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Abstract

In this paper, we study the following fourth-order elliptic equation with p-Laplacian, steep potential well and sublinear
perturbation: {

∆2u− κ∆pu+ µV(x)u = f(x,u) + ξ(x)|u|q−2u, x ∈ Ω,
u = ∆u = 0, on ∂Ω,

where N > 5, Ω is a bounded domain in RN with smooth boundary ∂Ω, ∆2 := ∆(∆) is the biharmonic operator, ∆pu =

div
(
|∇u|p−2∇u

)
with p > 2, µ, κ > 0 are parameters, f ∈ C (Ω×R, R), ξ ∈ L

2
2−q (Ω) with 1 6 q < 2, we have the potential

V ∈ C(Ω, R). Using variational methods, we establish the existence of infinitely many nontrivial high energy solutions under
certain assumptions on V and f.
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1. Introduction

In this paper, we are interested in the existence of solutions to the following fourth-order elliptic
equations with p-Laplacian:{

∆2u− κ∆pu+ µV(x)u = f(x,u) + ξ(x)|u|q−2u, x ∈ Ω,
u = ∆u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ∆2 := ∆(∆) is the biharmonic operator,
∆pu = div

(
|∇u|p−2∇u

)
with p > 2, κ,µ > 0 are parameters, f ∈ C (Ω×R, R), V ∈ C(Ω, R), and

ξ ∈ L
2

2−q (Ω) with 1 6 q < 2.
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When considering problem (1.1) with the conditions V(x) = 0, p = 2, and ξ(x) = 0, we can derive the
following modified problem: {

∆2u+ c∆u = f(x,u) in Ω,
u = ∆u = 0 on ∂Ω. (1.2)

The study of fourth-order elliptic equations has concrete applications in many fields, which arises in the
study of traveling waves in suspension bridges (see [19, 20] and the references therein), as well as the
study of the static deflection of an elastic plate in a fluid, has been extensively investigated in recent
years. For the results of infinitely many nontrivial and sign changing solutions of problem (1.2), we refer
the readers to [1, 3, 4, 8, 10–14, 16–18, 21, 26, 30] and the references therein.

For the whole space RN case, the main difficulty of this problem is the lack of compactness for
Sobolev embedding theorem. To overcome this difficulty, some authors assumed that the potential V
satisfies certain coercive condition, see [15, 24, 27] and the references therein. To reduce our statements,
we make the following assumptions for potential V :

(V1) V ∈ C(Ω, R) and V > 0 on Ω;
(V2) there exists a constant c > 0 such that the set {V < c} = {x ∈ Ω | V(x) < c} is nonempty and has finite

measure;
(V3) Σ = int V−1(0) is a nonempty open set and has smooth boundary with Σ = V−1(0).

From (V1)-(V3), we can see µV represents a steep potential well whose depth is controlled by µ. Bartsch
and Wang first introduced this problem for the case of a nonlinear Schrödinger equation and the potential
µV with V satisfying (V1)-(V3) [5, 6]. Later, the authors in [29] considered the case ξ(x) = 0 and p = 2{

∆2u−∆u+ µV(x) = f(x,u) in RN,
u ∈ H2(RN). (1.3)

Using (V1)-(V3) they proved the existence and concentration of solutions for problem (1.3). In [28], by
the genus properties in critical point theory, Zhang et al. considered the regularity and existence of
infinitely many small energy solutions for problem (1.3). In [22], using the Gagliardo-Nirenberg inequality
and Mountain Pass Lemma, the existence and multiplicity of nontrivial solutions were obtained of the
following biharmonic equation with p-Laplacian problem:{

∆2u− ν∆pu+ µV(x)u = f(x,u), x ∈ RN,
u ∈ H2

(
RN

)
,

where N > 1, p > 2, ν ∈ R and µ > 0 are parameters. In [9], Benhanna and Choutri considered the
following biharmonic equation:{

∆2u−∆pu+ µV(x)u = f(x,u) + νξ(x)|u|q−2u, x ∈ RN,
u ∈ H2

(
RN

)
.

By using the Mountain pass theorem, Ekeland’s variational principle and Gagliardo-Nirenberg inequality,
the existence of at least two nontrivial solutions for this biharmonic equation was obtained. In [23],
Fenglong and al studied the following problem ∆2u− λ∆pu = f(x,u) − µ

|Ω|

∫
Ω

f(y,u(y)) dy, x ∈ Ω,

∂u
∂ν =

∂(∆u)
∂ν = 0, on ∂Ω,

(1.4)

where |Ω| is the measure of Ω, λ,µ ∈ R are parameters. By introducing an appropriate function space
with constraint

∫
Ω

u dx = 0, they obtained infinitely many sign-changing solutions for problem (1.4).

Our goal is to obtain the existence of a sequence of infinitely many high-energy solutions to problem
(1.1). The strategy of the proof for this assertion is based on applications of the dual-fountain theorem that
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were primarily introduced by Bartsch [7] with consideration for the variational nature of the problem. The
dual-fountain theorem, as a key tool, is a dual version of fountain theorem in [6], which is a generalization
of the symmetric mountain-pass theorem in [2] and a powerful technique for ensuring the existence of
multiple solutions to elliptic equations of the variational type. This paper is organized as follows. We
first briefly review definitions and collect some preliminary results for the Sobolev spaces and Gagliardo-
Nirenberg inequalities. Next, we will give the existence criteria of infinitely many nontrivial high energy
solutions without the well known Ambrosetti-Rabinowitz condition.

2. Preliminaries

In this section, we briefly recall definitions and some elementary properties of Sobolev spaces. For
simplicity, ci, C, Ci are used to represent different different generic positive constants. Let s ∈ [2, 2∗], 2∗

is the critical Sobolev exponent, that is 2∗ = 2N
N−4 . We give the definition the following norm:

|u|s = ||u||Ls(Ω) =

∫
Ω

|u(t)|sdt

 1
s

.

We define Sobolev space H2 as follows:

H2 (Ω) =
{
u ∈ L2 (Ω) : ∇u ∈ L2 (Ω) ,∆u ∈ L2 (Ω)

}
,

with the norm

||u||2H2 =

∫
Ω

|∆u|2 + |∇u|2 + u2 dx.

Let

E =
{
u ∈ H2(Ω)∩H1

0(Ω) : and
∫
Ω

(
|∆u|2 + V(x)u2) dx < +∞},

be equipped with the inner product

(u, v) =
∫
Ω

(∆u∆v+ V(x)uv) dx, u, v ∈ E,

and the norm

||u||2 =

∫
Ω

(|∆u|2 + V(x)u2) dx, u ∈ E.

Then E is a Hilbert space with the inner product defined above. Moreover, by Gagliardo-Nirenberg
inequality, there exists C1 > 0 such that:

∫
Ω

|∇u|2 dx 6 C2
1

∫
Ω

|∆u|2 dx

 1
2
∫
Ω

u2 dx

 1
2

6
C2

1
2

∫
Ω

|∆u|2 dx +

∫
Ω

u2 dx

 ,

which indicates that: ∫
Ω

(
|∆u|2 + u2) dx 6 ‖u‖2

H2 6

(
1 +

C2
1

2

) ∫
Ω

(
|∆u|2 + u2) dx. (2.1)
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It follows from the Hölder, Gagliardo-Nirenberg inequalities, and conditions (V1)-(V2) that there exists
C2 > 0, such that:

∫
Ω

u2 dx =

∫
{V>c}

u2 dx +

∫
{V<c}

u2 dx 6
1
c

∫
{V>c}

V(x)u2 dx + |{V < c}|
4
N

∫
Ω

|u|2
∗

dx

 2
2∗

6
1
c

∫
Ω

V(x)u2 dx +C2
2|{V < c}|

4
N

∫
Ω

|∆u|2 dx.

Combining the above inequality with (2.1) yields:

‖u‖2
H2 6 αN‖u‖2, (2.2)

where

αN =

(
1 +

C2
1

2

)
max

{
1 +C2

2|{V < c}|
4
N ,

1
c

}
,

which implies that the imbedding E ↪→ H2
(
RN

)
is continuous. For µ > 0, we introduce another inner

product and normal

(u, v)µ =

∫
Ω

(∆u∆v+ µV(x)uv) dx, u, v ∈ E, ||u||2µ =

∫
Ω

(|∆u|2 + µV(x)u2) dx, u ∈ E.

Let Eµ = (E, ‖ · ‖µ), then Eµ is a Hilbert space and

‖u‖ 6 ‖u‖µ, for µ > 1. (2.3)

By (V1)-(V2), the Hölder and Gagliardo-Nirenberg inequalities, we can demonstrate that there exist posi-
tive constants βN, µ̄ (independent of µ) such that

‖u‖2
H2 6 βN‖u‖2

µ, for all u ∈ Eµ,µ > µ̄.

In fact, similar to the inequality (2.2), for µ > µ̄ := 1
c

[
1 +C2

2|{V < c}|
4
N

]−1
, we obtain:

‖u‖2
H2 6 βN‖u‖2

µ, (2.4)

where

βN =

(
1 +

C2
1

2

)(
1 +C2

2|{V < c}|
4
N

)
> 0.

By the Hölder, Gagliardo-Nirenberg inequalities, and conditions (V1)-(V2), (2.4), for any s ∈ [2, 2∗], one
has: ∫

Ω

|u|s dx 6

∫
Ω

|u|2 dx


2N−s(N−4)

8
∫
Ω

|u|2
∗

dx


(s−2)(N−4)

8

6 C
N(s−2)

4
2

∫
Ω

|u|2 dx


2N−s(N−4)

8
∫
Ω

|∆u|2 dx


N(s−2)

8

6 C
N(s−2)

4
2

(
1 +

C2
1

2

) s
2 (

1 +C2
2|{V < c}|

4
N

) s
2 ‖u‖sµ.

(2.5)
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From (2.5), for any s ∈ [2, 2∗] and µ > µ̄, we have:∫
Ω

|u|s dx 6 γs‖u‖sµ, (2.6)

where

γs = C
N(s−2)

4
2

(
1 +

C2
1

2

) s
2 (

1 +C2
2|{V < c}|

4
N

) s
2

.

From (2.6), the Gagliardo-Nirenberg inequality, and Young inequalities, there exists C3 > 0, and t = 2p
4−p ,

such that: ∫
Ω

|∇u|p dx 6 Cp3

∫
Ω

|∆u|2 dx


p
4
∫
Ω

|u|tdx


p
2t

6
C
p
3

2


∫
Ω

|∆u|2dx


p
2

+

∫
Ω

|u|tdx


p
t

 6
C
p
3 (β

p
2
N + γ

p
t
t )

2
||u||pµ.

(2.7)

Definition 2.1. We indicate that u ∈ E is a weak solution to the problem (1.1) if∫
Ω

(∆u∆v+ µV(x)uv) dx +

∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

f(x,u)v dx +

∫
Ω

ξ(x)|u|q−2uv dx,

for all v ∈ E. Let us define functional Jµ,λ by

Jµ,λ(u) = A(u) − λB(u),

where
A(u) =

1
2
||u||2µ +

κ

p

∫
Ω

|∇(u)|p dx, B(u) =

∫
Ω

F(x,u)dx+
1
q

∫
Ω

ξ(x)|u|q dx,

for all u ∈ Eµ and λ ∈ [1, 2]. It is easy to verify that Jµ,λ(u) : Eµ → R is a C1-functional for λ ∈ [1, 2] and
for any u, v ∈ Eµ, its Fréchet derivative is given by〈

J′µ,λ(u), v
〉
=

∫
Ω

(∆u∆v+ µV(x)uv) dx + κ

∫
Ω

|∇u|p−2∇u · ∇v dx

− λ

∫
Ω

f(x,u)v dx +

∫
Ω

ξ(x)|u|q−2uv dx

 ,

(2.8)

for all u, v ∈ Eµ. Hence the critical points of Jµ,1 are solutions of (1.1).

For 2 < p < 2∗ = 2N
N−2 , we assume that

(f1) ξ ∈ L
2

2−q (Ω) and ξ > 0 on Ω;
(f2) lim

|u|→0

f(x,u)
|u| = 0 uniformly in x ∈ Ω;

(f3) f ∈ C(Ω×R, R), there exist two constants c2 > 0,p < r < 2∗ = 2N
N−4 such that

|f(x,u)| 6 c2
(
1 + |u|r−1) , ∀(x,u) ∈ Ω×R;

(f4) F(x,u) > 0 and lim
|u|→∞ F(x,u)

|u|p =∞ uniformly in x ∈ Ω.
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Let
{
ej
}

be a complete orthonormal basis of E. We define

Ej := span
{
ej
}

, Yk :=

k⊕
j=1

Ej, and Zk :=

∞⊕
j=k+1

Ej, k ∈N.

Also
Bk = {u ∈ Yk : ||u|| 6 ρk} , Sk = {u ∈ Zk : ||u|| = rk} ,

for ρk > rk > 0. Clearly, E = Yk ⊕Zk with dim Yk <∞.

Theorem 2.2 ([31]). Let X be a Banach space, suppose that Jµ,λ ∈ C1(X, R) satisfies:

(A1) Jµ,λ(u) maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and

Jµ,λ(−u) = Jµ,λ(u) for (λ,u) ∈ [1, 2]×X;

(A2) B(u) > 0, ∀u ∈ X, and A(u)→∞ or B(u)→∞ as ||u||→∞;
(A3) there exist ρk > rk > 0 such that

ek(λ) := inf
u∈Zk,||u||=rk

Jµ,λ(u) > fk(λ) := max
u∈Yk,||u||=ρk

Jµ,λ(u), ∀λ ∈ [1, 2].

Then
ek(λ) 6 gk(λ) = inf

γ∈Γk
max
u∈Bk

Jµ,λ(γ(u)), ∀λ ∈ [1, 2],

where Γk = {γ ∈ C(Bk,Xλ) : γ is odd, γ|∂Bk = id} (k > 2). In addition, for almost every λ ∈ [1, 2], there exists a
sequence

{
ukn(λ)

}∞
n=1 such that

sup
n

‖un(λ)‖ <∞, J′µ,λ
(
ukn(λ)

)
→ 0 and Jµ,λ

(
ukn(λ)

)
→ gk(λ), as n→∞.

Lemma 2.3 ([25], Lemma 3.8). If 1 6 s < 2∗ then we have that

ηk := sup
u∈Zk,‖u‖µ=1

|u|s → 0, τk := sup
u∈Zk,‖u‖µ=1

|∇u|p → 0 as k→∞.

Proof. It is clear that 0 < ηk+1 6 ηk, so ηk → η > 0(k → ∞). For every k ∈ N (by the definition of ηk ),
there exists uk ∈ Zk such that ‖uk‖ = 1 and

|uk|s >
η

2
> 0. (2.9)

For any v =
∞∑
i=1

viei, we have, by the Cauchy-Schwartz inequality,

|〈uk, v〉| =

∣∣∣∣∣
〈
uk,

∞∑
i=1

viei

〉∣∣∣∣∣ =
∣∣∣∣∣
〈
uk,

∞∑
i=k+1

viei

〉∣∣∣∣∣ 6 ‖uk‖
∥∥∥∥∥
∞∑

i=k+1

viei

∥∥∥∥∥ =

( ∞∑
i=k+1

v2
i

)1/2

→ 0,

as k→∞, which implies that uk ⇀ 0 in Eµ. The compact embedding of Eµ ↪→ Ls (Ω) implies that

uk → 0 in Ls (Ω) .

Hence, letting k→∞ in (2.9), we get η = 0, which completes the proof.
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3. Main Result

In this section, we employ the variant Fountain Theorem 2.2 and variational method to establish the
existence of a sequence of infinitely many solutions whose energy converges to infinity.

Here is the main result of this work.

Theorem 3.1. Suppose that (V1)-(V2), (f1), (F1)-(F3) hold, 2 < p < 2N
N−2 , and F(x,−u) = F(x,u) for all (x,u) ∈

Ω×R, then, for µ > µ0 and κ ∈ (0, κ0), (1.1) possesses infinitely many high energy solutions u(k)µ ∈ Eµ for any
k ∈N, that is,

1
2
‖u(k)µ ‖2

µ +
κ

p

∫
Ω

|∇u(k)µ |p dx −

∫
Ω

F(x,u(k)µ ) dx −
1
q

∫
Ω

ξ(x)|u
(k)
µ |q dx→∞, as k→∞.

Lemma 3.2. Under the assumptions (V1)-(V2), (f1), (F1)-(F2) , for µ > µ0 and κ ∈ (0, κ0), there exist rk > 0 such
that

inf
u∈Zk,||u||=rk

Jµ,λ(u) > 0, ∀λ ∈ [1, 2],

where µ0 = max{1, µ̄}.

Proof. Using (F1) and (F2), it follows that for any ε > 0, there exists a positive constant cε that depends on
ε such that

F(x,u) 6 ε|u|2 + cε|u|r for all (x,u) ∈ Ω̄×R. (3.1)

From (2.6), (3.1), and the Hölder inequality, for any µ > µ0,u ∈ Zk, one has

Jµ,λ(u) =
1
2
||u||2µ +

κ

p

∫
Ω

|∇u|p dx − λ

∫
Ω

F(x,u) dx −
λ

q

∫
Ω

ξ(x)|u|q dx

>
1
2
||u||2µ − λγ2ε||u||

2
µ − λcε|u|

r
r − λ|ξ| 2

2−q
|u|
q
2

>

(
1
2
− λγ2ε

)
||u||2µ − λcεη

r
k||u||

r
µ − λ|ξ| 2

2−q
η
q
k ||u||

q
µ.

Let
M′ = 2ηqk

(
cεη

r−q
k + |ξ| 2

2−q

)
.

Set rk = (6M′)
1

2−r , then
rk →∞, as k→∞, for r ∈ (2, 2∗) ,

which implies there exists a positive constant k0 ∈N such that rk = (6M′)
1

2−r > 1, for k > k0,k ∈N. Take
||u||µ = rk, u ∈ Zk. Then, for λ ∈ [1, 2],k > k0,k ∈N, we have that

inf
u∈Zk,||u||=rk

Jµ,λ(u) >
1
3
||u||2µ − 2cεηrk||u||

r
µ − 2|ξ| 2

2−q
η
q
k ||u||

q
µ

>
1
3
||u||2µ −M′||u||rµ =

1
6
r2
k =

1
6
(
6M′

) 2
2−r > 0.

(3.2)

Lemma 3.3. Assume that conditions of Theorem 3.1 hold. Then, for µ > µ0 and κ ∈ (0, κ0), there exist ρk > rk > 0
such that

max
u∈Yk,||u||=ρk

Jµ,λ(u) < 0, ∀λ ∈ [1, 2].
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Proof. By condition (F3), for any n ∈N, there exists Gn > 0 such that

F(x, t) > n|t|p, for any |t| > Gn and a.e. x ∈ Ω.

Denote Fn := max
|t|6Gn,x∈Ω̄

|F(x, t)|+nGpn, by direct calculation, we see that

F(x, t) > n|t|p − Fn, for any t ∈ R, a.e. x ∈ Ω. (3.3)

From (2.6), (3.3), and the equivalence of the norms in the finite dimensional space Yk, for λ ∈ [1, 2], u ∈ Yk,
we obtain

Jµ,λ(u) =
1
2
||u||2µ +

κ

p

∫
Ω

|∇u|p − λ
∫
Ω

F(x,u) dx −
λ

q

∫
Ω

ξ(x)|u|q dx

6
1
2
||u||2µ +

κC
p
3 (β

p
2
N + γ

p
t
t )

2p
||u||pµ −nCp4 ‖u‖

p
µ + Fn|Ω|.

Then, Choosing an κ < nC
p
4 2p

C
p
3 (β

p
2
N+γ

p
t
t )

= κ0, for some ρk large enough, ||u|| = ρk > rk > 0, one has

max
u∈Yk,||u||=ρk

Jµ,λ(u) < 0, ∀λ ∈ [1, 2].

Lemma 3.4. Assume that conditions of Theorem 3.1 hold. Then, for µ > µ0, κ ∈ (0, κ0), λn ∈ [1, 2], λn →
1,u (λn) ∈ Eµ with

sup
n

‖u(λn)‖ <∞, J′µ,λn (u(λn))→ 0 and Jµ,λ (u(λn))→ gk(λ), as n→∞,

{u (λn)} has a convergent subsequence in Eµ for every k ∈N.

Proof. Assume u (λn) → u weakly in Eµ. We can assume that there exist a subsequence {u(λn)} and
u ∈ Eµ, such that:

u(λn) −→ u weakly in Eµ,
u(λn) −→ u strongly in Ls (Ω) for s ∈ [2, 2∗) ,
u(λn) −→ u a.e. in Ω.

(3.4)

Next we prove that u(λn)→ u in Eµ. We know that〈
J′µ,λn (u (λn)) − J

′
µ,1(u),u (λn) − u

〉
→ 0, n→∞.

By (2.8), we have that

on(1) =
〈
J′µ,λn (u (λn)) − J

′
µ,1(u),u (λn) − u

〉
> ||u (λn) − u| |

2
µ + κ

∫
Ω

|∇u(λn)|p−2∇u(λn) · ∇(u(λn) − u)

− κ

∫
Ω

|∇u|p−2∇u · ∇(u(λn) − u) −
∫
Ω

|λnf (x,u (λn)) − f(x,u(x))||u (λn) − u| dx

−

∫
Ω

ξ(x) |λnu (λn) − u|
q−1

|u (λn) − u| dx.

(3.5)

By employing equations (2.6) and (2.7), along with the fact that the embedding Eµ ↪→W1,p (Ω) is contin-
uous, it can be concluded that:

u(λn)→ u weakly in W1,p (Ω) . (3.6)
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Then, from (3.4), (3.6), the Gagliardo-Nirenberg inequality, the Hölder inequality, and the boundedness
of {u(λn)}, we get∫

Ω

(|∇u(λn)|p−2∇u(λn) − |∇u|p−2∇u) · ∇(u(λn) − u) dx

=

∫
Ω

(|∇u(λn)|p−2 − |∇u|p−2)∇u(λn) · ∇(u(λn) − u) dx +

∫
Ω

|∇u|p−2|∇(u(λn) − u)|2 dx

>
∫
Ω

(|∇u(λn)|p−2 − |∇u|p−2)|∇u(λn)||∇(u(λn) − u)| dx

>− |∇u(λn)|p−1
p |∇(u(λn) − u)|p − |∇u|

p−2
p
p |∇u(λn)|p|∇(u(λn) − u)|p

>−C7

[
|∇u(λn)|p−1

p + |∇u|
p−2
p
p |∇u(λn)|p

]
|∆(u(λn) − u)|

p
2
2 |u(λn) − u|

p
2
t

>−C8

[(
|∆u(λn)|

2
2 + |∆u|22

)p
4
]
|u(λn) − u|

p
2
t

>−C9‖u(λn) − u‖
p
2
t → 0,n→∞,

(3.7)

where 1 < p
p−2 , 2 < t = 2p

4−p 6 2N
N−4 . From (f1), (3.4), λn → 1, and the Hölder inequality, we have that∫

Ω

ξ(x) |λnu (λn) − u|
q−1

|u (λn) − u| dx 6 |ξ| 2
2−q

|u (λn) − u|
q
2 → 0, n→∞. (3.8)

By utilizing equations (3.1), (3.4), the inequality λn 6 2, the Hölder inequality, and the boundedness
of the sequence u(λn), we obtain∫

Ω

|[λnf(x,u(λn)) − f(x,u)](u(λn) − u)| dx

6
∫
Ω

(|2f (x,u (λn))|+ |f(x,u)|) |u (λn) − u| dx

6
∫
Ω

C10

[
(|2u (λn)|+ |u|) +

(
|2u (λn)|

r−1 + |u|r−1
)]

|u (λn) − u| dx

6 C10 (|2u(λn)|2 + |u|2) |u (λn) − u|2 +
(
|2u(λn)|r−1

r + |u|r−1
r

)
|u (λn) − u|r → 0, n→∞.

(3.9)

It follows from (3.5)-(3.9) that ||u(λn) − u| |2µ → 0, which implies u(λn)→ u in Eµ.

Proof of Theorem 3.1. From (f1) and the property F(x,−u) = F(x,u), it is easy to see that Jµ,λ(u) maps a
bounded set into bounded sets uniformly for λ ∈ [1, 2]. Clearly, we have

Jµ,λ(−u) = Jµ,λ(u) for all (λ,u) ∈ [1, 2]× E,

which shows that (A1) of Theorem 2.2 is satisfied. It follows from (F3) that

B(u) > 0, for u ∈ E.

It follows from (2.3) that

A(u) =
1
2
||u||2µ +

κ

p

∫
Ω

|∇u|pdx > 1
2
||u||2 →∞, as ||u||→∞,
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which implies (A2) of Theorem 2.2 holds. By Lemmas 3.2 and 3.3, conditions (A2)-(A3) of Theorem 3.1 are
satisfied. Consequently, according to Theorem 2.2, for any λ ∈ [1, 2], there exists a sequence

{
ukn(λ)

}∞
n=1

for k > k0,k ∈N, such that:

sup
n

||ukn(λ)||µ <∞, J′µ,λ
(
ukn(λ)

)
→ 0, Jµ,λ

(
ukn(λ)

)
→ gk(λ). (3.10)

We also have gk(λ) = inf
γ∈Γk

max
u∈Bk

Jµ,λ(γ(u
k
n(λ))) > ek(λ). Let βk = 1

6 (6M
′)

2
2−r > 0, then βk → ∞, as

k→∞. For k > k0,k ∈N, it follows from (3.2) that

gk(λ) > ek(λ) > βk.

Therefore
gk(λ) ∈

[
βk,β′k

]
, (3.11)

where
β′k = max

u∈Bk
Jµ,λ(γ(u

k
n(λ))), Γk = {γ ∈ C (Bk,Eµ) : γ is odd ,γ|∂Bk = id} (k > 2) ,

with
Bk = {u ∈ Yk : ||u|| 6 ρk} .

Choose λm → 1 as m → ∞, for λm ∈ [1, 2]. Owing to (3.10), we can get the boundedness of
{
ukn (λm)

}
,

which implies
{
ukn (λm)

}
has a weakly convergent subsequence. Following a similar approach as the

proof of Lemma 3.4, it is possible to establish that
{
ukn (λm)

}
possesses a strongly convergent subsequence

in Eµ as n→∞. Let us assume that lim
n→∞ukn (λm) = uk (λm) form ∈N. Subsequently, by using equations

(3.10) and (3.11), it follows that for k > k0, k ∈N:

J′µ,λm

(
uk (λm)

)
= 0, Jµ,λm

(
uk (λm)

)
∈
[
βk,β′k

]
. (3.12)

Next we show
{
uk (λm)

}
is bounded in Eµ. We argue by contradiction. In fact, if it is not the case, then

||uk (λm) ||µ →∞, as m→∞. (3.13)

Consider the sequence vm =
uk(λm)

‖uk(λm)‖µ
, which satisfies ‖vm‖µ = 1. Then vm has a weakly convergent

subsequence in Eµ. By (2.6), we can see that vm has a strong convergent subsequence in Ls (Ω), for
s ∈ [2, 2∗]. Without loss of generality, we suppose vm → v a.e. in Ls (Ω), then vm(x)→ v(x) for a.e. x ∈ Ω.
For q ∈ [1, 2), it follows from (f1), (3.13), and the Hölder inequality that

0 6 lim
m→∞

∫
Ω

ξ(x)
∣∣uk (λm)

∣∣q dx

||uk (λm)| |2µ
6 lim
m→∞

|ξ| 2
2−q
γ
q/2
2

∣∣|uk (λm)
∣∣ |qµ

||uk (λm)| |2µ
= 0.

Let A = {x ∈ Ω : v(x) 6= 0}. It’s easy to see that A is nonempty. For any x ∈ A, we have |uk(x)| → +∞.
Then, by (F3) and the Fatou’s Lemma, we have

lim inf
m→∞

∫
Ω

F
(
x,uk(λm)

)
‖uk(λm)‖pµ

dx = lim inf
m→∞

∫
Ω

F
(
x,uk(λm)

)
|uk(λm)|

p |vm(x)|p dx

> lim inf
m→∞

∫
A

F
(
x,uk(λm)

)
|uk(λm)|

p |vm(x)|p dx = +∞.
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For x ∈ A, λm ∈ [1, 2], combining (F3), (3.10)-(3.13), and Fatou’s lemma, we get

1 +
κC
p
3

(
β
p
2
N + γ

p
t
t

)
2p

>
1

‖uk(λm)‖pµ

(
1
2

∥∥uk(λm)
∥∥2
µ
− J
(
uk(λm)

))
+
κ

p

∣∣∇uk(λm)
∣∣p
p

‖uk(λm)‖pµ

=

λm

[∫
Ω

F
(
x,uk (λm)

)
dx + 1

q

∫
Ω

ξ(x)
∣∣uk (λm)

∣∣q dx
]

||uk (λm) ||pµ

>
∫
A

|vm(x)|p
F
(
x,uk (λm)

)
|uk (λm) |p

dx +
1
q

∫
Ω

ξ(x)
∣∣uk (λm)

∣∣q
||uk (λm) ||pµ

dx→ +∞.

This is a contradiction. Hence
{
uk (λm)

}
is bounded in Eµ, which shows

{
uk (λm)

}
has a weakly con-

vergent subsequence. By Lemma 3.4, we know that
{
uk (λm)

}
has a strongly convergent subsequence in

Eµ. Suppose
lim
m→∞uk (λm) = uk(1) = ukµ ∈ Eµ.

Then, for k > k0,k ∈N, from (3.12) and βk →∞, as k→∞, we have

J′µ,1
(
ukµ
)
= 0, Jµ,1

(
ukµ
)
∈
[
βk,β′k

]
→∞, as k→∞,

which shows ukµ is a nontrivial critical point of Jµ,1. Consequently, for k > k0,k ∈ N is arbitrary, we

obtain infinitely many nontrivial critical points u(k)µ of Jµ,1, which are also the nontrivial solutions of (1.1)
with high energy, that is,

Jµ,1(u
k
µ)→ +∞, as k→∞.

Example 3.5.

(∆)2u− κ∆pu+ µVu =
8
(
sin2 x

)
u

5
3

9
+

ln
(
1.3 +

∣∣sin x2
∣∣)

e|x|
√
(1 + x2)

|u|
3
2−2u, x ∈ Ω, (3.14)

where q = 3
2 . Obviously, from (3.14), we have

f(x,u) =
8
(
sin2 x

)
u

5
3

9
∈ C (Ω×R, R) ,

and

ξ(x) =
ln
(
1.3 +

∣∣sin x2
∣∣)

e|x|
√
(1 + x2)

.

Then 0 < ξ(x) =
ln(1.3+|sinx2|)
e|x|
√

(1+x2)
∈ L2(Ω), which implies (f1) is satisfied. From (3.14), we know F(x,u) =

(sin2 x)u
8
3

3 > 0, and we have that

|f(x,u)| =

∣∣∣∣∣8
(
sin2 x

)
u5/3

9

∣∣∣∣∣ < (1 + |u|
8
3−1
)

,

lim
|u|→0

|f(x,u)|
|u|

= lim
|u|→0

8
(
sin2 x

)
u2/3

9
= 0,

lim
|u|→∞

F(x,u)
|u|p

= lim
|u|→∞

(
sin2 x

)
u

8
3−p

3
=∞,



Y. Chahma, H. Chen, J. Math. Computer Sci., 32 (2024), 109–121 120

with p < r = 8
3 ∈ [2, 2∗), c2 = 1, which shows that (F1)-(F3) of Theorem 3.1 hold. Let

V(x) =


0, |x| 6 1,
2(|x|− 1), 1 < |x| 6 2,
|x|, |x| > 2.

Thus, it becomes straightforward to verify the satisfaction of (V1)-(V3). Moreover, it is evident that
F(x,−u) = F(x,u). In view of Theorem 3.1, for κ ∈ (0, κ0), µ > µ0,k > k0, k ∈ N, (3.14) has infinitely
many high energy solutions u(k)µ ∈ Eµ.
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