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Abstract
In this paper, the Gröbner basis over RF-matrices of Arf numerical semigroups are presented. The Arf properties ideals for

the RF-matrices obtained by RF-Relations are provided and the aforementioned concepts are associated through the Gröbner
basis of the Arf numerical semigroup. Moreover, we prove that if we have a minimal presentation (or a Gröbner basis of
the ideal associated to the semigroup), then this will be a system of generators of the subgroup of Zp with the equation
n1x1 +n2x2 + · · ·+npxp = 0, where {n1,n2, . . . ,np} are the generators of numerical semigroup G.
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1. Introduction

Frobenius and Sylvester first discussed the historical development of numerical semigroups in the
19th century. They termed this problem the ‘’Frobenius coin problem” and ‘’Frobenius linear diophant
equation.” Initially, they questioned what was the largest amount of money that cannot be obtained using
coins that possess no common divisor?”. In brief, “a and b are natural numbers, p and q are greater than
1 and prime between them; what is the largest integer that cannot be expressed as a linear combination
ap+ bq?” This number is represented by F (G)[20].

The Frobrenius problem was identified by Brauer [6], with many researchers and scientists examin-
ing the topic between 1958 and 1978 [10]. Numerical semigroups started to receive increasing research
attention during the late 20th century, primarily because of their use in algebraic geometry. Research into
numerical semigroups serves to identify non-negative solutions of non-homogeneous linear equations
with positive integer coefficients. Therefore, in the relevant literature, numerical semigroups have been a
persistent and classic problem.

When Du Val [15] presented his research on the Jacobian algorithm and the multiplicity sequence of
an algebraic branchat at Istanbul University, he questioned whether his geometric approach contained
an algebraic expression. The characters that Patrick Du Val mentioned in his speech can be written
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algebraically, according to Cahit Arf, who was in attendance at the time. Moreover, he demonstrated
how to algebraically type and calculate the characters seven days after the lecture. These characters were
eventually referred to be Arf Characters of a Curve after the results were published in [6]. Arf’s plan was
to determine the Arf ring closure of the curve ring’s coordinate and its ARF semigroup. Lipman made
reference to this in his work at [12]. The Arf characters form the minimal generators in this semigroup.

A maximal embedding dimension exists for Arf numerical semigroups [19]. The smallest element
in the generator and the total number of elements in the generator must both be identical for there to
be a maximal embedding size. We may determine the multiplicity of the numerical semigroup from
the smallest element in the generator. Moreover, famous mathematician Karakaº identified various Arf
numerical semigroups in his work [14].

In this work, the low multiplicity of Arf numerical semigroups and RF-matrices have been presented.
Subsequently, the Gröbner basis and minimal presentaitons were discussed.

2. Preliminaries

Most of the definitions are found in [1], [8], [10], [11], and [18].

Definition 2.1. Let N be the set of natural numbers and G ⊆ N . If G is closed under the addition in N

and 0 ∈ G and N\G is finite, then G is called a numerical semigroup. For all n1,n2, . . . ,np ∈ G,

G = 〈n1,n2, . . . ,np〉 =

{
p∑
i=1

aini : ai ∈N

}
,

and (n1,n2, . . . ,np) = 1⇔N\G isfinite.

Definition 2.2. The N \G is the gaps set of the numerical semigroup and denoted by H (G). The number
of elements of the set H (G) tells us the genus of the numerical semigroup G and is represented by h (G) .

Definition 2.3. Let be B ⊂ G. For every g ∈ G, if g is expressed as a linear combination of the elements
of the set B = {b1,b2, . . . ,bn}, then B is called the set of generators of G and is denoted by G = 〈B〉 . If G
cannot be generated by any proper subset of B, then B is called a minimal generator system.

Definition 2.4. The number of elements of the minimal generator system mentioned in Definition 2.3 is
referred to as embedding dimension of the G numerical semigroup and is denoted by e (G) .

Definition 2.5. The smallest element of the generator set of the numerical semigroup G is called the
multiplicity of G and is expressed by m (G).

Definition 2.6. If m (G) = e (G) , then G is called the semigroup with maximal embedding dimension.

Definition 2.7. The largest element of the gaps set of the numerical semigroup is called the frobenius
number.

Definition 2.8. The smallest integer x given as x + n ∈ G and n ∈ N for the numerical semigroup is
referred to as conductor of G and is expressed by I (G),

I (G) = F (G) + 1.

Definition 2.9. Let x be an integer such that x∈G. If g∈G� {0} and x+ g ∈ G, then x is called a pseudo-
Frobenius number of G. The set of all pseudo-Frobenius numbers of the numerical semigroup is denoted
by PF (G).

Example 2.10. Let G = {0, 4, 7, 8, 9, 11,→}.

1. 0∈G.
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2. G is closed under the addition operation, that is t,k∈G⇒ t+ k∈G.
3. N\G = {1, 2, 3, 5, 6, 10} is finite so G is a numerical semigroup.
4. Gaps set and genus: H (G) = {1, 2, 3, 5, 6, 10} and h(G) = 6.
5. Minimal generator set and embedding dimension: G = 〈4, 7, 9〉 and e (G) = 3.
6. Multiplicity: m (G) = 4.
7. Since m (G) 6= e (G) , it is not a maximal embedding dimension.
8. Frobenius number: F (G) = 10.
9. Conductor: I (G) = 11.

10. Pseudo-Frobenius number and type: PF (G) = {5, 10} and t (G) = 2.

Definition 2.11. [8] Let G be a numerical semigroup. If the numerical semigroup G satisfies the property
below,

∀m, n, t ∈ G : m > n > t =⇒ m+ n− t ∈ G,

then G is called Arf numerical semigroup.

The Arf property on G is equivalent to the following lemma.

Lemma 2.12. [14] Let G be a numerical semigroup, then

∀m, n ∈ G : m > n =⇒ 2m− n ∈ G.

Proof. See [4].

Combining Lemma 2.12 and Definition 2.11 results in that G is an Arf numerical semigroup if and
only if 2x− y ∈ G and ∀x,y ∈ G with I > x > y.

Example 2.13. Let G = 〈3, 10, 11〉 = {0, 3, 6, 9,→}.

m = 3, n = 3 =⇒ 2.3 − 3 = 3 ∈ G, m = 6, n = 3 =⇒ 2.6 − 3 = 9 ∈ G,
m = 6, n = 6 =⇒ 2.6 − 6 = 6 ∈ G, m = 9, n = 3 =⇒ 2.9 − 3 = 15 ∈ G,
m = 9, n = 6 =⇒ 2.9 − 6 = 12 ∈ G, m = 9, n = 9 =⇒ 2.9 − 9 = 9 ∈ G.

If m > 9, 2m− n ∈ G will always be m− n > 8. In this case, G is an Arf numerical semigroup.

Proposition 2.14. [9] The embedding dimension of all Arf numerical semigroups is equal to the multiplicity.

The above assertion means Arf numerical semigroups are maximal embedding dimensional. Note that
all maximal embedding dimensional numerical semigroups are Arf numerical semigroups.

Example 2.15. Let G = 〈3, 4, 8〉 = {0, 3, 4, 7, 8, 9, 10→}, since m (G) = e (G) = 3, it has a maximal embed-
ding dimension but not Arf numerical semigroup.

m = 3, n = 3 =⇒ 2.3 − 3 = 3 ∈ G, m = 4, n = 3 =⇒ 2.4 − 3 = 5 /∈ G.

Notice that G is not an Arf numerical semigroup because 5 is not an element of G.

3. RF-matrices of Arf numerical semigroups with low multiplicity

RF-matrices were first introduced by Moscariello in 2016. Ayşe Çalışkan in Master’s thesis determined
RF-matrices in 2020. The RF-matrices of Arf numerical semigroups with low multiplicity are found with
GAP program [7].
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Definition 3.1. Let f ∈ PF (G) . An e× e matrix A =
(
aij
)

is an RF-matrices of f, if aii = −1, aij ∈ N if
i 6= j, and for every i = 1, . . . , e,

e∑
j=1

aijnj = f.

Proposition 3.2. The size of the RF-matrices is determined by the number of elements in the minimal generator
system of the numerical semigroup.

Example 3.3. Let G = 〈4, 21, 22, 23〉 = {0, 4, 8, 12, 16, 20,→} . We determine the RF-matrices of the Arf
numerical semigroup G. In order to find the RF-matrices, we calculate the elements of the pseudo-
Frobenius set. In this case,

PF(G) = {k ∈ G|k+ g ∈ G},

gaps of G; H (G) = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19} and F (G) = 19 =⇒ PF (G) = {17, 18, 19} .
For f = 19 ∈ PF (G), 19 = a11.4 + a12.21 + a13.22 + a14.23 and for a11 = −1,

19 = −1.4 + a12.21 + a13.22 + a14.23,

the first row of the RF-matrices:
[
−1 0 0 1

]
.

If f = 19 ∈ PF (G), 19 = a21.4 + a22.21 + a23.22 + a24.23 and for a22 = −1,

19 = −1.4 + a22.21 + a23.22 + a24.23,

the second row of the RF-matrices:
[

10 −1 0 0
]
.

If f = 19 ∈ PF (G), we obtain 19 = a31.4 + a32.21 + a33.22 + a34.23 and for a33 = −1,

19 = a31.4 + a32.21 +−1.22 + a34.23,

the third row of the RF-matrices:
[

5 1 −1 0
]
.

If f = 19 ∈ PF (G), we acquire 19 = a41.4 + a42.21 + a43.22 + a44.23 and for a44 = −1,

19 = a41.4 + a42.21 + a43.22 +−1.23,

the fourth row of the RF-matrices:
[

0 2 0 −1
]

or
[

5 0 1 −1
]
.

The minimal generator set of the numerical semigroup G has 4 elements, so the RF-Matrix is a matrix
of type 4× 4:

RF (19) =


−1 0 0 1
10 −1 0 0
5 1 −1 0
0 2 0 −1

 , RF (19) =


−1 0 0 1
10 −1 0 0
5 1 −1 0
5 0 1 −2

 .

Remark 3.4. RF-matrices can be written for each element in the pseudo-Frobenius set. Notice that such
matrices are not usually unique.

Lemma 3.5. Let f, f ′ ∈ PF(G) and f+ f ′ /∈ G. Let RF(f) = A = (apq) and RF(f ′) = B = (bpq). In this case,
apq = 0 or bpq = 0 for each p 6= q. In particular, if RF(F(G)

2 ) = (apq), then apq = 0 or bpq = 0 for every
p 6= q.

Proof. See [2].
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4. RF-relations

Definition 4.1. The ideal IG is called the defining ideal of the ring F[G]. IG is a homogeneous ideal and
is generated by binomials.

Definition 4.2. For vector a = (a1, . . . ,an) ∈ Zn, if then ap > 0, ap = (0, . . . , 0,ap, 0, . . . , 0) and a− =
a+ − a so a = a+ − a−.

Lemma 4.3. Let α1,α2, · · · ,αn be the row vectors of RF(f)-matrices and take apq = ap − aq for ∀p,q1 6 p <

q 6 n. Then, φ = Xa
+
pq −Xa

−
pq ∈ IG for p < q.

Proof. See [2].

Remark 4.4. PF ′(G) = PF(G) − F(G).

Definition 4.5. Let G = 〈g1, . . . ,g2〉 be a numerical semigroup and f ∈ PF ′(G) be the binomial relation.
Then φ = Xa

+
pq − Xa

−
pq ∈ IG is called RF(f)-relation, where α1,α2, . . . ,αn are row vectors of RF(f) and

1 6 p < q 6.

Lemma 4.6. Assume that f ∈ PF ′(G) and p < q such that u, v monomials are xp/u and xq/v, ∀k, φ1,φ2, . . . ,φG
∈ IG and φk = u− v. In this case, IG is generated by RF-relations.

Proof. See [2].

Example 4.7. Let G = 〈3, 4, 5〉 = {0, 3,→}. We consider the ideals of the numerical semigroup G using the
RF-relations method. For RF-matrices PF (G) = {1, 2},

PF ′(G) = PF(G) − F(G) =⇒ PF ′(G) = {1}.

For f = 1 ∈ PF ′ (G), we get

RF (1) =

 −1 1 0
0 −1 1
2 0 −1

 .

Row vectors of the RF(1)-matrices are

a1 = (−1, 1, 0), a2 = (0,−1, 1), a3 = (2, 0,−1).

Take the difference of the first and second rows in the RF(1)-matrices

a12 = a1 − a2 = (−1, 2,−1),

a+12 = (0, 0, 2) and a−12 = (1, 0, 1) =⇒ xa
+
12 = x2

2 and xa
−
12 = x1x3. In this case, φ12 = x2

2 − x1x3 ∈ IG binomial
generator is obtained.

Similarly, we consider the binomial generators obtained by a13 and a23:

a13 = a1 − a3 = (−3, 1, 1),

a+13 = (0, 1, 1) and a−13 = (3, 0, 0) =⇒ xa
+
13 = x2x3 and xa

−
13 = x3

1, so

φ13 = x2x3 − x
3
1 ∈ IG, a23 = a2 − a3 = (−2,−1, 2),

a+23 = (0, 0, 2) and a−23 = (2, 1, 0) =⇒ xa
+
23 = x2

3 and xa
−
23 = x2

1x2, hence φ13 = x2
3 − x

2
1x2 ∈ IG binomial

generators are obtained. Thus, 3 minimal generator of the IG is IG = 〈x2
2 − x1x3, x2x3 − x

3
1, x2

3 − x
2
1x2〉.
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5. Arf numerical semigroup with low multiplicity

Definition 5.1. [14] Let G be an Arf numerical semigroup with multiplicity m. Then G is the minimal
generator set (Ap (G,m)� {0}∪ {m}).

Let d ∈ G be non-zero element. We define the Apery set of G with respect to d, denoted by Ap (G,d) ,
as follows

Ap (G,d) = {g ∈ G | g− d /∈ G} .

It is well known that
Ap (G,d) = {ω (0) = 0,ω (1) , . . . ,ω (d− 1)} ,

where ω (i) = min {g ∈ G | modd = i} for each i = {1, . . . ,d− 1}.
Let a ∈ Z. We say that a is a pseudo-Frobenius number of G if a /∈ G and a+ g ∈ G for all non-zero

element a ∈ G. The set of pseudo-Frobenius numbers of G is denoted by PF(G), and the cardinality of
PF(G) is called the type of G, denoted by t(G). For a,b ∈ Z, we say that a6Gw if b− a ∈ G, which
defines a partially ordered relation.

Definition 5.2. [9] Let G be a numerical semigroup and d 6= 0 be an element of G. Then

PF (G) = {b− d | b ∈Maximals6G(Ap (G,d))} .

Remark 5.3. Arf numerical semigroup G with multiplicity m (G) = m, the set (Ap (G,m)∪ {m})� {0} =
{m,ω (0) = 0,ω (1) , . . . ,ω (m− 1)} forms the minimal generating system for G. Moreover, if G is mini-
mally generated by {n1 < n2 < · · · < ne}, then

PF (G) = {n2 −n1,n3 −n1, . . . ,ne −n1} .

Arf numerical semigroup with multiplicity one: The Arf numerical semigroup with a multiplicity of
1 is just the set of natural numbers.

5.1. Arf numerical semigroups of multiplicity two

Proposition 5.4. [14] Any numerical semigroup with a multiplicity of 2 is also an Arf numerical semigroup. The
conductor I (G) = I and the Arf numerical semigroup with multiplicity two is expressed by G = 〈2, I+ 1〉.

Proposition 5.5. [13] G = 〈2, I+ 1〉 generated by with multiplicity 2 Arf numerical semigroup. The RF-matrices
that can be written with the pseudo-Frobenius set PF(G) = {I− 1} with I as conductor,

RF (I− 1) =
[
−1 1
I −1

]
.

Proof. We know that since the G Arf numerical semigroup is a doubled numerical semigroup, the con-
ductor I will be an even positive integer. The set Ap(G, 2) = {0, I+ 1}, is the Apery set of the numerical
semigroup G. By Remark 5.3, the pseudo-Frobenius set PF(G) = {I− 1} is obtained. Then we have the
following factorizations for I− 1,

I− 1 = −1.2 + a12. (I+ 1) , I− 1 = a21.2 − 1. (I+ 1) .

Using the definition of row-factorization matrices, rows a12 = 1 and a21 = I are obtained. Therefore
RF(I− 1) is found as desired.
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Example 5.6. We consider I = 6. In this case the Arf numerical semigroup G is obtained as follows.

G = 〈2, I+ 1〉 = 〈2, 7〉 = {0, 2, 4, 6,→}

and the pseudo-Frobenius set,
PF (G) = {I− 1} = {5} ,

f = 5 ∈ PF (G) we obtain RF-matrices as,

RF (I− 1) = RF (5) =
[
−1 1
I −1

]
=

[
−1 1
2 −1

]
.

Remark 5.7. Arf numerical semigroups with multiplicity equal to or greater than 3 cannot be written
explicitly by the conductor alone. For this, the genus is needed to determine Arf numerical semigroups.
Assuming the Arf property, the Arf numerical semigroup is completely set by the multiplicity and the
conductor.

5.2. Arf numerical semigroups of multiplicity three
Proposition 5.8. [14] Let I be an integer such that I > 3 and I 6≡ 1 (mod 3). Then the Arf numerical semigroup
G with a multiplicity 3 and a conductor I can be written as one of the following (I 6≡ 0 or 2 (mod 3)):

1. G = 〈3, I+ 1, I+ 2〉 if I ≡ 0 (mod3);
2. G = 〈3, I, I+ 2〉 if I ≡ 2 (mod3).

Proposition 5.9. [13] Let G = 〈3, I+ 1, I+ 2〉 be an Arf numerical semigroup with multiplicity 3 and conductor
I > 3. The RF-matrices that can be written with the pseudo-Frobenius set PF(G) = {I− 2, I− 1} are

RF (I− 2) =

 −1 1 0
I−3

3 −1 1
2I
3 0 −1

 and RF (I− 1) =

 −1 0 1
2I
3 −1 0
I
3 1 −1

 .

Proof. See [13].

Example 5.10. Let I = 9.

G = 〈3, I+ 1, I+ 2〉 = 〈3, 10, 11〉 , PF (G) = {I− 2, I− 1} = {7, 8} .

We obtain the RF-matrices by taking the elements of the pseudo-Frobenius set as

RF (I− 2) = RF (7) =

 −1 1 0
I−3

3 −1 1
2I
3 0 −1

 =

 −1 1 0
2 −1 1
6 0 −1

 ,

RF (I− 1) = RF (8) =

 −1 1 0
2I
3 −1 1
I
3 0 −1

 =

 −1 0 1
6 −1 0
3 1 −1

 .

Proposition 5.11. Let G = 〈3, I, I+ 2〉 be an Arf numerical semigroup with multiplicity 3 and conductor I > 3.
The RF-matrices that can be written with the pseudo-Frobenius set PF(G) = {I− 3, I− 1} are as follows:

RF (I− 3) =

 −1 1 0
I−5

3 −1 1
2I−1

3 0 −1

 and RF (I− 1) =

 −1 0 1
2I−1

3 −1 0
I+1

3 1 −1

 .

Proof. See [13].
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Example 5.12. Let G = 〈3, I, I+ 2〉 be an Arf numerical semigroup. Then I(G) = 14, PF(G) = {11, 13}, and

RF (I− 3) = RF (11) =

 −1 1 0
I−5

3 −1 1
2I−1

3 0 −1

 =

 −1 1 0
3 −1 1
9 0 −1

 ,

RF (I− 1) = RF (13) =

 −1 0 1
2I−1

3 −1 0
I+1

3 1 −1

 =

 −1 1 0
9 −1 1
5 0 −1

 .

5.3. Arf numerical semigroups of multiplicity four
Proposition 5.13. [14] The Arf numerical semigroup with conductor I and multiplicity 4 can be written as one of
the followin (I ≡ 0, 2 or 3 (mod4)):

1. G = 〈4, 4a+ 2, I+ 1, I+ 3〉, if I ≡ 0 (mod4) , for a ∈
{

1, . . . , I4
}

;
2. G = 〈4, 4a+ 2, I+ 1, I+ 3〉, if I ≡ 2 (mod4), for a ∈

{
1, . . . , I−2

4

}
;

3. G = 〈4, I, I+ 2, I+ 3〉, if I ≡ 3 (mod4).

Proposition 5.14. Let G = 〈4, 4a+ 2, I+ 1, I+ 3〉 be Arf numerical semigroup for some a ∈
{

1, . . . , I4
}

with
multiplicity 4 and conductor I > 4. The RF-matrices that can be written with the pseudo-Frobenius set, PF(G) =
{4a− 2, I− 3, I− 1}, are

RF (4a− 2) =


−1 1 0 0
2a −1 0 0
a− 1 0 −1 1
a 0 1 −1

 , RF (I− 3) =


−1 0 1 0
a− 1 −1 0 1

I
2 − a− 1 1 −1 0

I
2 0 0 −1

 ,

RF (I− 1) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0

I
2 − a 1 0 −1

 , or RF (I− 1) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0
0 1 0 −1

 .

Proof. See [13].

Example 5.15. Let I = 32 be the conductor of the Arf numerical semigroup G = 〈4, 4a+ 2, I+ 1, I+ 3〉 for
some a ∈

{
1, . . . , I4

}
. Then

PF(G) = {4a− 2, I− 3, I− 1} = {18, 29, 31},

RF (4a− 2) = RF (18) =


−1 1 0 0
2a −1 0 0
a− 1 0 −1 1
a 0 1 −1

 =


−1 1 0 0
10 −1 0 0
4 0 −1 1
5 0 1 −1

 ,

RF (I− 3) = RF (29) =


−1 0 1 0
a− 1 −1 0 1

I
2 − a− 1 1 −1 0

I
2 0 0 −1

 =


−1 0 1 0
4 −1 0 1
11 1 −1 0
16 0 0 −1

 ,

RF (I− 1) = RF (31) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0

I
2 − a 1 0 −1

 =


−1 0 0 1
4 −1 1 0
16 0 −1 0
12 1 0 −1

 , or

RF (I− 1) = RF (31) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0
0 1 0 −1

 =


−1 0 0 1
4 −1 1 0

16 0 −1 0
0 1 0 −1

 .
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Proposition 5.16. Let G = 〈4, 4a+ 2, I+ 1, I+ 3〉 be Arf numerical semigroup for some a ∈
{

1, . . . , I−2
4

}
with

multiplicity 4 and conductor I > 4. The RF-matrices the can be written with the pseudo-Frobenius set PF(G) =
{4a− 2, I− 3, I− 1} are

RF (4a− 2) =


−1 1 0 0
2a −1 0 0
a− 1 0 −1 1
a 0 1 −1

 , RF (I− 3) =


−1 0 1 0
a− 1 −1 0 1

I
2 − a− 1 1 −1 0

I
2 0 0 −1

 ,

RF (I− 1) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0

I
2 − a 1 0 −1

 , or RF (I− 1) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0
0 1 0 −1

 .

Proof. See [13].

Example 5.17. Let the Arf numerical semigroup G with multiplicity 4 and Frobenius number 21 (conduc-
tor 22) as

G = 〈4, 4a+ 2, I+ 1, I+ 3〉 〈4, 6, 23, 25〉 .

Then

PF (G) = {4a− 2, I− 3, I− 1} = {2, 19, 21} ,

RF (4a− 2) = RF (2) =


−1 1 0 0
2a −1 0 0
a− 1 0 −1 1
a 0 1 −1

 =


−1 1 0 0
2 −1 0 0
0 0 −1 1
1 0 1 −1

 ,

RF (I− 3) = RF (19) =


−1 0 1 0
a− 1 −1 0 1

I
2 − a− 1 1 −1 0

I
2 0 0 −1

 =


−1 0 1 0
0 −1 0 1
9 1 −1 0
11 0 0 −1

 ,

RF (I− 1) = RF (21) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0

I
2 − a 1 0 −1

 =


−1 0 0 1
1 −1 1 0
11 0 −1 0
10 1 0 −1

 , or

RF (I− 1) = RF (21) =


−1 0 0 1
a −1 1 0
I
2 0 −1 0
0 1 0 −1

 =


−1 0 0 1
1 −1 1 0

11 0 −1 0
0 1 0 −1

 .

Proposition 5.18. Let G = 〈4, I, I+ 2, I+ 3〉 be Arf numerical semigroup with multiplicity 4 and conductor I > 4.
The RF-matrices that can be written with the pseudo-Frobenius set, PF(G) = {I− 4, I− 2, I− 1}, and

RF (I− 4) =


−1 1 0 0
I−7

4 −1 0 1
I−1

2 0 −1 0
I−3

4 0 1 −1

 ,

RF (I− 2) =


−1 0 1 0
I−1

2 −1 0 0
I−3

4 0 −1 1
I+1

4 1 0 −1

 , or


−1 0 1 0
I−1

2 −1 0 0
0 2 −1 0
I+1

4 1 0 −1

 ,
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RF (I− 1) =


−1 0 0 1
I−3

4 −1 1 0
I+1

4 1 −1 0
0 1 1 −1

 , or


−1 0 0 1
I−3

4 −1 1 0
I+1

4 1 −1 0
I+1

2 0 0 −1

 .

Proof. See [13].

Example 5.19. Let G be the numerical semigroups 〈4, 19, 21, 22〉. Then G is an Arf numerical semigroup
as in Proposition 5.18 and I(G) = 19. Thus PF(G) = {15, 17, 18} and

RF (I− 4) =


−1 1 0 0
I−7

4 −1 0 1
I−1

2 0 −1 0
I−3

4 0 1 −1

 =


−1 1 0 0
3 −1 0 1
9 0 −1 0
4 0 1 −1

 ,

RF (I− 2) =


−1 0 1 0
I−1

2 −1 0 0
I−3

4 0 −1 1
I+1

4 1 0 −1

 =


−1 0 1 0
9 −1 0 0
4 0 −1 1
5 1 0 −1

 , or

RF (I− 2) =


−1 0 1 0
I−1

2 −1 0 0
0 2 −1 0
I+1

4 1 0 −1

 =


−1 0 1 0
9 −1 0 0
0 2 −1 0
5 1 0 −1

 ,

RF (I− 1) =


−1 0 0 1
I−3

4 −1 1 0
I+1

4 1 −1 0
0 1 1 −1

 =


−1 0 0 1
4 −1 1 0
5 1 −1 0
0 1 1 −1

 , or

RF (I− 1) =


−1 0 0 1
I−3

4 −1 1 0
I+1

4 1 −1 0
I+1

2 0 0 −1

 =


−1 0 0 1
4 −1 1 0
5 1 −1 0

10 0 0 −1

 .

6. Generators of Arf numerical semigroups with low multiplicity via Gröbner basis

Buchberger discovered the Gröbner basis in 1965 and then this concept has been of central importance
in related algorithmic commutative algebra and algebraic geometry. The aim of the Gröbner basis is to
find a generator set such that any polynomial in the ideal set gives a remainder of zero when divided by
the generator set.

Let F be a field and F [X1, . . . ,Xn] be the F-algebra of polynomials with a monomial order >. For
0 6= p ∈ F [X1, . . . ,Xn] , let Lm>(p),Lt>(p),Lc>(p) denote the leading monomial. Leading term and leading
constant of p, respectively. We simply write Lm>(p),Lt>(p),Lc>(p), when no confusion can occur. For
0 6= p , q ∈ F [X1, . . . ,Xn], the S-polynomial of p and q denoted by S(p, q), is the polynomial

S(p, q) :=
lcm(Lm(p),Lm(q))

Lt(p)
.p −

lcm(Lm(p),Lm(q))

Lt(q)
.q.

Given H = {h1, . . . ,ht} ⊆ F [X1, . . . ,Xn] and p ∈ F [X1, . . . ,Xn], we are saying p reduces to zero modulo H,
denoted by p−→H0, if p can be written as p =

∑t
i=1 aihi, such that Lm(p) > Lm(aihi), whenever aihi 6= 0,

Burchberger’s criterion says that, for an ideal I in F [X1, . . . ,Xn] and a generating set H = {h1, . . . ,ht} for I,
G is a Gröbner basis for I iff S(hi,hj)−→H0, for every i 6= j.

Like groups, we find gröbner basis with Buchberger’s theorem [5].
The following lemma is useful for finding S(p, q).
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Lemma 6.1. [20] Let H = {h1, . . . ,ht} ⊆ F [X1, . . . ,Xn] and let p, q ∈ H be non-zero with Lc (p) = Lc (q) = 1 and
gcd (Lm (p) ,Lm (q)) = 1. Then,

1. S(p, q) = Lm(q).p − Lm(p).q;
2. S(p, q) = −(q − Lm(q)).p + (p − Lm(p)).q−→H0.

Definition 6.2. Let ≺ be the lexicographic ordering F[x1, x2, x3] with x1> x2 > x3. Then x1
α0x2

β0x3
γ0 ≺

x1
α1x2

β1x3
γ1 if the left most nonzero component of (α1,β1,γ1) − (α0,β0,γ0) is positive.

Definition 6.3. Let G be a numerical semigroup minimally generated by {n1,n2, . . . ,np}. Then the monoid
morphism

ϕ : Np −→ G, ϕ(a1,a2, . . . ,np) =
p∑
i=1

aini,

known as the factorization homomorphism of G, is an epimorphism and consequently G is isomorphic
to Np/Kerϕ, where Kerϕ is the kernel congruence of

ϕ : Kerϕ = {(a,b) ∈Np ×Np|ϕ(a) = ϕ(b)}.

Given τ ⊂ Np ×Np, the congruence generated by τ, that is the intersection of all congruences con-
taining τ. The congruence generated by a set is precisely the reflexive, symmetric, transitive closure
(equivalence relation), to which we adjoin all pairs (a+ b,b+ c) whenever (a+ b) is in the closure; so
that the resulting relation becomes a congruence.

A presentation for G is a generating system of Kerϕ as a congruence, and a minimal presentation is a
presentation such that none of its proper subsets is a presentation.

Example 6.4. A minimal presentation for G = 〈2, 3〉 is {(3, 0), (0, 2)}. This means that G is the numerical
semigroup generated by 2 and 3.

Remark 6.5. If we have a minimal presentation (or a Gröbner basis of the ideal associated to the semigroup)
and take the difference between the relators (or the difference between the exponents in the Gröbner basis
of any generator of the ideal of the semigroup), then this will be a system of generators of the subgroup
of Zk with equation n1x1 + n2x2 + · · ·+ npxp = 0, where {n1,n2, . . . ,nk} are the generators of numerical
semigroup G. Thus, we can proceed as follows.

Example 6.6. gap> s:=NumericalSemigroup(4,6,23,25);;gap> mp:=MinimalPresentation(s);[ [ [ 0, 0, 0, 2 ],
[ 1, 0, 2, 0 ] ], [ [ 0, 0, 1, 1 ], [ 0, 8, 0, 0 ] ], [ [ 0, 0, 2, 0 ], [ 1, 7, 0, 0 ] ], [ [ 0, 1, 0, 1 ], [ 2, 0, 1, 0 ] ], [ [ 0, 1, 1,
0 ], [ 1, 0, 0, 1 ] ], [ [ 0, 2, 0, 0 ], [ 3, 0, 0, 0 ] ] ]gap> mpd:=List(mp,p->p[1]-p[2]);[ [ -1, 0, -2, 2 ], [ 0, -8, 1, 1
], [ -1, -7, 2, 0 ], [ -2, 1, -1, 1 ], [ -1, 1, 1, -1 ], [ -3, 2, 0, 0 ] ]gap> EquationsOfGroupGeneratedBy(mpd);[ [ [
4, 6, 23, 25 ] ], [ ], which is telling you that your semigroup is generated by {4, 6, 23, 25}. In addition,

G = 〈4, 6, 23, 25〉 = {0, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,→} .

We presented the Gröbner basis of the Arf numerical semigroup as follows:

PF (G) = {2, 19, 21} , PF ′(G) = PF(G) − F(G) =⇒ PF ′(G) = {2},

for RF-matrices f = 2 ∈ PF ′ (G),

RF (2) =


−1 1 0 0
2 −1 0 0
0 0 −1 1
1 0 1 −1

 .

Consider the ideal generator set calculated by the RF-relations

IG = 〈x2
2 − x

3
1, x2x3 − x1x4, x4 − x

2
1x2x3, x2

1x3 − x2x4, x2
4 − x1x

2
2〉
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and find Gröbner basis P. For the present example we used the ordinary lexicographic order x1> x2 >

x3 > x4. With this particular choice we get:

P = {−x3
1 + x

2
2,−x1x4 + x2x3,−x2

1x2x3 + x4, x2
1x3 − x2x4,−x1x

2
2 + x

2
4, x2

2x4 − x4, x3
2x3 − x2x3, x2

3x
2
4

− x2
4,−x1x2x

2
3 + x2x

2
4, x4

2 − x
2
2x

2
3,−x3

4 + x2x3,−x3x
4
4 + x2x4,−x2

3x4 + x4,−x3x
7
4 + x3x4,−x7

4 + x4}

and find reduced gröbner basis RP.

RP = {x7
4 − x4, x2

3x4 − x4,−x3x
4
4 + x2x4,−x3

4 + x2x3,−x6
4 + x

4
2, x3

4 + x1x4, x1x
2
2 − x

2
4,−x3x

4
4 + x

2
1x3, x3

1 − x
2
2}.

Example 6.7. Let G = 〈3, 11, 13〉 = {0, 3, 6, 9, 11,→} . Let us calculate the Gröbner basis of the Arf numerical
semigroup.

PF (G) = {8, 10} , PF ′ (G) = PF (G) − F (G) =⇒ PF ′(G) = {8},

for f = 8 ∈ PF ′ (G),

RF (8) =

 −1 0 1
7 −1 0
4 1 −1

 .

The ideal generator set calculated by the RF-relations is IG = 〈x2x3−x
8
1, x3−x

5
1x2, x3

1x3 − x
2
2〉 and find

Gröbner basis P. For the present example we used the ordinary lexicographic order x1> x2 > x3. With
this particular choice we get:

P = {−x8
1 + x2x3,−x5

1x2 + x3, x3
1x3 − x

2
2, x2

2x3 − x
2
2,−x2x

2
3 + x2x3, x2

1x
3
2 − x

2
3,

−x3
1x

2
2 + x

4
2, x3

3 − x
2
3, x5

2 − x1x
2
3, x7

2 − x1x
2
2,−x6

2 + x1x2x3, x13
2 − x2

3}

and reduced gröbner basis RP is

RP = {x3
3 − x

2
3, x2x

2
3 − x2x3, x2

2x3 − x
2
2, x13

2 − x2
3,−x5

2 + x1x
2
3,−x6

2 + x1x2x3,

−x7
2 + x1x

2
2, x3

1x3 − x
2
2, x5

1x2 − x3, x8
1 − x2x3}.

Moreover, we can proceed with GAP program as follows:
gap> s:=NumericalSemigroup(3,11,13);
<Numerical semigroup with 3 generators>
gap> mp:=MinimalPresentation(s);
[[[0, 0, 2], [5, 1, 0]], [[0, 1, 1], [ 8, 0, 0 ] ], [ [ 0, 2, 0 ], [ 3, 0, 1 ] ] ]
gap> mpd:=List(mp,p->p[1]-p[2]);
[[ -5, -1, 2], [ -8, 1, 1], [ -3, 2, -1]]
gap> EquationsOfGroupGeneratedBy(mpd);
[[[3, 11, 13]], []]
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[10] R. Fröberg, C. Gottlieb, R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63–83. 1
[11] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.12.2, (2022).
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