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Abstract

Highly active antiretroviral therapy (HAART) is a treatment that uses a combination of three or more drugs to treat human
immunodeficiency virus type 1 (HIV-1). On the other hand, immunological memory is an important characteristic of humoral
immunity. In this paper, we propose a mathematical model that takes into account immunological memory to describe the
dynamics of HIV-1 infection in the presence of such therapy. We first show that the developed model is mathematically and
biologically well posed. Furthermore, we discuss the existence of equilibrium points and their stability. Both effects of HAART
and memory on the dynamical behavior of our proposed model are rigorously investigated. In addition, numerical simulations
are presented to illustrate our analytical findings.
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1. Introduction

Human immunodeficiency virus type 1 (HIV-1) is a virus that infects immune cells, particularly CD4+

T lymphocytes, resulting in a suppression of the immune system and leaving the body vulnerable to
various infections and diseases. The last statistics of the World Health Organization (WHO) show that
38.4 million people living with HIV, where 650 000 people died from HIV-related causes and 1.5 million
people acquired HIV [33]. Therefore, the world now faces significant challenges and must commit to
provide effective prevention strategies and develop new treatments to control the HIV epidemic.

On the other hand, HIV-1 and human immunodeficiency virus type 2 (HIV-2) are two antigenic types
of viruses that have numerous similarities in terms of genetic organization, modes of transmission, repli-
cation pathways, and clinical consequences. However, they exhibit significant differences in their epi-
demiology and clinical outcomes. Epidemiologically, HIV-2 is predominantly restricted to West Africa,
while HIV-1 has achieved global dissemination, resulting in a less efficient transmission of HIV-2 between
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individuals compared to HIV-1. Clinically, the majority of individuals infected with HIV-2 demonstrates
long-term non-progression, whereas most individuals infected with HIV-1 experience disease progression
[24].

Highly active antiretroviral therapy (HAART) is a treatment strategy for HIV that uses a combination
of three or more antiretroviral drugs. These drugs include protease inhibitors (PI) which block the pro-
duction of viral protein precursors and prevent infected cells from producing virions, as well as reverse
transcriptase inhibitors (RTI) which block the activity of reverse transcriptase and stop cell-to-cell trans-
mission. The goal of HAART is to reduce the viral load in patients infected with HIV-1 to undetectable
levels, which can improve immune system function and prevent the development of HIV-related compli-
cations. The drugs used in HAART target different stages of the HIV life cycle, making it more difficult
for the virus to develop drug resistance. HAART has been shown to be highly effective in reducing the
risk of HIV-1 transmission to others, controlling HIV and improving the quality of life of people living
with HIV-1. In addition, several researches were interested to better understanding the dynamics of HIV-
1 [8, 10, 12, 20, 25–28, 32, 34]. For example, Wang and Zhou [32] studied the global dynamics of a host
model of HIV-1 infection incorporating long-term infected cells and four intracellular delays. Callaway
and Perelson [8] studied the interaction between the immune system and the virus during chronic HIV-1
infection. A mathematical model describing the interactions between the virus and the host population
with a focus on the impact of delay and diffusion on viral spread was investigated in [12]. Xu et al. [34]
explored a mathematical model capturing the interaction between intracellular infection and humoral
immunity, incorporating delays to account for lags in the immune response. Furthermore, Hlavacek et al.
[20] investigated the dynamics of HIV dissociation from follicular dendritic cells (FDCs) during HAART.

Humoral immunity is one of the two forms of adaptive immune response, the other being cellular im-
munity. It is directed by antibodies, also called immunoglobulins, which are generated by the B cells of the
immune system. Humoral immunity is characterized by two main features: specificity and immunological
memory. Specificity refers to the ability of antibodies to associate with specific antigens, such as bacteria
or viruses and to neutralize or eliminate them. Immunological memory refers to the ability of the immune
system to remember antigens to which it has been previously exposed and to rapidly produce specific an-
tibodies upon subsequent exposure to those same antigens. This characteristic allows humoral immunity
to provide long-lasting protection against infectious diseases such as HIV-1. In this context of adaptive
immunity, memory is a crucial characteristic which means that the immune system can remember the
antigens that previously activated it and launch a more intense immune reaction when encountering the
same antigen a second time. The classical integer derivative does not reflect this characteristic because it is
a local operator unlike the fractional derivative operator [5]. Moreover, fractional-order models are more
consistent with real phenomena than the integer-order models because the fractional derivatives enable
the description of the memory and hereditary properties inherent in various materials and processes [30].
As a result, mathematical modeling of HIV-1 infection using fractional differential equations (FDEs) has
attracted the attention of many researchers [7, 22, 29, 35]. In addition, in [21], a mathematical model pro-
posed to investigate the dynamics of HIV-1 infection in CD4+ T cells. A delayed-order fractional model
including uninfected T-cells, infected T-cells and free HIV viruses have been studied and investigated in
[23]. A fractional model for HIV was introduced and a generalized Euler homotopy analysis method was
used to approximate the response studied in [2]. In [11], a multi-step differential transform method has
been used to obtain an approximate response for the T-cell fractional system. In [3], a fractional model has
been proposed and a finite difference method was used to solve the proposed fractional model. Therefore,
fractional calculus offers new perspectives in understanding complex dynamics of biological systems that
exhibit memory effects. However, accurately describing such systems remains a significant challenge for
scientists. This challenge arises from the fact that classical fractional derivatives have singular kernels,
limiting their ability to adequately capture the nonlocal nature of real-world dynamics [6]. To address
this limitation and improve the characterization of nonlocal systems, novel fractional derivatives with
nonsingular kernels have been proposed and implemented for practical applications. Notably, Hattaf [13]
recently proposed a new definition of fractional derivative that generalizes fractional derivatives [1, 4, 9]
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with non-singular kernels for both Caputo and Riemann-Liouville types.
The aim of this study is to propose a mathematical model that describes the dynamics of HIV-1

infection under highly active antiretroviral therapy. The proposed model takes into account the general
incidence rate, the two classes of infected cells (long-lived infected cells and chronically infected cells) as
well as both characteristics of the humoral immune response. The immunological memory is modeled
using the new generalized Hattaf fractional (GHF) derivative [13]. Additionally, we utilize the numerical
method developed in [14] to approximate the solution of proposed model.

The remainder of this paper is divided as follows. In Section 2, we recall some interesting preliminaries
and formulas. The properties of the solutions and the existence conditions of the equilibrium points are
discussed in Section 3. The global stability of the equilibria is studied in Section 4, while Section 5
provides numerical simulations to demonstrate the analytical results. We conclude with Section 6, which
presents our conclusions.

2. Preliminary results

In this section, we remind some important definitions of the GHF derivative presented in the work
[13].

Definition 2.1 ([13]). Let α ∈ [0, 1), β,γ > 0, and f ∈ H1(a,b). The GHF derivative of order α in Caputo
sense of the function f(t) with respect to the weight function w(t) is defined as follows:

CD
α,β,γ
a,t,wf(t) =

N(α)

1 −α

1
w(t)

∫t
a

Eβ[−µα(t− τ)
γ]
d

dτ
(wf)(τ)dτ,

where w ∈ C1(a,b), w,w ′ > 0 on [a,b], N(α) is a normalization function such that N(0) = N(1) = 1,

µα =
α

1 −α
, and Eβ(t) =

+∞∑
k=0

tk

Γ(βk+ 1)
is the Mittag-Leffler function of parameter β.

Let us denote CDα,β,β
a,t,w by D

α,β
a,w. The generalized fractional integral associated to D

α,β
a,w is provided by

the following definition.

Definition 2.2 ([13]). The generalized fractional integral operator associated to D
α,β
a,w is defined by

Iα,β
a,wf(t) =

1 −α

N(α)
f(t) +

α

N(α)
RLIβa,wf(t),

where RLIβa,w is the standard weighted Riemann-Liouville fractional integral of order β given by

RLIβa,wf(t) =
1
Γ(β)

1
w(t)

∫t
a

(t− τ)β−1w(τ)f(τ)dx.

Theorem 2.3 ([15]). Let α ∈ [0, 1), β > 0 and f ∈ H1(a,b). Then we have the following properties:

Iα,β
a,w
(
Dα,β
a,wf

)
(t) = f(t) −

w(a)f(a)

w(t)
and Dα,β

a,w
(
Iα,β
a,wf

)
(t) = f(t) −

w(a)f(a)

w(t)
.

3. Model formulation and basic properties

3.1. Model formulation

In this section, we first propose a mathematical model for HIV-1 infection with GHF derivative, general
incidence rate and humoral immune response. The dynamics of this model is governed by the following
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nonlinear system of FDEs:

D
α,β
0,1 U = λ− d1U(t) − (1 − ε)f

(
U(t),V(t)

)
V(t),

D
α,β
0,1 I = (1 − ρ)(1 − ε)f

(
U(t),V(t)

)
V(t) − d2I(t),

D
α,β
0,1 C = ρ(1 − ε)f

(
U(t),V(t)

)
V(t) − d3C(t),

D
α,β
0,1 V = N1(1 − η1)d2I(t) +N2(1 − η2)d3C(t) − d4V(t) − bV(t)W(t),

D
α,β
0,1 W = aV(t)W(t) − d5W(t),

(3.1)

where U(t), I(t), C(t), V(t), and W(t) represent the concentrations of uninfected cells, long-lived infected
cells, chronically infected cells, free virus particles, and antibodies at time t, respectively. λ is the source
term for uninfected cells. ε is the efficacy of the therapy. d1,d2,d3,d4, and d5 are the death rates of
uninfected cells, long-infected cells, chronically infected cells, virus, and antibodies, respectively. The
fractions ρ and (1− ρ) are the probabilities that, an uninfected cell will become either chronically infected
or long-lived infected. N̄1 = N1(1 − η1) and N̄2 = N2(1 − η2), where N1 and N2 are the average numbers
of virions produced in the lifetime of long-lived and chronically infected cells, respectively, as well as η1
and η2 are the efficacy of the therapy. Finally, a is the rate at which antibodies develop in response to
free virus and b is the rate of neutralization of free HIV particles by antibodies. The flow diagram of the
model is shown in Figure 1.

Figure 1: The flowchart representing the dynamics of model (3.1).

In this study, we assume that the general incidence function f(U,V) is continuously differentiable in
the interior of R2

+ and satisfies the following assumptions:

(H1) f(0,V) = 0, for all and V > 0;
(H1) ∂f(U,V)

∂U > 0 for all U > 0 and V > 0;
(H1) ∂f(U,V)

∂V 6 0 for all U > 0 and V > 0.

From a biological point of view, all three assumptions are reasonable and consistent with reality. For
more details on the biological significance of these three assumptions, we refer the reader to the following
works [16, 31]. It is easy to check that a class of functions f(U,V) satisfying (H1)-(H3) includes some
common nonlinear incidence functions such as f(U,V) = kU

1+c1V
, f(U,V) = kU

1+c2U+c1V
, and f(U,V) =

kU
1+c2U+c1V+c3UV

for k, c1, c2, c3 > 0. For biological reasons, we assume that the initial conditions of model
(3.1) satisfy:

U(0) = φ1(0) > 0, I(0) = φ2(0) > 0, C(0) = φ3(0) > 0, V(0) = φ4(0) > 0, W(0) = φ5(0) > 0. (3.2)
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It is important to note that the model presented by system (3.1) includes several cases existing in the
literature. For instance, we obtain

• model of Callaway and Perelson [8] with chronically infected cells, when we ignore the role of
humoral immunity, η1 = η2 = 0, α = β = 1, and f(U,V) = kU;

• model without intracellular delay presented in [32], when the role of humoral immunity is negliged,
α = β = 1, and f(U,V) = kU.

3.2. Basic properties

As model (3.1) describes the population’s evolution, it is necessary to demonstrate that the solutions
remain non-negative and bounded for all time. These characteristics indicate the presence of global
solutions.

Theorem 3.1. For any initial conditions satisfying (3.2), system (3.1) has a unique solution on [0,∞). Moreover,
this solution remains non-negative and bounded for all t > 0.

Proof. First, system (3.1) can be written as follows:{
D
α,β
0,1 X(t) = F(X(t)),

X(0) = X0,
(3.3)

where X(t) =
(
U(t), I(t),C(t),V(t),W(t)

)T , X0 =
(
U(0), I(0),C(0),V(0),W(0)

)T , and

F
(
X(t)

)
=


λ− d1U(t) − (1 − ε)f

(
U(t),V(t)

)
V(t)

(1 − ε)(1 − ρ)f
(
U(t),V(t)

)
V(t) − d2I(t)

ρ(1 − ε)f
(
U(t),V(t)

)
V(t) − d3C(t)

N̄1d2I(t) + N̄2d3C(t) − d4V(t) − bV(t)W(t)
aV(t)W(t) − d5W(t)

 .

The conditions given in [17] are clearly satisfied by X(t), which implies the existence of a unique local
solution for the initial value problem (3.3).

However, and in accordance with (3.1), we have

D
α,β
0,1 U(t) |U=0 = λ > 0,

D
α,β
0,1 I(t) |I=0 = (1 − ρ)(1 − ε)f

(
U(t),V(t)

)
V(t) > 0,

D
α,β
0,1 C(t) |C=0 = ρ(1 − ε)f

(
U(t),V(t)

)
V(t) > 0,

D
α,β
0,1 V(t) |V=0 = N̄1d2I(t) + N̄2d3C(t) > 0,

D
α,β
0,1 W(t) |W=0 = 0 > 0.

Hence, U(t), I(t),C(t),V(t), and W(t) are nonnegative for all t > 0.
Next, we prove the boundedness of solutions. We consider the following function

T(t) =
−λ

δ1
+ S1(t),

where S1(t) = U(t) + I(t) + C(t) and δ1 = min{d1,d2,d3}. Taking the fractional-order derivative of T(t)
and from model (3.1), we have

D
α,β
0,1 T(t) = λ− d1U(t) − d1I(t) − d3C(t) 6 λ− δ1S1(t) = −δ1T(t).
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According to Corollary 1 in [18], we obtain

T(t) 6 T(0)Eβ

(
−αδ1t

β

N(α) + δ1(1 −α)

)
.

Then

S1(t) 6 S1(0)Eβ

(
−αδ1t

β

N(α) + δ1(1 −α)

)
+
λ

δ1

[
1 − Eβ

(
−αδ1t

β

N(α) + δ1(1 −α)

)]
.

Hence,

S1(t) 6 S1(0) +
λ

δ1
= κ1.

Consequently, we can conclude that U, I, and C are bounded. To show the boundness of V and W, we set

H(t) =
−κ2

δ2
+ S2(t),

where S2(t) = V(t) +
b

a
W(t), δ2 = min

{
d4,d5

}
, and κ2 =

max
(
N̄1d2 + N̄2d3

)
κ1

δ2
. It follows from model

(3.1) that

D
α,β
0,1 H(t) = N̄1d2I(t) + N̄2d3C(t) − d4V(t) −

bd5

a
W(t) 6 κ2 − δ2S2(t) = −δ2H(t).

Similarly to above, we have

H(t) 6 H(0)Eβ

(
−αδ1t

β

N(α) + δ1(1 −α)

)
.

Then

S2(t) 6 S2(0)Eβ

(
−αδ2t

β

N(α) + δ2(1 −α)

)
+
κ2

δ2

[
1 − Eβ

(
−αδ2t

β

N(α) + δ2(1 −α)

)]
.

Hence,
S2(t) 6 S2(0) +

κ2

δ2
.

Therefore, we conclude that V and W are bounded. This completes the proof.
In this section, we study the existence of equilibria in (3.1). It is clear that system (3.1) has one disease-

free equilibrium E0(U0, 0, 0, 0, 0), where U0 =
λ

d1
. Therefore, the basic reproduction number of the model

(3.1) is given by

R0 =

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

)
f
( λ
d1

, 0
)

d4
.

In the biological context, R0 represents the average number of secondary infections caused by a single
infected cell during the period of infection when all cells are initially uninfected. The remaining equilibria
of system (3.1) satisfy the following algebraic equations

λ− d1U− (1 − ε)f
(
U,V

)
V = 0,

(1 − ε)(1 − ρ)f
(
U,V

)
V − d2I = 0,

ρ(1 − ε)f
(
U,V

)
V − d3C = 0,

N̄1d2I+ N̄2d3C− d4V − bVW = 0,
aVW − d5W = 0.

(3.4)
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The last equation of (3.4) implies that either W = 0 or V =
d5

a
. Each of these scenarios will result in one of

the other equilibria. First, when W = 0 and from (3.4), we have I1 =
(1 − ρ)(λ− d1U1)

d2
, C1 =

ρ(λ− d1U1)

d3
,

V1 =
(λ− d1U1)

(
N̄1(1 − ρ) + ρN̄2

)
d4

, and f
(
U,

(λ− d1U)
(
N̄1(1 − ρ) + ρN̄2

)
d4

)
=

d4

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

) .

As a result of V > 0, we have U 6
λ

d1
. Now, we define a function G1 on the interval

[
0,
λ

d1

]
as follows

G1(U) = f

(
U,

(λ− d1U)
(
N̄1(1 − ρ) + ρN̄2

)
d4

)
−

d4

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

) .

Then, we have

G1(0) = −
d4

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

) < 0,

G1(
λ

d1
) =

d4

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

)(R0 − 1
)
,

G′1(U) =
∂f

∂U
−
d1

d4

(
N̄1(1 − ρ) + ρN̄2

) ∂f
∂V

> 0.

When R0 > 1, we deduce that system (3.4) admits a unique infection equilibrium without immunity

E1(U1, I1,C1,V1, 0), where U1 ∈
(
0,
λ

d1

)
, I1 =

(1 − ρ)(λ− d1U1)

d2
, C1 =

ρ(λ− d1U1)

d3
and

V1 =
(λ− d1U1)

(
N̄1(1 − ρ) + ρN̄2

)
d4

. For the case when W 6= 0, we find V =
d5

a
. Since W represents

the number of antibody immune cells, we need to have W > 0. So, W =
a(λ− d1U2)

(
N̄1(1 − ρ) + ρN̄2

)
bd4

−

d4d5

bd5
> 0. This condition leads to U 6

λ

d1
−

d4d5

ad1
(
N̄1(1 − ρ) + ρN̄2

) . Let us consider

G2(U) = f

(
U,
d5

a

)
−
a(λ− d1U)

d5(1 − ε)
.

Then, we have G2(0) = −
aλ

d5(1 − ε)
< 0 and G′2(U) =

∂f

∂U
+

ad1

d5(1 − ε)
> 0. In addition to the thresh-

old parameter R0, we define another threshold parameter called the reproduction number for humoral
immunity as follows

RW
1 =

aV1

d5
,

where
1
d5

is the average life span of antibodies and V1 is the quantity of viruses at the steady state E1.

Therefore, the number RW
1 biologically represents the average number of antibodies activated by viral

particles [19].

Note that when RW
1 > 1, then V1 >

d5

a
and U1 <

λ

d1
−

d4d5

ad1
(
N̄1(1 − ρ) + ρN̄2

) and we have

G2

(
λ

d1
−

d4d5

ad1
(
N̄1(1 − ρ) + ρN̄2

)) = f

(
λ

d1
−

d4d5

ad1
(
N̄1(1 − ρ) + ρN̄2

) ,
d5

a

)
−

d4

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

)
> f
(
U1,V1

)
−

d4

(1 − ε)
(
N̄1(1 − ρ) + ρN̄2

) = 0.
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Therefore, the model (3.1) admits a unique infection equilibrium with humoral immunity, E2(U2, I2,C2,V2,

W2), where U2 ∈
(

0,
λ

d1

d4d5

ad1
(
N̄1(1 − ρ) + ρN̄2

)), I2 =
(1 − ρ)(λ− d1U2)

d2
, C2 =

ρ(λ− d1U2)

d3
, and W2 =

a(λ− d1U2)
(
N̄1(1 − ρ) + ρN̄2

)
bd4

−
d4d5

bd5
.

Summarizing the above discussions, we get the following theorem.

Theorem 3.2.

(i) If R0 6 1, then the model (3.1) always has one disease-free equilibrium E0
(
U0, 0, 0, 0, 0

)
, where U0 =

λ

d1
.

(ii) If RW1 6 1 < R0, then the model (3.1) has an infection equilibrium without humoral immunity E1
(
U1, I1,

C1,V1, 0
)
, where U1 ∈

(
0,
λ

d1

)
, I1 =

(1 − ρ)(λ− d1U1)

d2
, C1 =

ρ(λ− d1U1)

d3
, and

V1 =
(λ− d1U1)

(
N̄1(1 − ρ) + ρN̄2

)
d4

.

(iii) If RW1 > 1, then the model (3.1) has an infection equilibrium with humoral immunity E2
(
U2, I2,C2,V2,W2

)
,

where U2 ∈
(

0,
λ

d1
−

d4d5

ad1
(
N̄1(1 − ρ) + ρN̄2

)), I2 =
(1 − ρ)(λ− d1U2)

d2
, C2 =

ρ(λ− d1U2)

d3
, V2 =

d5

a
,

and W2 =
a(λ− d1U2)

(
N̄1(1 − ρ) + ρN̄2

)
bd5

−
d4d5

bd5
.

4. Mathematical analysis

In this section, we study the global stability of the three equilibria of model (3.1) by constructing
suitable Lyapunov functions. We first investigate the global stability of the disease-free equilibrium.

Lemma 4.1. Let f be a continuous function and U be a continuously differentiable function. For any constants
U∗,V∗ > 0 and any function F defined by

F(t) =

∫U(t)

U∗
g(x)dx,

where g(x) = 1 −
f(U∗,V∗)
f(x,V∗)

, we have following inequality:

D
α,β
0,1 F(t) 6

(
1 −

f(U∗,V∗)
f(U(t),V∗)

)
D
α,β
0,1 U(t). (4.1)

Proof. It is not hard to see that g is an increasing function. By applying the first result of Theorem 1 in
[15] and using the definition of GHF derivative, we obtain the following inequality

D
α,β
0,1 F(t) 6 g

(
U
)
D
α,β
0,1 U(t) =

(
1 −

f(U∗,V∗)
f(U(t),V∗)

)
D
α,β
0,1 U(t).

This proves (4.1).

Theorem 4.2. The disease-free equilibrium E0 is globally stable for R0 6 1.
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Proof. To study the global stability of E0, we consider the following Lyapunov functional

L0
(
U, I,C,V ,W

)
=
(
N̄1(1 − ρ) + ρN̄2

)(
U−U0 −

∫U
U0

f (U0, 0)
f(s, 0)

ds

)
+ N̄1I+ N̄2C+ V +

b

a
W.

Applying Lemma 4.1 and Corollary 2 of [15], we get

D
α,β
0,1 L0 6

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

f (U0, 0)
f(U, 0)

)
D
α,β
0,1 U+ N̄1D

α,β
0,1 I+ N̄2D

α,β
0,1 C+Dα,β

0,1 V +
b

a
D
α,β
0,1 W,

then,

D
α,β
0,1 L0 6

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

f (U0, 0)
f(U, 0)

)(
d1U0 − d1U− (1 − ε)f

(
U,V

)
V
)

+ N̄1
[
(1 − ρ)(1 − ε)f

(
U,V

)
V − d2I

]
+ N̄2

(
ρ(1 − ε)f

(
U,V

)
V − d3C

)
+

(
N̄1d2Iτ3 + N̄2d3Cτ4 − d4V − bVW

)
+
b

a

(
aVW − d5W

)
6 d1U0

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

U

U0

)(
1 −

f
(
U0, 0

)
f(U, 0)

)
+ d4

(
f(U,V)
f(U0, 0)

R0 − 1
)
V −

b

a
d5W.

This leads to the following inequality

D
α,β
0,1 L0 6 d1U0

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

U

U0

)(
1 −

f (U0, 0)
f(U, 0)

)
+ d4 (R0 − 1)V .

Since the function f(U,V) is strictly monotonically increasing with respect to U, we have(
1 −

U

U0

)(
1 −

f(U0, 0)
f(U, 0)

)
6 0.

Hence, Dα,β
0,1 L0 6 0 if R0 6 1. As a result, the condition (ii) of Theorem 5 of [14] is satisfied. Therefore, the

disease-free equilibrium E0 of model (3.1) is globally stable whenever R0 6 1.
Now, we establish the global stability of the humoral immunity infection equilibrium E1. To do this,

we assume that R0 > 1 and the incidence function f satisfy the following hypothesis:

(H4) (
1 −

f(U,V)
f(U,Vi)

)(
f(U,Vi)
f(U,V)

−
V

Vi

)
6 0, for i = 1, 2.

It is not difficult to see that (H4) is satisfied for the Beddington-DeAngelis functional response, the
Crowley-Martin functional response, and the Hattaf-Yousfi functional response. In addition, (H4) is also
satisfied when f(U,V)V is monotonically increasing function with respect to V .

Theorem 4.3. Assume that (H4) holds for E1. If RW1 6 1 < R0, then the infection equilibrium without humoral
immunity E1 is globally asymptotically stable.

Proof. Constructing a Lyapunov functional L1 as follows:

L1
(
U, I,C,V ,W

)
=
(
N̄1(1 − ρ) + ρN̄2

)(
U−U1 −

∫U
U1

f
(
U1,V1

)
f(s,V1)

ds
)
+ N̄1I1Φ

(
I

I1

)
+ N̄2C1Φ

(
C

C1

)
+ V1Φ

(
V

V1

)
+
b

a
W,
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where Φ(x) = x− 1 − ln(x) for x > 0. Note that Φ(x) = 0 if and only if x = 1. Applying Lemma 4.1 and
Corollary 2 of [15], we get

D
α,β
0,1 L1 6

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

f
(
U1,V1

)
f (U,V1)

)
D
α,β
0,1 U+ N̄1

(
1 −

I1
I

)
D
α,β
0,1 I

+ N̄2

(
1 −

C1

C

)
D
α,β
0,1 C+

(
1 −

V1

V

)
D
α,β
0,1 V +

b

a
D
α,β
0,1 W.

At the equilibrum point E1, we have

(1 − ε)f
(
U1,V1

)
V1 = λ− d1U1, (1 − ε)(1 − ρ)f

(
U1,V1

)
V1 = d2I1,

ρ(1 − ε)f
(
U1,V1

)
V1 = d3C1, N̄1d2I+ N̄2d3C = d4V1.

Hence,

D
α,β
0,1 L1 =

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

f (U1,V1)

f(U,V1)

)(
d1U1 − d1U+ (1 − ε)f

(
U1,V1

)
V1 − (1 − ε)f

(
U,V

)
V

)
+ N̄1

(
1 −

I1
I

)(
(1 − ρ)(1 − ε)f

(
U,V

)
V − d2I

)
+ N̄2

(
1 −

C1

C

)(
ρ(1 − ε)f

(
U,V

)
V − d3C

)
+

(
1 −

V1

V

)(
N̄1d2I+ N̄2d3C− d4V − bVW

)
+
b

a

(
aVW − d5W

)
.

Then

D
α,β
0,1 L1 6 d1U1

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

U

U1

)(
1 −

f(U1,V1)

f(U,V1)

)
+
(
N̄1d2I1 + N̄2d3C1

)(
1 −

f(U,V)
f(U,V1)

)(
f(U,V1)

f(U,V)
−
V

V1

)
− N̄1d2I1

(
− 4 +

f(U1,V1)

f(U,V1)
+
f(U,V)VI1
f(U1,V1)V1I

+
f(U,V1)

f(U,V)
+
IV1

I1V

)
− N̄2d3C1

(
− 4 +

f(U1,V1)

f(U,V1)
+
f(U,V)VC1

f(U1,V1)V1C
+
f(U,V1)

f(U,V)
+
CV1

C1V

)
+
bd5

a

(
RW

1 − 1
)
W,

6 d1U1
(
N̄1(1 − ρ) + ρN̄2

)(
1 −

U

U1

)(
1 −

f(U1,V1)

f(U,V1)

)
+
(
N̄1d2I1 + N̄2d3C1

)(
1 −

f(U,V)
f(U,V1)

)(
f(U,V1)

f(U,V)
−
V

V1

)
− N̄1d2I1

(
Φ

(
f(U1,V1)

f(U,V1)

)
+Φ

(
f(U,V)VI1
f(U1,V1)V1I

)
+Φ

(
f(U,V1)

f(U,V)

)
+Φ

(
IV1

I1V

))
− N̄2d3C1

(
Φ

(
f(U1,V1)

f(U,V1)

)
+Φ

(
f(U,V)VC1

f(U1,V1)V1C

)
+Φ

(
f(U,V1)

f(U,V)

)
+Φ

(
CV1

C1V

))
+
bd5

a

(
RW

1 − 1
)
W.

Since the function f(U,V) is strictly monotonically increasing with respect to U, we have(
1 −

U

U1

)(
1 −

f(U1,V1)

f(U,V1)

)
6 0.

Hence, Dα,β
0,1 L1 6 0 if RW1 6 1. As a result, the condition (ii) of Theorem 5 of [14] is satisfied. Therefore,

the infection equilibrium without humoral immunity E1 of model (3.1) is globally stable whenever RW1 6
1.

Theorem 4.4. Assume that (H4) holds for E2. If RW1 > 1, then the infection equilibrium with humoral immunity
E2 is globally asymptotically stable.
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Proof. Construct a Lyapunov functional L2 as follows:

L2
(
U, I,C,V ,W

)
=
(
N̄1(1 − ρ) + ρN̄2

)(
U−U2 −

∫U
U2

f
(
U2,V2

)
f(s,V2)

ds
)
+ N̄1I2Φ

(
I

I2

)
+ N̄2C2Φ

(
C

C2

)
+ V2Φ

(
V

V2

)
+
b

a
W2Φ

(
W

W2

)
.

Applying Lemma 4.1 and Corollary 2 of [15], we get

D
α,β
0,1 L2 6

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

f
(
U2,V2

)
f (U,V2)

)
D
α,β
0,1 U+ N̄1

(
1 −

I2

I

)
D
α,β
0,1 I

+ N̄2

(
1 −

C2

C

)
D
α,β
0,1 C+

(
1 −

V2

V

)
D
α,β
0,1 V +

b

a

(
1 −

W2

W

)
D
α,β
0,1 W.

At the equilibrum point E2, we have

(1 − ε)f
(
U2,V2

)
V2 = λ− d1U2,

(1 − ε)(1 − ρ)f
(
U2,V2

)
V2 = d2I2,

ρ(1 − ε)f
(
U2,V2

)
V2 = d3C2,

N̄1d2I+ N̄2d3C = d4V2 + bV2W2,
aV2W2 = d5W2.

Hence,

D
α,β
0,1 L2 6 d1U2

(
N̄1(1 − ρ) + ρN̄2

)(
1 −

U

U2

)(
1 −

f(U2,V2)

f(U,V2)

)
+
(
N̄1d2I2 + N̄2d3C2

)(
1 −

f(U,V)
f(U,V2)

)(
f(U,V2)

f(U,V)
−
V

V2

)
− N̄1d2I2

(
− 3 +

f(U2,V2)

f(U,V2)
+
f(U,V)VI2
f(U,V2)V2I

+
IV2

I2V

)
− N̄2d3C2

(
− 3 +

f(U2,V2)

f(U,V2)
+
f(U,V)VC2

f(U,V2)V2C
+
CV2

C2V

)
.

We have (
3 −

f(U2,V2)

f(U,V2)
−
f(U,V)VI2
f(U2,V2)V2I

−
IV2

I2V

)
6 0,

and (
3 −

f(U2,V2)

f(U,V2)
−
f(U,V)VC2

f(U2,V2)V2C
−
CV2

C2V

)
6 0.

Since the function f(U,V) is strictly monotonically increasing with respect to U, we have(
1 −

U

U2

)(
1 −

f(U2,V2)

f(U,V2)

)
6 0,

and according to the hypothesis (H4), we have the following inequality:(
1 −

f(U,V)
f(U,V2)

)(
f(U,V2)

f(U,V)
−
V

V2

)
6 0.

Therefore, we have Dα,β
0,1 L2 6 0 if RW1 > 1. It follows from the condition (ii) of Theorem 5 of [14] that the

infection equilibrium E2 with humoral immunity is globally stable when RW1 > 1.
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5. Numerical analysis

In this section, we validate our theoretical results by numerical simulations.
Let tn = nh, where n ∈ N and h is the time step of discretization. Based on the method [14] that

includes the classical Euler numerical scheme, we obtain the following discrete model:

U(tn+1) = U(t0) +
1 −α

N(α)
f1
(
tn,U(tn)

)
+

αhβ

N(α)Γ(β+ 1)
A
β
n,1,

I(tn+1) = I(t0) +
1 −α

N(α)
f2
(
tn, I(tn)

)
+

αhβ

N(α)Γ(β+ 1)
A
β
n,2,

C(tn+1) = C(t0) +
1 −α

N(α)
f3
(
tn,C(tn)

)
+

αhβ

N(α)Γ(β+ 1)
A
β
n,3,

V(tn+1) = V(t0) +
1 −α

N(α)
f4
(
tn,V(tn)

)
+

αhβ

N(α)Γ(β+ 1)
A
β
n,4,

W(tn+1) =W(t0) +
1 −α

N(α)
f5
(
tn,W(tn)

)
+

αhβ

N(α)Γ(β+ 1)
A
β
n,5,

(5.1)

with A
β
n,j =

n∑
i=0

fj
(
ti,X(ti)

)(
(n− i+ 1)β − (n− i)β

)
, N(α) is the normalization function defined by:

N(α) = 1 −α+
α

Γ(α)
,

f(U,V) =
κ1U

1 + κ2V
, and

f1
(
tn,U(tn)

)
= λ− d1U(tn) − (1 − ε)

κ1U(tn)V(tn)

1 + κ2V(tn)
,

f2
(
tn, I(tn)

)
= (1 − ρ)(1 − ε)

κ1U(tn)V(tn)

1 + κ2V(tn)
− d2I(tn),

f3
(
tn,C(tn)

)
= ρ(1 − ε)

κ1U(tn)V(tn)

1 + κ2V(tn)
− d3C(tn),

f4
(
tn,V(tn)

)
= N1(1 − η1)d2I(tn) +N2(1 − η2)d3C(tn) − d4V(tn) − bV(tn)W(tn),

f5
(
tn,W(tn)

)
= aV(tn)W(tn) − d5W(tn).

For numerical simulations we choose the time interval [0, 500] with a step size h = 0.1. Also, we take
N1 = 10, N2 = 2.11, ρ = 0.195, ε = 0.5, b = 0.001, and β = 1.

First, system (3.1) cannot be solved analytically. Based on the numerical method [14], we approximate
the solution of (3.1). Therefore, we chose λ = 1000, κ1 = 8× 10−7, κ2 = 0.01, d2 = 0.95, d3 = 0.5, d4 = 0.4,
and d5 = 0.6. By computation we find that R0 = 0.8461. In this case, we remark that the solution of our
system converges to the disease-free equilibrium E0(105, 0, 0, 0, 0) which means that the HIV-1 is cleared
and the infection dies out and also indicates limited success of HAART used to treat HIV-1. Figure 2
illustrates this observation for different values of α.

Second, in the absence of humoral immunity, we take λ = 1000, κ1 = 8× 10−5, κ2 = 0.0001, d3 = 0.2,
d4 = 0.8, and d5 = 0.9. By computation, we have R0 = 4.2307 and R1 = 0.9. In this case, the solution of (3.1)
converges to the infection equilibrium without humoral immunity E1(2.3838× 104, 6.4666× 102, 7.43340×
102, 8.069× 102, 0). Figure 3 illustrates this observation for different values of α.

Finally, in the presence of humoral immunity, we select d2 = 0.3, d5 = 0.72, a = 0.002 and we keep
the same values of the other parameters as the second case. In this case we have RW1 = 4.2307 > 1.
Therefore, the solution of system (3.1) converges to the infection equilibrium with humoral immunity
E2(4.1718× 103, 1.5559× 102, 5.6529× 10, 3.601× 102, 5.626× 103), which means that HIV-1 persists and
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the infection becomes chronic. Additionally, HAART is no longer effective in preventing HIV replication,
leading to a condition known as drug resistance. Figure 4 illustrates this observation for different values
of α. Therefore, Figures 2,3, and 4 demonstrate that higher values of α lead to faster stabilization of the
curves, while the shape of the trajectories remains the same. Moreover, it is evident that decreasing the
order of β requires more time to achieve stability.
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Figure 2: Stability of the disease-free equilibrium E0 for different values of α.
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Figure 3: Stability of the infection equilibrium without humoral immunity E1 for different values of α.
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Figure 4: Stability of the infection equilibrium with humoral immunity E2 for different values of α.

6. Conclusions

In this paper, we have proposed and investigated a mathematical model governed by a nonlinear
system of FDEs with GHF derivative which describes the dynamics of HIV-1 infection with long-lived
infected cells under highly active antiretroviral therapy and humoral immunity. We have derived two
threshold parameters in order to fully characterize the dynamical behaviors of model. These parameters
are the basic reproduction number R0 and the reproduction numbers for humoral immunity RW1 . More
precisely, the disease-free equilibrium is globally stable if R0 6 1, which biologically means that the HIV-1
is cleared and the infection dies out. When R0 > 1, the disease-free equilibrium becomes unstable and two
infection steady states are appeared which are: (i) the infection equilibrium without humoral immunity
which is globally stable if RW1 6 1; and (ii) the infection equilibrium with humoral immunity which is
globally stable if RW1 > 1. Biologically, this implies that the HIV-1 persists and the infection becomes
chronic.

From the analytical and numerical results presented above, we can conclude that the order of the GHF
derivative does not affect the stability of the three equilibria. However, it may have an impact on the time
required to reach these equilibria. Specifically, increasing the order of the GHF derivative α leads to a
faster convergence of the solutions to the equilibrium points.
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