ, ξ) =
∞∑
k=0

λk
ξkθ

Γ(θk+ 1)
,

where, we have (ρ)k = ρ(ρ+ 1) · · · (ρ+ k− 1) and (1)k = k!.
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3. Discrete h-Laplace transform and its convolution

The nabla discrete Laplace transform on Na,h has the following definition after the time scale
calculus, which is a modification of Lemma 3.7 using the closed form (inverse difference operator).

Definition 3.1. The nabla h-Laplace transform of the function f : Na+h,h → R is defined by

Na,h{f}(s) =

∞∫
a

hẽ	s(ρ(ξ),a)f(ξ)∇hξ =

∞∫
a

(1 − hs)
ξ−a−h
h f(ξ)∇hξ

for those values of s 6= 1
h such that the improper integral converges.

When a = 0, we write

N0,h{f}(s) = Nh{f}(s) =

∞∫
0

(1 − hs)
ξ−h
h f(ξ)∇hξ.

Theorem 3.2. Using the summation notation, the Laplace transform can be written as

Na,h{f}(s) = h

∞∑
k=a

h+1

(1 − hs)k−
a
h−1 f(kh)

for those values of s such that this infinite series converges.

When a = 0, we have

Nh{f}(s) = h

∞∑
k=1

(1 − hs)k−1 f(kh).

Lemma 3.3. For µ ∈ C \ Z, we have that

Nh{ξ
µ
h}(s) =

Γ(µ+ 1)
sµ+1 , for |sh− 1| < 1.

Definition 3.4 ([2]). Let s ∈ R, 0 < ν < 1 and f,g : Na,h → R be two functions. The nabla h-discrete
convolution of f with g is defined by

(f ∗ g)(ξ) =
ξ∫
a

f(s)g(ξ− ρ(s) + a)∇hs = h
ξ/h∑

k=a/h+1

f(kh)g(ξ− ρ(kh) + a).

Theorem 3.5 ([2]). (The h-convolution theorem) For any ν ∈ R/{. . . ,−2,−1, 0}, s ∈ R and f,g defined on Na,h,
we have

Na,h[(f ∗ g)(ξ)](s) = Na,h[f(ξ)](s) +Na,h[g(ξ)](s).

Lemma 3.6. For λ ∈ R, |λ| < 1 and θ,β,ν, ξ ∈ C with Re(θ) > 0, we have

Nh

[
hE
ν
θ,β(λ, ξ)

]
=

sθν−β

(sθ − λ)ν
. (3.1)

Proof. Applying Laplace transform in (2.3) and using nabla transform, we get

Nh

[
hE
ν
θ,β(λ, ξ)

]
=

∞∑
k=0

λk(ν)k
Γ(θk+β)k!

Na,h

[
ξ
kθ+β−1
h

]
=

∞∑
k=0

λk

sθk+β
(ν)k
k!

= s−β
∞∑
k=0

(
λ

sθ

)k (ν)k
k!

= s−β
(

sθ

sθ − λ

)ν
=

sθν−β

(sθ − λ)ν
.
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The h-discrete Laplace transform for both the integer difference operator and the Caputo fractional
difference is shown in the results below.

Lemma 3.7. For the function f(ξ) defined on Na,h and n− 1 < ν 6 n, we have

Na,h[
C
a∇νhf(ξ)](s) = sνNa,h[f(ξ)](s) −

n−1∑
k=0

sν−1−k∇khf(a). (3.2)

For integer n, we arrive at the result as

Na,h[a∇nhf(ξ)](s) = snNa,h[f(ξ)](s) −

n−1∑
k=0

sn−1−k∇khf(a).

4. Numerical solution of discrete fractional Bloch equation

We look at the discrete fractional Bloch equation in this section.

C∇νhBz(ξ) =
B0 −Bz(ξ)

R ′1
, (4.1)

C∇νhBx(ξ) = ω̄0By(ξ) −
Bx(ξ)

R ′2
, (4.2)

C∇νhBy(ξ) = −ω̄0Bx(ξ) −
By(ξ)

R ′2
, (4.3)

where 0 < ν < 1, ω̄0 =
ω0

σν−1
2

,
1
R ′1

=
σ1−ν

1
R1

, and
1
R ′2

=
σ1−ν

2
R2

. By employing the nabla h-Laplace transform

in equation (4.1) and applying (3.2), we conclude that

Nh{
C∇νhBz}(s) =

B0

R ′1
Nh{1}(s) −

1
R ′1

Nh{Bz}(s),

sνNh{Bz}(s) − s
ν−1Bz(0) =

B0

R ′1s
−

1
R ′1

Nh{Bz}(s),

Nh{Bz}(s) =
B0

R ′1

s−1(
sν + 1

R ′1

) +Bz(0)
sν−1(
sν + 1

R ′1

) .

Now, by applying the inverse nabla h-Laplace transform and using (3.1), we have

Bz(ξ) =
B0

R ′1
hE

1
ν,ν+1

(
−

1
R ′1

, ξ
)
+Bz(0)hE1

ν,1

(
−

1
R ′1

, ξ
)

.

The solutions for Bx(ξ) and By(ξ) can be found by solving the corresponding fractional order
difference equation

B+(ξ) = Bx(ξ) + iBy(ξ) (4.4)

with B+(0) = Bx(0) + iBy(0) and applying fractional nabla operator for the above equation, we have

C∇νhB+(ξ) =
C∇νhBx(ξ) + iC∇νhBy(ξ)

= ω̄0By(ξ) −
Bx(ξ)

R ′2
− iω̄0Bx(ξ) − i

By(ξ)

R ′2

= −iω̄0[Bx(ξ) + iBy(ξ)] −
1
R ′2

[Bx(ξ) + iBy(ξ)] = −iω̄0B+(ξ) −
1
R ′2
B+(ξ).
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Applying nabla transform on both sides, we get

Nh[
C∇νhB+(ξ)] = Nh[−iω̄0B+(ξ) −

1
R ′2
B+(ξ)],

sνNh[B+(ξ)] − s
ν−1B+(0) = −iω̄0Nh[B+(ξ)] −

1
R ′2

Nh[B+(ξ)],[
sν + iω̄0 +

1
R ′2

]
Nh[B+(ξ)] = s

ν−1B+(0),

Nh[B+(ξ)] =
sν−1B+(0)

sν + iω̄0 +
1
R ′2

.

Now applying inverse nabla transform on both sides and using (3.1) for the particular values β = 1, λ =

−iω̄0 −
1
R ′2

, we have

B+(ξ) = B+(0)hE1
ν,1(−iω̄0 −

1
R ′2

, ξ). (4.5)

Now, λ = −iω̄0 −
1
R ′2

= −i
ω0

σν−1
2

−
σ1−ν

2
R2

= −iω0σ
1−ν
2 −

σ1−ν
2
R2

. To find the solutions of (4.5), we define a

new type of h-extorial function with constant coefficient as follows.

Definition 4.1. Let ξ ∈ (−∞,∞) and h, λ > 0. Then we have the h-extorial function with constant
coefficient

eλξ
k
h = 1 +

λξ1
h

1!
+
λ2ξ2

h

2!
+
λ3ξ3

h

3!
+ · · · =

∞∑
k=0

λkξkh
k!

. (4.6)

For the particular values of h = 1,k = 1, and λ = 1, we have eiξ = cos t+ i sin t,

1E
1
1,1(1, ξ) =

∞∑
k=0

ξ1

1!
= eξ. (4.7)

It follows from (4.5) that

B+(ξ) = B+(0)hE1
ν,1(λ, ξ) = B+(0)e

(iω0+
1
R2

)ξkh

= B+(0)e

1
R2
ξkh
eiω0ξ

k
h = B+(0)e

1
R2
ξkh
[
cos(ω0(ξ)

k
h) + i sin(ω0(ξ)

k
h)
]

.

Now using (4.4), we arrive at Bx(ξ)+ iBy(ξ) = [Bx(0)+ iBy(0)]e

ξkh
R2
[
cos(ω0(ξ)

k
h) + i sin(ω0(ξ)

k
h)
]
. Equat-

ing the real and imaginary part, gives

Bx(ξ) = e

ξkh
R2
[
Bx(0) cos(ω0(ξ)

k
h) −By(0) sin(ω0(ξ)

k
h)
]

,

By(ξ) = e

ξkh
R2
[
By(0) cos(ω0(ξ)

k
h) +Bx(0) sin(ω0(ξ)

k
h)
]

.
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5. Graphical illustrations

In this part, we analyse our findings for the suggested Bloch equation using graphical examples. For
the particular values of h = 1,k = 1, we deduce that the solutions of discrete fractional Bloch equations
(4.1)-(4.3) are

Bz(ξ) =
B0

R ′1
1E
ν
ν,1+ν

(
−

1
R ′1

, ξ
)
+Bz(0)1E

ν
ν,1

(
−

1
R ′1

, ξ
)

,

Bx(ξ) = e

ξ

R2 [Bx(0) cos(ω0ξ) −By(0) sin(ω0ξ)] ,

By(ξ) = e

ξ

R2 [By(0) cos(ω0ξ) +Bx(0) sin(ω0ξ)] .

For the case of numerical analysis and graphical behavior of the above solutions of Bloch equations,
Figures 1, 2, and 3 are presented for various values of initial conditions like Bx(0),By(0),ω0 and T2.

Figure 1 Figure 2

From the above graphical behavior one can easily change the initial parameters to get numerical cases.

Figure 3
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6. Conclusion

We examined a particular variant of the discrete Bloch equation in this study that involves a nabla
h-fractional Caputo difference. The discrete Laplace transform and the discrete Mittag-Leffler functions
were used as the basis for our analytical solutions. For particular settings of the beginning values, param-
eters, and the right side of the equation, we offered the numerical solutions. The delta difference operator
can take the place of the nabla difference that is being considered. We don’t believe that finding the ana-
lytical solutions in this situation will be simple. On the other hand, researchers may also substitute newly
defined fractional differences involving non-singular kernels for the h-fractional Caputo difference.
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