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Abstract

In this study, the nonlinear integro-differential equation (NIDE) of the second kind is resolved using the Adomian decompo-
sition method (ADM). The term non-linearity can be dealt with easily if used techniques of Adomian polynomials. The existence
of at least one positive continuous solution to the nonlinear integro-differential equation is ensured by sufficient conditions. Both
the Arzelà-Ascoli theorem and the Tychonoff fixed point principle are used in this method. These types of equations are solved
using the Adomian decomposition method and the repeated trapezoidal method. The method presented at the end of the article
has been tested on many examples and has proven its efficiency after discussing the results.
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1. Introduction

One of the most well-known mathematical equations is the integro-differential equation, which is used
in many disciplines including computer science [25], medicine [20], dynamics [26, 33], biology [8], physics
[9, 24], etc. Their precise form varies depending on the scientific task being investigated. Many of these
equations have already been studied in earlier papers on related topics. Among them, the equations with
a weakly singular kernel in the network studies [10, 21], in the non-linear Fredholm form [4, 31], in the
COVID-19 researches [29], in the non-linear Volterra-Fredholm form [28, 32], in the non-linear Volterra
form [16, 17, 30], in the linear Fredholm form [2, 19, 27], and others.

Sometimes most of the non-linear integral differential equations are difficult to obtain the exact solu-
tion, so we resort to the use of numerical methods. Since integro-differential equations are a relatively
new area of mathematics, there are only a few techniques for solving them.

The authors have recently used a variety of techniques to solve the second kind integro-differential
equations and integral equations of Fredholm and Volterra, both linear and nonlinear [14, 18].
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In this work, we take into account the second kind of continuous kernel nonlinear integro-differential
equation with continuous kernels with respect to t. To solve nonlinear integro-differential equations, we
used Adomian polynomials. This approach has several advantages, including the ability to solve various
linear and nonlinear equations analytically and efficiency when dealing with these types of equations,
see [6, 9]. In addition to the repeated trapezoidal method [13], which is used to solve these kinds of
equations, the results obtained from the preceding two methods are compared, where the Tychonoff
fixed point method is used to discuss and prove the existence of at least one solution to the nonlinear
integro-differential equation.

Here, we’ll look at how to solve a nonlinear integro-differential equation of the following form using
a modified form of the Adomian decomposition method:

Ψ(t) = f(t) + λ

∫ 1

0
k(t, τ)ϑ(τ,Ψ′(τ))dτ+ λ

∫t
0
ξ(t, τ)υ(τ,Ψ′(τ))dτ, (1.1)

Ψ(t) is an unknown function in Banach space and continuous with their derivative with respect to t
in the space C1([0, 1]), where [0, 1] is the domain of integration with respect to the t and it’s called the
potential function of the mixed integral equation. The constant parameter λ may be complex and has
many physical meanings, the known function f(t) is continuous, its derivatives with respect to t, and the
kernels k(t, τ), ξ(t, τ) are positive and continuous in C1([0, 1]).

By differentiating equation (1.1) with respect to t we can now create an integral equation that is
equivalent to the integro-differential equation (1.1), giving us

Ψ′(t) = f′(t) + λξ(t) + λ

∫ 1

0
k′(t, τ)ϑ(τ,Ψ′(τ))dτ+ λ

∫t
0
ξ′(t, τ)υ(τ,Ψ′(τ))dτ.

Let’s assume
Φ(t) = Ψ′(t), g(t) = f′(t) + λξ(t).

Then the last integral equation becomes

Φ(t) = g(t) + λ

∫ 1

0
k′(t, τ)ϑ(τ,Φ(τ))dτ+ λ

∫t
0
ξ′(t, τ)υ(τ,Φ(τ))dτ. (1.2)

The equation (1.2) is called nonlinear integro-differential equation. A type of functional equation
known as an integro-differential equation has associated derivatives and integral of an unknown function.
These equations bear the names of the top mathematicians who first researched them, including Volterra
and Fredholm. The two types of equations that are most frequently encountered are Fredholm and
Volterra equations, see [15]. There is, formally, they only differ in that the region of integration in the
Fredholm equation is constant whereas the region in the Volterra equation is variable. Equations that
combine differential and integral terms are known as integral-differential equations.

The organization of this work is as follows. In the following section, we provide the preliminary and
auxiliary results about the fixed point theorems. Section 3 discusses the existence of at least one integral
equation solution (1.2) by using Tychonoff fixed point theorem. In Section 4, we give some definitions
and properties of the Adomian polynomials. In Section 5, we describe the method for approximating
solution of nonlinear integro-differential equation, in Section 6, examples are provided to illustrate how
our findings can be applied. Finally, final remarks are deduced.

2. Preliminaries of analytical

Following are some definitions and fixed-point theorems that are utilised in the study and on which
the existence results in this section will be based.



M. A. Abdel-Aty, M. E. Nasr, J. Math. Computer Sci., 32 (2024), 188–200 190

Definition 2.1 (Convex set [23]). A set B ⊂ M is said to be a convex set if ∀β ∈ [0, 1] and ∀φ,ψ ∈
B, βφ+ (1 −β)ψ ∈ B.

Theorem 2.2 (Banach’s Fixed Point Theorem [10]). If M is a Banach space and T : M → M is a contraction
mapping, then T has a unique fixed point in M.

Theorem 2.3 (Tychonoff’s Fixed Point Theorem [12]). Let M be a locally convex linear space, a (???) complete,
and Br is a closed convex subset of M. Suppose that T : Br → Br be continuous and T(M) ⊂M. If the closure of
T(M) is compact, then T has a fixed-point in M.

Theorem 2.4 (Arzelà-Ascoli Theorem [22]). Assume M be a compact metric space and C1(M) is the Banach
space of real valued continuous functions normed by

‖Φ‖ = max
a6t6b

|Φ(t)|+ max
a6t6b

|Φ′(t)|.

If G = {gn} is a sequence in C1(M), that is, equi-continuous and uniformly bounded, then the closure of G is
compact.

3. Existence of a solution of a nonlinear integral equation (1.2)

Here, we discuss the existence of at least one solution of Eq (1.2). Integral equation (1.2) can be
expressed in the integral operator form as

(WΦ)(t) = g(t) + λ

∫ 1

0
k′(t, τ)ϑ(τ,Φ(τ))dτ+ λ

∫t
0
ξ′(t, τ)υ(τ,Φ(τ))dτ.

We make the following assumptions in order to discuss whether there is at least one solution of equation
(1.2).

(i) g : I→ R is a continuous function on I.
(ii) k′ : I× I→ R is continuous, such that |k′(t, τ)| < k1, k1 is a positive constant.

(iii) ξ′ : I× I→ R is continuous, so that |ξ′(t, τ)| < k2, k2 is a positive constant.
(iv) The function ϑ : I× R → R satisfies Lipschitz condition with Lipschitz constant m1, and there exists

a nondecreasing function m2 : R→ R in which |ϑ(τ,Φ(τ))| 6 m2(|Φ|).
(v) The function υ : I× R→ R satisfies Lipschitz condition with Lipschitz constant l1, and there exists a

function l2 : R→ R : |υ(τ,Φ(τ))| 6 l2(|Φ|).
(vi) The inequality

‖g‖+ λk[m2(r) + l2(r)] 6 r; (k = max{k1,k2}) .

We can now state the fundamental existence theorem.

Theorem 3.1. Under the conditions (i)-(vi), Eq. (1.2) has at least one solution Φ = Φ(t), which belongs to the
space C1([0, 1]) and is nondecreasing and nonnegative on the interval [0, 1].

Proof. Here Br represent the subset of the space C1([0, 1]) as defined:

Br = {Φ ∈ C1([0, 1]) : |Φ(t)| 6 r for t ∈ [0, 1]}.

It has been demonstrated in [12] that the space C1([0, 1]) is a complete locally convex linear space, it’s
obvious that the set Br is bounded, closed, and nonempty, but we shall demonstrate that the Br set is
convex. Assume Φ1, Φ2 ∈ Br and β ∈ [0, 1], then we have

‖βΦ1 + (1 −β)Φ2‖ 6 β‖Φ1‖+ (1 −β)‖Φ2‖ 6 βr+ (1 −β)r 6 βr+ r−βr = r.
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Then βΦ1 + (1 − β)Φ2 ∈ Br, from the previous, we get that this is a convex set. Consider the following
definition of the operator W in the space C1([0, 1]):

(WΦ)(t) = g(t) + λ

∫ 1

0
k′(t, τ)ϑ(τ,Φ(τ))dτ+ λ

∫t
0
ξ′(t, τ)υ(τ,Φ(τ))dτ.

To show this, the space Br is transformed into itself by the operator W. Let’s Φ ∈ Br for that, then

|(WΦ)(t)| 6

∣∣∣∣∣g(t) + λ
∫ 1

0
k′(t, τ)ϑ(τ,Φ(τ))dτ

∣∣∣∣∣+
∣∣∣∣λ ∫t

0
ξ′(t, τ)υ(τ,Φ(τ))dτ

∣∣∣∣ .
We obtain following by using the properties of the norm

|(WΦ)(t)| 6 ‖g(t)‖+ λ
∫ 1

0
|k′(t, τ)||ϑ(τ,Φ(τ))|dτ+ λ

∫t
0
|ξ′(t, τ)||υ(τ,Φ(τ))|dτ.

Using conditions (i)-(vi), we obtain

|(WΦ)(t)| 6 ‖g‖+ λk[m2(r) + l2(r)],6 r; (k = max{k1,k2}) .

According to the estimate presented above and condition (vi), then (WΦ)(t) ∈ Br implies WBr ⊂ Br.
Now, Assume that the fix arbitrarily δ > 0 and t1, t2 ∈ [0, 1] such that |t2 − t1| 6 δ, t2 > t1. Then,

taking into consideration in mind our hypotheses, we get

|(WΦ)(t2) − (WΦ)(t1)| 6|g(t2) − g(t1)|+ λ

∫ 1

0
|k′(t2, τ) − k′(t1, τ)||ϑ(τ,Φ(τ))dτ|

+ λ

∫t2

0
|ξ′(t2, τ) − ξ′(t1, τ)||υ(τ,Φ(τ))dτ|,

Using the conditions (i)-(vi) and the norm’s properties, we are able to

|(WΦ)(t2) − (WΦ)(t1)| 6 |g(t2) − g(t1)|+ λm2(|Φ|)|k′(t2, 1) − k′(t1, 1)|+ λl2(|Φ|)|ξ′(t2, 1) − ξ′(t1, 1)|t2.

As a result, considering our hypotheses and the previously mentioned facts, we determine the following
formula:

|(WΦ)(t2) − (WΦ)(t1)|→ 0 as |t2 − t1|→ 0.

The function WBr is therefore equi-continuous on [0, 1]. By using Theorem 2.4, we may infer that is WBr
compact. Now that all of the conditions of the Tychonoff fixed point theorem have been met, integral
equation (1.2) has at least one solution, which is Φ ∈ C1([0, 1]). This completes the proof.

Example 3.2. We will discuss the following example and appling Theorem 3.1, then check the results.
Consider the integral equation:

Ψ(t) = t− 0.001
(

1
3
+ t2

)
− 0.1

(
t2

2
+ t3

)
+ 0.001

∫ 1

0
(t2 + τ2)Ψ′

2
(τ)dτ+ 0.1

∫t
0
(t2 + τ)Ψ′

3
(τ)dτ, (3.1)

by differentiating equation (3.1) with respect to t, we get

Ψ′(t) = 1 − 0.002t− 0.001(t+ 3t2) + 0.001(t2 + t) + 0.1
∫ 1

0
(2t+ τ2)Ψ′

2
(τ)dτ+ 0.001

∫t
0
(2t+ τ)Ψ′

3
(τ)dτ.

Assume that
Φ(t) = Ψ′(t), g(t) = 1 − 0.002t− 0.001(t+ 3t2) + 0.001t(t+ 1).
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Then the last integral equation becomes

Φ(t) = g(t) + 0.001
∫ 1

0
(2t+ τ2)Φ2(τ)dτ+ 0.001

∫t
0
(2t+ τ)Φ3(τ)dτ. (3.2)

Comparing this example to equation (1.2) and conditions (i)-(vi), we have g(t) = 1 − 0.002t− 0.001(t+
3t2) + 0.001t(t+ 1), which is continuous on [0, 1] with norm ‖g(t)‖ = 0.985, the kernel k′(t, τ) = (2t+ τ2),
which is continuous with respect to t and τ. Also, we have |k′(t, τ)| =

∣∣2t+ τ2
∣∣ 6 3, (k1 = 3) and

ξ′(t, τ) = (2t+ τ), where |ξ′(t, τ)| = |2t+ τ| 6 3, (k2 = 3), the function ϑ(τ,Φ(τ)) = Φ2(τ), which satisfies
the condition (iv) with |ϑ(τ,Φ(τ))| = |Φ2(τ)| 6 |Φ(τ)|. Then, we obtain m2(r) = r and υ(τ,Φ(τ)) =
Φ3(τ), which satisfies the condition (v) with |υ(τ,Φ(τ))| = |Φ3(τ)| 6 |Φ(τ)|. Then, we obtain l2(r) = r.
Additionally, let’s consider inequality

0.985 + 0.006r 6 r. (3.3)

We can confirm that the function exists using conventional ways ρ(r) = (0.985 − 0.994r) attains its mini-
mum at the point r0 = 1 and ρ(r0) = (0.985 − 0.994(1)) 6 0. So, the number r0 is a positive solution of the
inequality (3.3) and therefore the Theorem 3.1 is true.

Theorem 3.1 and the previously mentioned facts lead us to the conclusion that Eq. (3.2) has at least
one solution Φ = Φ(t) nondecreasing, continuous, and defined in [0, 1].

4. Preliminaries of numerical

The definitions and properties of the Adomian polynomials are provided in this section. Consider the
general functional equation:

Φ = g+N1Φ+N2Φ, (4.1)

where N1,N2 are a nonlinear operators, g is a known function, and we are looking for a solution Φ that
satisfies (4.1). We suppose that equation (4.1) has only one solution for every g.

Φ =

∞∑
k=0

Φk, (4.2)

and decomposing N1 and N2, which represent the nonlinear operators

N1Φ =

∞∑
k=0

Yk, N2Φ =

∞∑
k=0

Zk, (4.3)

respectively, where Yk,Zk are polynomials (called Adomian polynomials) of {Φ0,Φ1, . . . ,Φk} [5, 7] given
by

Yk =
1
k!
dk

dλk

N1

 ∞∑
j=0

λjΦj


λ=0

, k = 0, 1, 2, . . . ; Zk =
1
k!
dk

dλk

N2

 ∞∑
j=0

λjΦj


λ=0

, k = 0, 1, 2, . . . .

The proofs of the convergence of the series
∑∞
k=0Φk,

∑∞
k=0 Yk and

∑∞
k=0 Zk are given in [1]. Using

equations (4.2) and (4.3) in (4.1), yields

∞∑
k=0

Φk = g+

∞∑
k=0

Yk +

∞∑
k=0

Zk.

Thus, the following can be obtained

Φ0 = g, Φk+1 = Yk(Φ0,Φ1, . . . ,Φk) +Zk(Φ0,Φ1, . . . ,Φk); k = 0, 1, 2, . . . .
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As a result, once Yk,Zk are known, all of the components of φ may be determined. We then identify the
n-terms approximate to the solution Φ by

Ψk[Φ] =

k∑
j=0

Φj, with lim
k→∞Ψk[Φ] = Φ.

5. Description of the method

Both the Adomian decomposition method and the Adomian polynomials may be utilized to tackle
(1.2) in addition to dealing with nonlinear terms ϑ(τ,Φ(τ)),υ(τ,Φ(τ)). First, we express the linear term
Φ(t) at the left side by an infinite series of components provided by

Φ(t) =

∞∑
k=0

Φk(t), (5.1)

where the components Φk;k > 0 will be calculated recursively, whereas, an infinite series of the Adomian
polynomials Yk,Zk will be used to represent the nonlinear variables ϑ(τ,Φ(τ)),υ(τ,Φ(τ)), respectively, at
the right side of Equation (1.2),

ϑ(τ,Φ(τ)) =

∞∑
k=0

Yk(τ), υ(τ,Φ(τ)) =

∞∑
k=0

Zk(τ), (5.2)

where Yk,Zk,k > 0 are defined by

Yk =
1
k!
dk

dλk

ϑ
 ∞∑
j=0

λjφj


λ=0

, k = 0, 1, 2, . . . ; Zk =
1
k!
dk

dλk

υ
 ∞∑
j=0

λjφj


λ=0

, k = 0, 1, 2, . . . ,

where the so-called Adomian polynomials Yk,Zk can be assessed for all forms of nonlinearity. In other
words, let the nonlinear function is ϑ(τ,Φ(τ)),υ(τ,Φ(τ)), hence the Adomian polynomials are given by

Y0 = ϑ(Φ0), Z0 = υ(Φ0),
Y1 = Φ1ϑ

′(Φ0), Z1 = Φ1υ
′(Φ0),

Y2 = Φ2ϑ
′(Φ0) +

1
2
Φ2

1ϑ
′′(Φ0), Z2 = Φ2υ

′(Φ0) +
1
2
Φ2

1υ
′′(Φ0).

Substituting (5.1) and (5.2) into (1.2), we will get

∞∑
k=0

Φk(t) = g(t) +

∫ 1

0
k′(t, τ)

∞∑
k=0

Yk(τ)dτ+

∫t
0
ξ′(t, τ)

∞∑
k=0

Zk(τ)dτ.

The recursive relation is presented via the Adomian decomposition method,

Φ0(t) = g(t),

Φ1(t) =

∫ 1

0
k′(t, τ)Y0(τ)dτ+

∫t
0
ξ′(t, τ)Z0(τ)dτ,

Φ2(t) =

∫ 1

0
k′(t, τ)Y1(τ)dτ+

∫t
0
ξ′(t, τ)Z1(τ)dτ.

(5.3)

The recursive relation is often provided by

Φk+1(t) =

∫ 1

0
k′(t, τ)Yk(τ)dτ+

∫t
0
ξ′(t, τ)Zk(τ)dτ, k = 0, 1, 2, . . . . (5.4)



M. A. Abdel-Aty, M. E. Nasr, J. Math. Computer Sci., 32 (2024), 188–200 194

When the source term and the required initial conditions can both be functions g(t), the initial solution
is crucial, because choosing initial solution (5.3) results in noisy oscillation during the iteration process
every t, according to the modified decomposition method, the operate g(t) specified in (5.3) should be
divided into two parts:

g(t) = g1(t) + g2(t).

Instead of iteration procedure (5.3)-(5.4), we suggest the following modification

Φ0(t) = g1(t),

Φ1(t) = g2(t) +

∫ 1

0
k′(t, τ)Y0(τ)dτ+

∫t
0
ξ′(t, τ)Z0(τ)dτ,

...

Φk+1(t) =

∫ 1

0
k′(t, τ)Yk(τ)dτ+

∫t
0
ξ′(t, τ)Zk(τ)dτ; k = 0, 1, 2, . . . .

We then define the k-terms approximate to the solution Φ(t) by

Ψk[Φ(t)] =

k∑
j=0

Φj(t), with lim
k→∞Ψk[Φ(t)] = Φ(t).

The series solution that was found in this study converges to the exact solution.

5.1. A test of convergence

In fact, on every interval the inequality ‖Φj+1‖2 < β‖Φj‖2 is required to hold for j = 0, 1, . . . , k,
wherever 0 < β < 1 may be a constant and k is that the maximum order of the approximate used in the
computation. Of course, this is often only a necessary condition for convergence, as a result of it might
be necessary to compute ‖Φj‖2 for each j = 0, 1, . . . , k so as to conclude that the series is convergent.

6. Applications of Adomian decomposition method

In the following two examples, the Adomian decomposition approach for solving integro-differential
equations is demonstrated. The maximum error is established as: in order to demonstrate the high
precision of the results obtained by using the present method to solve our problem (1.1) in comparison to
the exact solution,

Rk = ‖ΦExact(t) −Ψk[Φ(t)]‖∞,

where k = 1, 2, . . . represents the number of iterations.

Example 6.1. Consider the nonlinear integro-differential equation:

Ψ(t) = 0.790274t2 − 0.0008t7 + 0.1
∫ 1

0
t2τeΨ

′(τ)dτ+ 0.1
∫t

0
t2τ2Ψ′

2
(τ)dτ, (6.1)

by differentiating equation (6.1) with respect to t, hence we get

Ψ′(t) = 1.58055t− 0.0056t6 + 0.1t4 + 0.2
∫ 1

0
tτeΨ

′(τ)dτ+ 0.2
∫t

0
tτ2Ψ′

2
(τ)dτ.

Assume that
Φ(t) = Ψ′(t), g(t) = 1.58055t− 0.0056t6 + 0.1t4.
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Then the last integral equation becomes

Φ(t) = g(t) + 0.2
∫ 1

0
tτeΦ(τ)dτ+ 0.2

∫t
0
tτ2Φ2(τ)dτ. (6.2)

The exact solution for this problem is

Ψ(t) = t2.

Applying ADM to equation (6.2), we obtain

Φ0(t) = g(t),
...

Φk+1(t) = 0.2
∫ 1

0
tτYk(τ)dτ+ 0.2

∫t
0
tτ2Zk(τ)dτ,

where Yk and Zk are Adomian polynomials of the nonlinear terms eΦ and Φ2, respectively and the
solution will be,

Φ(t) =

r∑
k=0

Φi(t).

Under some conditions, this series solution converges. The absolute error of the Repeated Trapezoidal
(RT) solution and the ADM solution are compared in Table 1. We can observe and determine the variations
that happen between the approximate solution and the exact solution for each of the two methods ADM
and RT for various values of r as well as for various values of 4τ.

Table 1: Absolute error of presented method.
t Error of Error of Error of Error of

ADM (r = 30) RT (4τ = 0.1) ADM (r = 20) RT (4τ = 0.01)
0 2.32154×10−40 1.32587×10−25 5.326146×10−36 6.20205×10−27

0.1 6.36521×10−40 3.25147×10−23 6.251485×10−36 4.36215×10−25

0.2 3.25416×10−38 2.02158×10−20 4.362147×10−35 6.21487×10−23

0.3 5.36258×10−35 8.32147×10−19 4.321586×10−31 4.32105×10−22

0.4 3.21548×10−33 5.65987×10−17 4.232514×10−29 4.36987×10−20

0.5 1.02589×10−27 1.36985×10−16 6.215475×10−26 6.32514×10−18

0.6 4.32154×10−25 1.36751×10−14 6.215478×10−22 9.32154×10−17

0.7 3.01478×10−21 9.32147×10−13 1.302584×10−20 1.36254×10−15

0.8 3.69852×10−17 7.36952×10−11 3.214587×10−15 4.32651×10−14

0.9 5.25874×10−15 4.36921×10−10 6.321548×10−14 8.32514×10−12

1 6.32145×10−14 1.36214×10−9 4.321587×10−13 6.32544×10−11

In Figures 1 and 3, we compared the exact and approximate solutions using the introduced numerical
approach ADM with various values of r. In Figures 2 and 4, we compared the approximate and exact
solutions using the presented numerical method (RT) with various values of 4τ.
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Figure 1: Approximate and exact solution of ADM for r =
30.

Figure 2: Approximate and exact solution of RT method for
4τ = 0.1.

Figure 3: Approximate and exact solution of ADM for r =
20.

Figure 4: Approximate and exact solution of RT method for
4τ = 0.01.

Example 6.2. Consider the following nonlinear integro-differential equation:

Ψ(t) = et − 0.0209726t− 0.00111111(1 − 3t+ e3t(−1 + 6t))

+ 0.01
∫ 1

0
tτΨ′

2
(τ)dτ+ 0.01

∫t
0
(t+ τ)Ψ′

3
(τ)dτ,

(6.3)

differentiating equation (6.3) with respect to t, we get

Ψ′(t) = −0.0209726 + et − 0.00111111(−3 + 6e3t + 3e3t(−1 + 6t)) + 0.02t

+ 0.01
∫ 1

0
τΨ′

2
(τ)dτ+ 0.01

∫t
0
(1 + τ)Ψ′

3
(τ)dτ.

Assume that

Φ(t) = Ψ′(t), g(t) = −0.0209726 + et − 0.00111111(−3 + 6e3t + 3e3t(−1 + 6t)) + 0.02t.
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Then the last integral equation becomes

Φ(t) = g(t) + 0.01
∫ 1

0
τΦ2(τ)dτ+ 0.01

∫t
0
(1 + τ)Φ3(τ)dτ. (6.4)

The exact solution for this problem is

Ψ(t) = et.

Applying ADM to equation (6.4), we obtain

Φ0(t) = g(t),
...

Φk+1(t) = 0.01
∫ 1

0
τYk(τ)dτ+ 0.01

∫t
0
(1 + τ)Zk(τ)dτ,

where Yk and Zk are Adomian polynomials of the nonlinear terms Φ2 and Φ3, respectively and the
solution will be,

Φ(t) =

r∑
k=0

Φi(t).

Under some conditions, this series solution converges. The absolute error of the repeated trapezoidal (RT)
solution and the ADM solution are compared in Table 2. We can observe and determine the variations
that happen between the approximate solution and the exact solution for each of the two methods ADM
and RT for various values of r as well as for various values of 4τ. In Figures 5 and 7, we compared the

Table 2: Absolute error of presented method.
t Error of Error of Error of Error of

ADM (r = 10) RT (4τ = 0.1) ADM (r = 5) RT (4τ = 0.01)
0 6.323154×10−30 7.365952×10−22 6.325415×10−26 5.365214×10−25

0.1 1.325548×10−28 4.365985×10−20 5.369854×10−25 5.32548×10−24

0.2 3.255487×10−25 5.325614×10−18 2.368545×10−22 1.36254×10−23

0.3 4.365952×10−24 6.025154×10−17 2.369854×10−20 4.36254×10−22

0.4 3.025587×10−22 4.365524×10−15 6.325456×10−19 5.36985×10−20

0.5 1.365985×10−19 5.325149×10−13 6.258745×10−17 1.36652×10−18

0.6 4.454536×10−17 6.352587×10−13 6.215588×10−16 4.36559×10−17

0.7 3.267534×10−16 6.328579×10−12 6.325417×10−14 1.36852×10−15

0.8 3.453455×10−15 8.325514×10−11 3.456287×10−13 4.36855×10−14

0.9 4.356524×10−14 6.320514×10−10 5.326552×10−13 6.32548×10−12

1 7.251587×10−12 4.369585×10−9 5.265569×10−11 3.25564×10−11

exact and approximate solutions using the introduced numerical approach ADM with various values of
r. In Figures 6 and 8, we compared the approximate and exact solution using the presented numerical
method (RT) with various values of 4τ.
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Figure 5: Approximate and exact solution of ADM for r =
10.

Figure 6: Approximate and exact solution of RT method for
4τ = 0.1.

Figure 7: Approximate and exact solution of ADM for r = 5. Figure 8: Approximate and exact solution of RT method for
4τ = 0.01.

7. Conclusions

The following can be deduced from this work’s results and discussion. The space C1([0, 1]) contains
at least one solution Ψ = Ψ(t) to the equation (1.1). The approximate solution to the nonlinear integro-
differential equation has been obtained using the decomposition technique. This approach is very effec-
tive at locating analytical and numerical solutions for a variety of nonlinear integro-differential equation
classes. It offers numerous realistic series of solutions that quickly converge on solutions for real physical
problems.

Both of numerical approaches ADM and RT have a positive relationship between t and error, therefore
t was increasing in the interval [0, 1], the error values of ADM and RT are also increasing. Through the
examples, it can be seen that the approach ADM is more accurate when r is too large and vice versa. The
repeated trapezoidal numerical results that were obtained from the illustrative examples leads us to the
conclusion that for sufficiently small 4τ, we acquire good accuracy.
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