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Abstract

In the present article, we establish the numerical solution for the mixed Volterra- Fredholm integral equation (MV-FIE) in
(1+1) dimensional in the Banach space L2[−1, 1]×C[0, T ], T < 1. The Fredholm integral term is considered in the space L2[−1, 1]
and it has a discontinuous kernel in position. While the Volterra integral term is considered in the class of time C[0, T ], T < 1,
and has a continuous kernel in time. The necessary conditions have been established to ensure that there is a single solution
in the space L2[−1, 1]× C[0, T ], T < 1. By utilizing the separation of variables technique, MV-FIE is transformed to Fredholm
integral equation (FIE) of the second kind with variables coefficients in time. The separation technique of variables helps the
authors choose the appropriate time function to establish the conditions of convergence in solving the problem and obtaining
its solution. Then, using the Boubaker polynomials method, we end up with a linear algebraic system (LAS) abbreviated. The
Banach fixed point (BFP) hypothesis has been presented to determine the existence and uniqueness of the solution of the LAS.
The convergence of the solution and the stability of the error are discussed. The Maple 18 software is used to perform some
numerical calculations once some numerical experiments have been taken into consideration.

Keywords: Volterra-Fredholm integral equations, separation of variables, Boubaker polynomials, numerical solution, linear
algebraic system.
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1. Introduction

Many problems in mathematical physics (Hadjadj and Dussauge [19]), theory of elasticity (Abdou et
al. [6, 7] and Popov [35]), contact problems in two layers of elastic materials (Bugami [9]), generalized
potential theory (Alhazmi [11]), spectral relationships in laser theory (Gao et al. [18]), quantum mechanics
(Lienert and Tumulka [24]), and mixed problems in the idea of elasticity (Aleksandrovsk and Covalence
[10] and Georgiadis and Gourgiotis [40]) lead to one kind of integral equation. As a result, we have dis-
covered that integral equations (IEs) have tight ties to various subfields within many scientific disciplines.
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Because of the various difficulties and applications, numerous forms of study have been conducted to
establish multiple solutions for addressing IEs of several types and kernels.

Diego and Lima in [17], used collocation techniques to explain the numerical solution of weakly
singular integral equations. While, Mirzaee and Hoseini in [31], used collocation method for solving
V-FIEs with continuous kernels. Wang and Wang in [37], used Taylor polynomial technique for solving
MV-FIE of the second kind with continuous kernels. In [13], Baksheesh used Galerkin approximation
method to solve VIE of the first kind with convolution kernel. While, Brezinski and Zalglia in [14],
used extrapolation methods to get the numerical solution of nonlinear FIE with continuous kernel. The
spectral relationships of the orthogonal polynomials methods have played an important role for discussing
the solution of integral equations. In [1], Abdou et al. discussed the numerical solution of quadratic
IE according to Chebyshev polynomials. Matoog in [29], established an IE with generalized potential
kernel from an axisymmetric contact problem and discussed its solution, using orthogonal polynomials
method. In addition, Matoog in [28], discussed the solution of the nuclear integral equation in quantum
physics problem, using orthogonal polynomials methods. Nemati et al. in [33] discussed the numerical
solution of a class of two-dimensional nonlinear VIEs using the orthogonal polynomial approach in the
Legendre form. In [4], Abdou and Alharbi, used the spectral relationships methods to examine the
solution of FIE with singular kernel. In [20], Hafez and Youssri used spectral relationships in the form of
Legendre-Chebyshev to examine the numerical solution of nonlinear VIE with continuous kernel. Using
a computational approach for solving three dimensional MV-FIE is what Mahdy and his colleagues did
in their paper [26]. Mahdy et al. employed the Chelyshkov polynomials approach in [27] to solve the
nonlinear first-order integral problem in two dimensions with continuous kernels. Mohammad et al. [32]
used Euler wavelets for solving nonlinear Fredholm and VIE. Micula [30] presented Trapezoidal rule to
obtain the solution of two-dimensional Fredholm-Volterra integral equations. Providas [36] discussed
the analytical and numerical methods for solving FIE. In [34], Noeiaghdam and Micula used Lagrange-
collocation method for solving VIE with discontinuous kernel.

In several articles, Boubaker polynomials were employed, and this implementation in different physics
problems in science was Boubaker polynomials augmentation method for the resolution of nonlinear
high-order differential equations by Yücel and Boubaker in [39]. The Boubaker polynomial augmen-
tation approach and variable separation were utilized by Boubaker et al. in [15] to solve the Neutron
transport equation. Boubaker polynomial bases were used by Salih and Akkaya in [38] to solve linear
integro-differential difference equations. The Boubaker polynomials collocation approach for resolving
nonlinear VFIE of continuous kernel schemes is introduced by Davaeifar and Rashidinia in [16]. Kha-
jehnasiri and Ezzati [22] applied Boubaker polynomials and these implementation for resolution fractional
2-dimensional nonlinear partial integro-differential equation. The advantages of Boubaker polynomial
method that the CPU time used for solving examples are very small and this method more accurate than
other methods.

The integral operator’s form of MV-FIE will be taken into consideration in the remaining sections
of this study, particularly in Section 2. The integral operator is then shown to be bounded, continuous,
and a contraction operator using the fixed-point Banach theory. That is, there is one unique solution to
the mixed integral problem. In Section 3, the technique of separation is implemented to transform the
mixed integral equation to a FIE with variables coefficients in time, the stability of the algebraic system is
considered. In Section 4, Boubaker polynomials method, as a numerical procedure is utilized to transform
FIE to a linear algebraic system. The convergence of solution is discussed in Section 5. Section 6 is about
illustrations. Moreover, the FIE is computed numerically, when the kernel takes some forms of singularity
like logarithmic. Carleman function and Cauchy kernel are illustrated using maple 18. In addition, the
error, in each case is estimated.
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Consider the MV-FIE:

µu(x, t) − λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u(y, τ)dydτ

− λ2

∫ 1

−1
k(|x− y|)u(y, t)dy− λ3

∫t
0
ψ(t, τ)u(x, τ)dτ = f(x, t),

(1.1)

which ϕ(t, τ) and ψ(t, τ) have 2 kernels of continuous functions in time and belong to the class C[0, T ],
while the discontinuous function k(|x− y|) is the kernel of position and belongs to the space L2[−1, 1] in
set, the given function f(x, t) is the free term and belongs to the space L2[−1, 1]×C[0, T ], the invariable µ
determines the type of the IE, λi, i = 1, 2, 3 are numerical parameters and u(x, t) is the unknown function.
The behaviors of the unknown function u(x, t), in the space L2[−1, 1]×C[0, T ] is the same behaviors of the
free function.

2. Existence of a unique solution of MV-FIE

Equation (1.1) allows for the derivation of numerous particular instances, such as

(a) If, in Equation (1.1), ϕ(t, τ) = 0, the next integral equation is available

µu(x, t) − λ2

∫ 1

−1
k(|x− y|)u(y, t)dy− λ3

∫t
0
ψ(t, τ)u(x, τ)dτ = f(x, t). (2.1)

The second kind of F-VIE is represented by the aforementioned formula, and various approaches to
solving it are addressed in the area L2[−1, 1]×C[0, T ], T < 1, (Abdou [2, 3]).

(b) If in Equation (1.1), ψ(t, τ) = 0, we have

µu(x, t) − λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u(y, τ)dydτ− λ2

∫ 1

−1
k(|x− y|)u(y, t)dy = f(x, t). (2.2)

The formula (2.2) represents V-FIE of the second kind in the space L2[−1, 1]×C[0, T ], T < 1. The numerical
solution is discussed in (1+1) dimensional (Abdou [5]). The physical phenomena of Equations (2.1)-(2.2)
in the contact problems in time and position is explained in Abdou [3].

(c) If, in Equation (1.1), µ = 0, we have the initial iteration of V-FIE.

−λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u(y, τ)dydτ− λ2

∫ 1

−1
k(|x− y|)u(y, t)dy− λ3

∫t
0
ψ(t, τ)u(x, τ)dτ = f(x, t).

Several spectral connections with the kernel of position having a solitary term and the kernel of time
being continuous have been generated and investigated in Abdou [8]. In circumstances where the position
kernel has a singular kernel, these relationships may exist. It is well known that spectral relations play
an important role in explaining many physical phenomena and are often used to obtain the formula for
the asymptotic solution, which is in the form of a linear combination between the eigenvalues and the
eigenvectors (Abdou [8]). In this part, to establish the EUS of Equation (1.1), we suppose next cases.

(1) The kernel k(|x− y|) fulfills the condition:

[

∫ 1

−1

∫ 1

−1
k2(|x− y|)dxdy]

1
2 =M,

where M is a constant.

(2) The two kernels ϕ(t, τ) and ψ(t, τ) satisfy

| ϕ(t, τ) |6M1, | ψ(t, τ) |6M2, ∀t, τ ∈ [0, T ],
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M1 and M2 are constants.

(3) The free term f(x, t) ∈ L2[−1, 1]×C[0, T ] and its norm determined:

‖ f(x, t) ‖= max
06t6T

∫t
0
(

∫ 1

−1
f2(x, t)dx)

1
2dt =M3,

M3 is a constant.

Theorem 2.1. If the cases (1)-(3) have fulfilled, subsequently Equation (1.1) has a unique solution u(x, t) in the
Banach space ∈ L2[−1, 1]×C[0, T ], 0 6 T < 1 under the condition

| µ |> (| λ1 |MM1+ | λ2 |M+ | λ3 |M2)T .

Proof. To proof EUS of Equation (1.1) we utilize BFP theorem or Picard technique. The author of [21] used
Picard technique. In this paper we use BFP assumption to proof the EUS of Equation (1.1).

We form the formula (1.1) in the operator create:

(Wu)(x, t) =
1
µ
f(x, t) +

1
µ
(Wu)(x, t), µ 6= 0, (2.3)

where

(Wu)(x, t) = λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u(y, τ)dydτ

+ λ2

∫ 1

−1
k(|x− y|)u(y, t)dy+ λ3

∫t
0
ψ(t, τ)u(x, τ)dτ.

(2.4)

We must demonstrate the following in order to demonstrate the existence of a unique solution to Equation
(2.3).

2.1. The normality
From Equation (2.4) we have

‖ (Wu)(x, t) ‖ 6|
λ1

µ
|‖
∫t

0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u(y, τ)dydτ ‖ + |

λ2

µ
|‖
∫ 1

−1
k(|x− y|)u(y, t)dy ‖

+ |
λ3

µ
|‖
∫t

0
ψ(t, τ)u(x, τ)dτ ‖, µ 6= 0.

Now implementation Cauchy-Schwarz inequality and utilization the cases (1) and (2) we obtain

‖ (Wu)(x, t) ‖ 6|
λ1

µ
|‖
∫t

0
| ϕ(t, τ) | dτ(

∫ 1

−1

∫ 1

−1
k2(| x− y |)dxdy)

1
2 max

06t6T

∫t
0
(

∫ 1

−1
u2(y, τ)dy)

1
2dτ ‖

+ |
λ2

µ
|‖ (

∫ 1

−1

∫ 1

−1
k2(| x− y |)dxdy)

1
2 max

06t6T

∫t
0
(

∫ 1

−1
u2(y, τ)dy)

1
2dτ ‖

+ |
λ3

µ
|‖
∫t

0
| ψ(t, τ) | dτ max

06t6T

∫t
0
(

∫ 1

−1
u2(y, τ)dy)

1
2dτ ‖,

Hence, the above inequality takes the form

‖ (Wu)(x, t) ‖6 (|
λ1

µ
|MM1+ |

λ2

µ
|M+ |

λ3

µ
|M2)T ‖ u(x, t) ‖ .

Finally, we have

‖ (Wu)(x, t) ‖6 σ ‖ u(x, t) ‖, σ = (|
λ1

µ
|MM1+ |

λ2

µ
|M+ |

λ3

µ
|M2)T < 1.

Consequently the integral operator W is bounded and has a normality, that means the normality of the
operator W after using the condition (3).
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2.2. The continuity
Assume that the 2 functions u1(x, t),u2(x, t) ∈ L2[−1, 1]×C[0, T ] have fulfilled (2.3), then

(Wu1)(x, t) =
1
µ
f(x,y) +

λ1

µ

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u1(y, τ)dydτ+

λ2

µ

∫ 1

−1
k(|x− y|)u1(y, t)dy

+
λ3

µ

∫t
0
ψ(t, τ)u1(x, τ)dτ,

(2.5)

and

(Wu2)(x, t) =
1
µ
f(x,y) +

λ1

µ

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)u2(y, τ)dydτ+

λ2

µ

∫ 1

−1
k(|x− y|)u2(y, t)dy

+
λ3

µ

∫t
0
ψ(t, τ)u2(x, τ)dτ.

(2.6)

from (2.5) and (2.6) we obtain

W(u1(x, t) − u2(x, t)) =
λ1

µ

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)(u1(y, τ) − u2(y, τ))dy

+
λ2

µ

∫ 1

−1
k(|x− y|)(u1(y, t) − u2(y, t))dy+

λ3

µ

∫t
0
ψ(t, τ)(u1(x, τ) − u2(x, τ))dτ.

Following the application of the Cauchy-Schwarz inequality and utilizing (1) and (2), we obtain

‖W(u1(x, t) − u2(x, t)) ‖ 6 |
λ1

µ
|MM1T ‖ u1(x, t) − u2(x, t) ‖ + |

λ2

µ
|MT ‖ u1(x, t) − u2(x, t) ‖

+ |
λ3

µ
|M2T ‖ u1(x, t) − u2(x, t) ‖,

i.e.,

‖W(u1(x, t) − u2(x, t)) ‖6 σ ‖ u1(x, t) − u2(x, t) ‖, (2.7)

where σ = (| λ1
µ | MM1+ | λ2

µ |M+ | λ3
µ |M2)T .

Inequality (2.7) means the continuity of the integral operatorW. ThereforeW is a constriction operator.
Consequently via Banach fixed point theory this has a unique fixed point u(x, t) that is the resolution of
(1.1). Therefore, the integral operator W is a contraction operator under the condition | λ1

µ | MM1+ | λ2
µ |

M+ | λ3
µ |M2)T < 1.

3. Separation of variables technique

The separation of variables technique is considered as one of the best major ways to explain mathemat-
ical physics problems. When the undetermined function is linked to the arranged and temporal variables,
this is when the separation of variables technique comes into its own as an important technique. There
is assistance for the researcher to select an appropriate time function, we are able to discuss the strategy
behind the organize function. For this, let the next estimations:

u(x, t) = Φ(x) Ψ(t), f(x, t) = F(x) Ψ(t), Ψ(0) 6= 0, (3.1)

where Φ(x) and F(x) are functions of the position only and Ψ(t) is a function of time only.
It should be emphasized that the authors considered both the known function and the unknown

function to have the same time function. The known function is called the free surface function in contact
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problems in elastic science or mixed problems in mechanics and engineering sciences. While the unknown
function is defined as the difference in the stresses of the medium. This hypothesis, equal to the time
function is very important in the theory of economics and manufacturing cost, as the time given for the
known function is the same as the time for the solution of the unknown function. This was discussed
in the research of Sharifa and Abdou [12]. Also in the research of Mahdy et al. [25], the separation
of variables was discussed with the difference of time functions between the known function and the
unknown function, and it was found that the relative error in this case increases. Substituting from (3.1)
into (1.1) we obtain

µΦ(x)Ψ(t) − λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)Φ(y)Ψ(τ)dydτ

− λ2

∫ 1

−1
k(|x− y|)Φ(y)Ψ(t)dy− λ3

∫t
0
ψ(t, τ)Φ(x)Ψ(τ)dτ = F(x)Ψ(t).

(3.2)

Equation (3.2) may be formulated in the next establish

(µ−
λ3

Ψ(t)

∫t
0
ψ(t, τ)Ψ(τ)dτ)Φ(x) − (λ2 +

λ1

Ψ(t)

∫t
0
ϕ(t, τ)Ψ(τ)dτ)

∫ 1

−1
k(| x− y |)Φ(y)dy = F(x). (3.3)

Let

α(t) = (µ−
λ3

Ψ(t)

∫t
0
ψ(t, τ)Ψ(τ)dτ)

and

β(t) = (λ2 +
λ1

Ψ(t)

∫t
0
ϕ(t, τ)Ψ(τ)dτ).

Then Equation (3.3) takes the form

α(t) Φ(x) −β(t)

∫ 1

−1
k(| x− y |)Φ(y)dy = F(x). (3.4)

The following statements demonstrate that the condition for there existing a unique answer to Equation
(3.4) has been met:

‖ k(| x− y |) ‖6‖ α(t)
β(t)

‖ .

The last equation explicitly states the necessary and sufficient condition to solve the problem, where the
condition of the functional kernel in position was linked to another condition indicative in time. It is
feasible to clearly describe the amount of time needed to continue the single solution by determining the
shape of the time function on the right side of the inequality (3.4).

3.1. The stability of the error
To discuss the numerical solution of Equation (3.4) we assume the approximate solution, ∀t∈ [0, T ], T <

1 is Φm(x), for the free term F(x). Hence, we get

α(t) Rm(x) = β(t)

∫ 1

−1
k(| x− y |)Rmdy, (Rm(x) = Φ(x) −Φm(x)).

In this case, the error represents a homogeneous integral equation. In the modified error, we have

α(t) Rm(x) = β(t)

∫ 1

−1
k(| x− y |)Rmdy = F(x) − Fm(x).

In the modified error, the error represents a nonhomogeneous integral equation.
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4. Boubaker polynomials technique

In this part, we will study the approximate solution of Equation (3.4) via using Boubaker polynomials
method, see [23].

Definition 4.1. The Boubaker polynomials of degree n are specified on [−1, 1] as:

Bn(x) =

dn2 e∑
m=0

(−1)m
(
n−m

m

)
n− 4m
n−m

xn−2m,n > 1, B0(x) = 1, (4.1)

where dn2 e express the major integer in n
2 .

4.1. Properties of Boubaker polynomials

(I) Recurrence relation in the form

Bn+1(x) = xBn(x) −Bn−1(x),n = 1, 2, . . .

with B0(x) = 1 and B1(x) = x.
(II) Bn(0) = 2 cos(n+2

2 π), n > 1.
(III) Even and odd functions are distinct in polynomials of even and odd orders, i.e.,

Bn(−x) = (−1)nBn(x).

(IV) The polynomials (4.1) may be displayed in terms of Chebyshev polynomials of the primary and
second types Tn(x),Un(x).

Also, we state the following two theorems without proof (see [23]).

Theorem 4.2. For n > 1, Bn(x) = 2Tn(x/2) + 4Un−2(x/2) holds.

Theorem 4.3. Suppose that Φ(x) ∈ L2[−1, 1] and Φ(x) is approximated by
∑N
j=0 ajBj(x), then we have

lim
N→∞ ‖Φ(x) −

N∑
j=0

ajBj(x)‖L2[−1,1] = 0.

4.2. Function approximation of numerical solution

Assume that X = span{Bj(x), j = 0, 1, . . . ,N} and Φ(x) is an arbitrary function in L2[−1, 1], then Φ has
the almost convergence out of X such as ΦN ∈ X such that

‖ Φ−ΦN ‖6‖ Φ− z ‖, ∀z ∈ X.

Therefore, for ΦN ∈ X there is a unique set of coefficients a0,a1, . . . ,aN such that [8]

Φ(x) ' ΦN(x) =
N∑
j=0

ajBj(x) = A
TB(x), (4.2)

where A is an (N+ 1)× 1 vector specified A = [a0,a1, . . . ,aN]T , B(x) is the vector function specified as
B(x) = [B0(x),B1(x), . . . ,BN(x)]T and the coefficients vector A may be calculated via:

AT < B(x),B(x) >=< Φ(x),B(x) >, < Φ(x),B(x) >=
∫ 1

0
Φ(x)BT (x)dx,
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< ., . > denotes inner product on L2[0, 1], by description

H =< B(x),B(x) >,

then

AT = (

∫ 1

0
Φ(x)BT (x)dx)H−1,

where H is (N+ 1)× (N+ 1) matrix as

H =< B(x),B(x) >=
∫ 1

0
B(x)BT (x)dx.

Now substituting from (4.2) into (3.4) we obtain

α(t)

N∑
j=0

ajBj(x) −β(t)

∫ 1

−1
k(| x− y |)

N∑
j=0

ajBj(y)dy = F(x),

or

N∑
j=0

aj[α(t)Bj(x) −β(t)

∫ 1

−1
k(| x− y |)Bj(y)dy] = F(x).

Collocation points are used in this sentence

xl = a+
(b− a)l

N
, l = 0, 1, . . . ,N,

we get the next scheme of LAE with (N+ 1) unknowns

N∑
j=0

aj[α(t)Bj(xl) −β(t)

∫
Ω

k(| xl − y |)Bj(y)dy] = F(xl).

It is possible to determine the constant values by solving the system shown above aj, j = 0, 1, . . . ,N and
we get the convergent solution of Equation (3.4), finally by using (3.1) we obtain the solution of Equation
(1.1).

5. The convergence of solution

One of the basics of searching a solution is to study the valid region and time for the existence of a
single solution. Then, study the convergence of the solution in the sense of benefiting from it and realistic
results can be reached. Finally, using analytical or numerical methods to find the solution. Here, the
researcher must deal with the study of the resulting error, which is represented in knowing the error, the
results from the approximation of the solution, as well as the error resulting from the use of the chosen
method for the solution, and finally the error resulting from the programs used. Hence, researchers must
pay attention to the study of convergence and error. To discuss the convergence of solution u(x, t), we
construct the family of solution u(x, t) = {u0(x, t),u1(x, t), . . . ,un−1(x, t),un(x, t), . . .} or in a simple form
u(x, t) = {ui(x, t)}∞i=0. After this, we pick two functions un−1(x, t),un(x, t), satisfy the general integral
Equation (1.1) and to construct the sequence of integral equations as

µun(x, t) = λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)un−1(y, τ)dydτ

− λ2

∫ 1

−1
k(|x− y|)un−1(y, t)dy+ λ3

∫t
0
ψ(t, τ)un−1(x, τ)dτ,

(5.1)
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µun−1(x, t) = λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)un−2(y, τ)dydτ

− λ2

∫ 1

−1
k(|x− y|)un−2(y, t)dy+ λ3

∫t
0
ψ(t, τ)un−2(x, τ)dτ.

(5.2)

From Equations (5.1) and (5.2), we can construct a new family of corresponding function of solution

µvn(x, t) = λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)vn−1(y, τ)dydτ

− λ2

∫ 1

−1
k(|x− y|)vn−1(y, t)dy+ λ3

∫t
0
ψ(t, τ)vn−1(x, τ)dτ.

(5.3)

In (5.3), we assumed that

vn(x, t) = un(x, t) − un−1(x, t). (5.4)

From (5.4), we deduce that

un(x, t) =
n∑
i=0

vi(x, t), v0(x, t) = f(x, t)/µ. (5.5)

Theorem 5.1. A continuous solution function u(x, t) can be reached by the series
∑∞
i=0 vi(x, t) in a manner that

is uniformly convergent.

Proof. The answer to the integral Equation (5.3) can be found by first the conditions (1)-(2), and applying
the inequality derived from Cauchy and Schwarz,

‖ vn(x, t) ‖ 6 σ ‖ vn−1(x, t) ‖,

σ = (
| λ1 |MM1+ | λ2 |M+ | λ3 |M2

| µ |
)T ,

‖ vn(x, t) ‖ = max
06t6T

∫t
0
(

∫ 1

−1
v2
n(x, t)dx)

1
2dτ.

Using the mathematical induction, with the value of v0(x, t) and applying condition (3), we have

‖ vn(x, t) ‖6 σn

n!
M3. (5.6)

The inequality (5.6) leads to the convergence of the sequence {vn(x, t)} and then the sequence {un(x, t)} is
also convergence uniformly. Hence, from Equation (5.5), ∀t ∈ [0, T ] and n→∞, we have

u(x, t) = lim
n→∞un(x, t) = lim

n→∞(

n∑
i=0

vi(x, t)).

6. Numerical illustration

In here, four numerical illustrations are given to explain the above results. The results have been
reported in tables and figures. All of the numerical calculations are performed by utilizing Maple 18
program.
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Example 6.1. Let the next MV-FIE [21]:

0.9u(x, t) = f(x, t) + 0.32
∫t

0

∫ 1

−1
k(| x− y |)t2τ2u(y, τ)dydτ

+ 0.25
∫ 1

−1
k(| x− y |)u(y, t)dy+ 0.3

∫t
0
t2τu(x, τ)dτ,

(6.1)

where the function f(x, t) is specified by laying u(x, t) = (0.25+ t2)x2 as an exact solution. Take the kernel
Carleman

k(| x− y |) = |x− y|−ν, 0 < ν < 1,

where ν is named Poisson rate and in this case the kernel is called weakly singular kernel. First applying
separation of variables method by taking Ψ(t) = (0.25+ t2), then applying Boubaker polynomials method
for N = 5 we get the convergent solution of Equation (6.1). The numerical outcomes of Example 6.1 are
shown in Table 1, as well as Figures 1 and 2, for a range of different Poisson coefficients values ν at time
T = 0.3.

Table 1: Numerical outcomes of Example 6.1.
ν = 0.12 ν = 0.73

x Error of our method Error of [21] Error of our method Error of [21]
−1 1.740746923× 10−10 3.67468× 10−5 2.810800337× 10−10 9.14093× 10−5

−0.8 8.239728786× 10−11 1.72775× 10−5 2.028626485× 10−10 3.14502× 10−5

−0.6 7.117410310× 10−11 1.73390× 10−5 3.707555985× 10−10 3.30406× 10−5

−0.4 5.647045049× 10−11 1.74052× 10−5 1.808350656× 10−10 3.39897× 10−5

−0.2 7.761448357× 10−11 1.74485× 10−5 2.393089123× 10−10 3.45140× 10−5

0 1.398491597× 10−10 1.74632× 10−5 5.482440489× 10−10 3.46828× 10−5

0.2 1.847372769× 10−10 1.74485× 10−5 5.245828074× 10−10 3.45140× 10−5

0.4 1.872793282× 10−10 1.74052× 10−5 6.581665087× 10−11 3.39897× 10−5

0.6 7.414581103× 10−11 1.73390× 10−5 6.796931566× 10−10 3.30406× 10−5

0.8 1.009664623× 10−10 1.72775× 10−5 1.096446104× 10−9 3.14502× 10−5

1 3.923538237× 10−11 3.67468× 10−5 4.062254801× 10−10 9.14093× 10−5

Figure 1: Error of Example 6.1, T = 0.3, υ = 0.12. Figure 2: Error of Example 6.1, T = 0.3, υ = 0.0.73.

Example 6.2. Let the next MV-FIE:

u(x, t) = f(x, t) + 0.01
∫t

0

∫ 1

−1
k(| x− y |)t2τ2u(y, τ)dydτ+ 0.01

∫t
0
(t− τ)2u(x, τ)dτ,
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where the function f(x, t) has presented via letting u(x, t) = x2t2 as an accurate solution. Applying the
above methods by using the weakly singular kernel k(| x− y |) = |x− y|−0.22 for about points in the area
x ∈ [−1, 1], for several values of time T = {0.01, 0.2, 0.8} and N = 5 the numerical outcomes are shown in
Table 2 and Figures 3, 4, and 5.

Table 2: Numerical outcomes of Example 6.2.
x Error for T = 0.01 Error for T = 0.2 Error for T = 0.8
−1 2.673610000× 10−14 4.233982577× 10−11 4.895821144× 10−11

−0.8 1.401669695× 10−14 2.947702201× 10−11 5.137019349× 10−10

−0.6 4.706521292× 10−15 3.568938157× 10−11 4.173224958× 10−10

−0.4 1.631548240× 10−15 4.567414698× 10−11 1.010312735× 10−10

−0.2 5.309727622× 10−15 5.213004105× 10−11 1.529305699× 10−10

0 6.515264960× 10−15 5.351560680× 10−11 2.024558628× 10−10

0.2 5.310377874× 10−15 5.180754757× 10−11 2.887428939× 10−11

0.4 1.632190898× 10−15 5.025906708× 10−11 2.797865435× 10−10

0.6 4.707327126× 10−15 5.115820939× 10−11 5.455095853× 10−10

0.8 1.402142565× 10−14 5.358619905× 10−11 5.170179661× 10−10

1 2.674863504× 10−14 5.117578108× 10−11 1.135089806× 10−10

Figure 3: Error of Example 6.2, T = 0.01.

Figure 4: Error of Example 6.2, T = 0.2. Figure 5: Error of Example 6.2, T = 0.8.
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Example 6.3. Let the next MV-FIE with continuous kernel:

u(x, t) = f(x, t) + 0.01
∫t

0

∫ 1

0
(x− y)3t2τ2u(y, τ)dydτ+ 0.01

∫ 1

0
(x− y)3u(y, t)dy+ 0.01

∫t
0
(t− τ)2u(x, τ)dτ,

where the function f(x, t) has presented via letting u(x, t) = x2(0.25+ t2) as an accurate solution. Applying
the above methods by using several values of time T = {0.01, 0.2, 0.8} and N = 5 the numerical outcomes
are shown in Table 3 and Figures 6, 7, and 8.

Table 3: Numerical outcomes of Example 6.3.
x Error for T = 0.01 Error for T = 0.2 Error for T = 0.8
0 1.431644929× 10−10 8.0016684× 10−11 1.2281466× 10−10

0.1 3.390915943× 10−10 2.728285825× 10−10 5.552782424× 10−10

0.2 1.963793915× 10−10 4.522424807× 10−10 5.048419568× 10−10

0.3 2.063102567× 10−11 4.632450729× 10−10 1.486937073× 10−9

0.4 4.95858108× 10−11 2.918024572× 10−10 1.700519170× 10−9

0.5 3.631203× 10−12 1.3075846× 10−11 1.223717355× 10−9

0.6 1.23889109× 10−10 2.60362714× 10−10 5.4614463× 10−10

0.7 2.26869682× 10−10 4.30314631× 10−10 2.1176461× 10−10

0.8 2.4669959× 10−10 4.6473909× 10−10 4.6175840× 10−10

0.9 1.8232045× 10−10 4.4953728× 10−10 8.773916× 10−10

1 1.4385884× 10−10 6.4033671× 10−10 2.28807× 10−11

Figure 6: Error of Example 6.3, T = 0.01.

Figure 7: Error of Example 6.3, T = 0.2. Figure 8: Error of Example 6.3, T = 0.8.
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Example 6.4. Let the next MV-FIE with continuous kernel:

u(x, t) = f(x, t) + 0.01
∫t

0

∫ 1

0
x3y t2τ2u(y, τ)dydτ+ 0.01

∫ 1

0
x3y u(y, t)dy+ 0.01

∫t
0
(t− τ)2u(x, τ)dτ,

where the function f(x, t) has presented via letting u(x, t) = ((0.25 + t2) sin x) as an accurate solution.
Applying the above methods by using several values of time T = {0.01, 0.2} and N = 5 the numerical
outcomes are shown in Table 4 and Figures 9 and 10.

Table 4: Numerical outcomes of Example 6.4.
x Error for T = 0.01 Error for T = 0.2
0 2.501× 10−13 5.8× 10−13

0.1 1.3954× 10−7 1.6181× 10−7

0.2 6× 10−11 4.× 10−11

0.3 4.941× 10−8 5.725× 10−8

0.4 2× 10−11 1× 10−10

0.5 3.71× 10−8 4.33× 10−8

0.6 1× 10−10 0
0.7 5.50× 10−8 6.36× 10−8

0.8 1× 10−10 2× 10−10

0.9 1.723× 10−7 1.999× 10−7

1 0 1× 10−10

Figure 9: Error of Example 6.4, T = 0.01. Figure 10: Error of Example 6.4, T = 0.2.

7. Conclusions

In this document, we calculated the numerical solution of MV-FIE in(1 + 1) dimensional in the space
L2[−1, 1]× C[0, T ], T < 1. By utilizing separation of variables procedure the mixed integral equation is
converted to FIE of the second kind with variable coefficients in time. This procedure of separation,
helps the researcher in choosing the appropriate time function to establish the condition of convergence
of overcoming the problem and getting its solution. Subsequently by utilization Boubaker polynomials
procedure, we get a LAS. The BFP hypothesis has introduced to calculate the existence and uniqueness
of the solution of the LAS. Also convergence of the solution and stability of the error are discussed. By
comparison the outcomes we note following.

1. In the first example we consider MV-FIE with weakly singular kernel, a comparison was made
between the Boubaker method and Toeplitz matrix method which is used in [21] in Table 1, at the
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same time T = 0.3 and the same values of Poisson coefficients ν = 0.12, 0.73, the following was noted
at the point x = −1, ν = 0.12, the error of our method is given by 1.740746923× 10−10 while the
error of method used in [3], at the same value of x, ν is 3.67468× 10−5 we notice a large difference in
the error, and this difference is observed for all values of x in [-1,1]. This difference was also noticed
in the error when ν = 0.73. This shows that Boubaker method is more accurate than Toeplitz matrix
method. Also the numerical results of Example 6.1, are presented in Figures 1 and 2.

2. In the second example, for Table 2, a comparison was made of the errors at some different val-
ues of time T = 0.01, 0.2, 0.8, for example, at x = −0.6 it was noticed that the error started with
4.706521292× 10−15 at T = 0.01, it increases at T = 0.2 and becomes 3.568938157× 10−11, i.e., the
difference equal to 10−4 also the error increase at T = 0.8 and becomes 4.173224958× 10−10 this in-
dicates that the error is increasing with increasing time. Comparison between the error for different
values of time are presented in Figures 2, 3, and 4.

3. In the third example we consider MV-FIE with continuous kernel, in Table 3, for example at
x = 0.5, T = 0.01, 0.2, 0.8 the errors are 3.631203× 10−12, 1.3075846× 10−11, 1.223717355× 10−9, re-
spectively, we note that also the error increases with increase of T . Similarly the same results are in
Example 6.4.

4. CPU time in Example 6.1 is 0.12s, in Example 6.2 is 0.06s, in Example 6.3 is 0.07s, and in Example
6.4 is 0.09s, and the memory is 30.37M.

Future work

We will consider the nonlinear MV-FIE in the form

u(x, t) − λ1

∫t
0

∫ 1

−1
k(|x− y|)ϕ(t, τ)γ(u(y, τ))dydτ

− λ2

∫ 1

−1
k(|x− y|)γ(u(y, t))dy− λ3

∫t
0
ψ(t, τ)γ(u(x, τ))dτ = f(x, t).
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