Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

New results on soft generalized topological spaces

Check for updates

Jawaher Al-Mufarrij^a, S. Saleh^{b,c,*}

^aDepartment of Mathematics, Women section, King Saud University, Riyadh 12372, KSA.

^bDepartment of Computer Science, Cihan University-Erbil, Erbil, Iraq.

^cDepartment of Mathematics, Hodeidah University, Hodeidah, Yemen.

Abstract

This work aims to introduce and discuss two new classes of separation properties namely, soft generalized R_0 and R_1 in a soft generalized topological space defined on an initial universe set, by using the notions of soft g-open sets and soft g-closure operator. We investigate some of their properties and characterizations. We further, investigate the relationships between different generalized structures of soft topology, providing some illustrative examples and results. Additionally, we present connections between these separation properties and those in some generated topologies. Furthermore, we show that being SGR_i, i = 0, 1 are soft generalized topological properties.

Keywords: Soft sets, soft g-open sets, soft generalized topology, Sg-closure, SG-kernel, soft generalized R₀ and R₁ spaces. **2020 MSC:** 54A05, 54A40, 54D15.

©2024 All rights reserved.

1. Introduction and preliminaries

Molodtsov [21] introduced the concept of soft sets(or S-sets), in 1999 as a tool for dealing with uncertain problems. Since then, many works have been published on S-set theory and its applications in various fields, as in [1, 3, 4, 7–9, 13, 14, 16, 19]. Shabir-Naz [25] introduced the topological structure of S-sets and studied various related concepts, leading to the development of generalized structures of soft topology, including supra soft topology [12], infra soft topology [5], and soft generalized topology [27]. While many results from soft topology hold true in these generalized structures, some become invalid. On the other hand, Csaszar [10] introduced the concept of generalized topology as a generalization of general topology. Al-Omari-Noiri [2] proposed a unified theory of contra- (μ, λ) -continuous functions on generalized topological spaces. Jyothis-Sunil [27, 28] defined the concept of soft generalized topology on S-sets and studied some related notions.

Soft separability properties have been studied in many articles as in [6, 15, 23–26]. Jyothis-Sunil [29] defined and studied some soft generalized separation axioms. In this work, we continue to study soft generalized separation axioms and generalize some soft separability properties by defining the properties SGR_i , i = 0, 1. We discuss some results, characterizations, and relationships with supporting examples.

*Corresponding author

Email addresses: jmufarij@ksu.edu.sa (Jawaher Al-Mufarrij), s_wosabi@yahoo.com (S. Saleh) doi: 10.22436/jmcs.032.01.04

Received: 2023-01-30 Revised: 2023-03-02 Accepted: 2023-05-10

This work is organized as follows. in the introduction, we review some known definitions and results in the soft setting that will be used in the subsequent sections. In Section 2, we define a soft generalized topology on a universe set U and discuss various examples, concepts, and properties, as well as the relationships between the generalized structures of soft topology. In Section 3, we present the definitions of the soft generalized separation properties SGR_i , i = 0, 1 and investigate the basic properties, characterizations, and related theorems for them. In Section 4, we present more properties, results, relationships with some necessary examples. We show that the SGR_i , i = 0, 1 are soft generalized topological property.

In all the paper, U refers to an initial universe set, T is the set of all parameters for U, 2^U is the power set of U, and SG-refers to soft generalized. Next, we give some concepts and results about S-set theory, for more details see [11, 17, 18, 20, 21, 30].

An S-set $H_T = (H, T)$ on U is a mapping $H : T \longrightarrow 2^U$ that is, H_T can be written as a set of ordered pairs $H_T = \{(t, h(t)) : t \in T, H(t) \in 2^U\}$. The class of all S-sets on U is symbolized by SS(U).

For $H_T, K_T \in SS(U)$ and $x \in U$, we have following.

- (i) If $H(t) = \emptyset$ (resp. H(t) = U) for any $t \in T$, then H_T is called a null (resp. universal) S-set and symbolized by $\tilde{\emptyset}$ (resp. \tilde{U}).
- (ii) The relative complement H_T^c of H_T , where $H^c: T \longrightarrow 2^U$ is a mapping given by $H^c(t) = U H(t)$ for every $t \in T$. Clearly $(H_T^c)^c = H_T$.
- (iii) H_T is an S-subset of K_T is symbolized by $H_T \cong K_T$ if $H(t) \subseteq K(t)$ for all $t \in T$.
- (iv) The S-union (resp. S-intersection) of H_T and K_T is an S-set G_T (resp. L_T) given by $G(t) = H(t) \cup K(t)$ (resp. $L(t) = H(t) \cap K(t)$) for all $t \in T$ and is symbolized by $H_T \widetilde{\cup} G_T$ (resp. $H_T \widetilde{\cap} G_T$).

For $H_T \in SS(U)$, $Y \subseteq U$, and $x \in U$, we have following.

- (i) If $H(t) = \{x\}$ and $H(t') = \emptyset$ for every $t' \in T \{t\}$, then H_T is called an S-point on U symbolized by x_t . We write $x_t \in H_T$ if for the element $t \in T$, $x \in H(t)$. The class of all S-points in \tilde{U} is denoted by SP(U).
- (ii) $x \in H_T$ if $x \in H(t)$ for all $t \in T$, and $x \notin H_T$ if $x \notin H(t)$ for some $t \in T$.
- (iii) If $H(t) = \{x\}$ for all $t \in T$, then H_T is called an S-singleton point denoted by x_T . We write $x_T \in H_T \iff x \in H_T \iff x_t \in H_T$ for all $t \in T$.
- (iv) $\tilde{Y} = (Y, T)$ refers to the S-set on U for which Y(t) = Y for all $t \in T$, is called stable. We write $x_t \neq y_t$ if $x \neq y$.

Definition 1.1. Let SS(U) and SS(V) be the two families of all S-sets on U, V respectively and let $u : U \longrightarrow V$ and $p : T \longrightarrow E$ be two maps, then the map $f_{up} : SS(U) \longrightarrow SS(V)$ is said to be a soft map (briefly, S-map) and we have:

- (i) for $H_T \in SS(U)$, the image $f_{up}(H_T)$ of H_T is the S set on V given by $f_{up}(H_T)(e) = \bigcup \{u(H(t)) : t \in p^{-1}(e)\}$ if $p^{-1}(e) \neq \emptyset$ and $f_{up}(H_T)(e) = \widetilde{\emptyset}$ otherwise for any $e \in E$;
- (ii) for $G_E \in SS(V)$, the preimage $f_{up}^{-1}(G_E)$ of G_E is the S-set on U given by $f_{up}^{-1}(G_E)(t) = u^{-1}(G(p(t)))$ for any $t \in T$.

The S-map f_{up} is called one-one (resp. onto and bijective), if u and p are one-one (resp. onto and bijective). For more details about the properties of S-maps see [17].

Definition 1.2 ([10]). A generalized topology (or GT) on U is a collection σ of subsets of U, which is closed under arbitrary unions and satisfies $\emptyset \in \sigma$. Any set in (U, σ) is called an g-open set.

Definition 1.3 ([22]). An GTS (U, τ) is said to be:

- (i) GR_0 if for any $x \neq y \in U$ with $cl(x) \neq cl(y)$ implies $cl(x) \cap cl(y) = \emptyset$;
- (ii) GR_1 if for any $x \neq y \in U$ with $cl(x) \neq cl(y)$, there are disjoint g-open subsets F, G of U such that $x \in F$ and $y \in G$.

The S-closure $cl(F_T)$ of F_T in (U, τ, T) is the S-intersection of all S-closed super sets of F_T , and the S-interior $int(F_T)$ of F_T is the S-union of all S-open sets contained in F_T .

Definition 1.5 ([23]). An STS (U, τ, T) is said to be:

- (i) SR₀ if for any $x_t \neq y_t \in SP(U)$ with $x_t \in cl(y_t)$ implies $y_t \in cl(x_t)$;
- (ii) SR₁ if for any $x_t \neq y_t \in SP(U)$ with $cl(x_t) \neq cl(y_t)$, there are disjoint S-open subsets F_T , G_T of U such that $x_t \in F_T$ and $y_t \in G_T$.

2. On soft generalized topological spaces

Jyothis-Sunil [27] gave the definition of soft generalized topology on a soft set. In this section, we give the definition of soft generalized topology on an initial universe set U as one of the generalized structures of soft topology. More examples, concepts, and properties are presented. In addition, the connections with other generalized structures of soft topology are examined.

First, we recall the definitions of some generalized structures of soft topology such as supra soft topology [12] and infra soft topology [5] as follows.

Definition 2.1. A family $\sigma \subseteq SS(U)$ with a fixed set of parameters T is said to be:

- (i) a supra soft topology (briefly, SST) on U if the S-union of any number of S-sets in σ belongs to σ and $\tilde{\emptyset}$, $\tilde{U} \in \sigma$;
- (ii) an infra soft topology (briefly, IST) on U if it is closed under finite S-intersections and $\widetilde{\emptyset} \in \sigma$.

Definition 2.2. A collection g of S-sets on U with a fixed set of parameters T is said to be a soft generalized topology on U if $\tilde{\emptyset} \in g$ and it is closed under arbitrary S-unions of members in g. The triple (U, g, T) is called a soft generalized topological space (briefly, SGTS), any element in g is called a soft g-open set (briefly, Sg-open), and its relative complement is called an Sg-closed set. The set of all Sg-closed sets in U is denoted by g^c .

In the next, we give some examples of soft generalized topologies on U.

Example 2.3. The following classes are soft generalized topologies on U.

(1) $g_1 = \{H_{iT} \in SS(U) : H_{1T} \subseteq H_{2T} \subseteq \cdots \subseteq H_{iT}, i \in J\}.$

- (2) $g_2 = \{H_T \in SS(U) : x_T \in H_T\} \cup \{\widetilde{\emptyset}\}.$
- (3) $g_3 = \{ \widetilde{\emptyset}, \widetilde{U}, F_T, F_T^c \}$ for any $F_T \in SS(U)$.
- (4) $g_4 = \{\widetilde{\emptyset}, H_T\}$ for any $H_T \in SS(U)$.

Remark 2.4. Let (U, g, T) be an SGTS and (U, τ, T) be STS, then we have:

- (1) if H_T and F_T are two Sg-open sets, then $H_T \cap F_T$ need not be Sg-open set;
- (2) if H_T is an Sg-open set and F_T is S-open set, then $H_T \cap F_T$ need not be Sg-open set, but if g = SS(U), $H_T \in g$, and $F_T \in \tau$, then $H_T \cap F_T$ is Sg-open set;
- (3) if g_i are SGTs on U for all $i \in J$, then $\cap g_i$ is SGT on U.

Now by the next results and examples, we can describe the relationships between the generalized structures of ST such as SST, IST, and SGT as follows.

Result 2.5. Clearly, every ST on U is an SST, SGT, and IST on U, but the converse is not true in general. The next examples show it.

Example 2.6. Let $U = \{a, b, c, d, e\}$, $T = \{t_1, t_2\}$, and $\sigma = \{\emptyset, \tilde{U}, F_T, G_T, H_T\}$, where, $F_T = \{(t_1, \{a, d\}), (t_2, \{a, c\})\}$, $G_T = \{(t_1, \{b, d\}), (t_2, \{b, c\})\}$, and $H_T = \{(t_1, \{a, b, d\}), (t_2, \{a, b, c\})\}$. One can verify that σ is an SST and SGT on U, but not ST.

Example 2.7. Let $U = \{a, b, c\}$, $T = \{t_1, t_2\}$, and $\sigma = \{\emptyset, \tilde{U}, F_T, H_T\}$, where $F_T = \{(t_1, \{a\}), (t_2, \emptyset)\}$, $H_T = \{(t_1, \{b, c\}), (t_2, \{b\})\}$. One can check that σ is an IST on U, but not (ST, SST, SGT) on U.

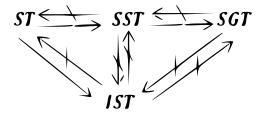
Result 2. Clearly, every SST is an SGT, but the converse is not true in general. The next example shows it.

Example 2.8. From the Example 2.6, consider the class $g = \{\tilde{\emptyset}, G_T, H_T\}$, it is clear that g is an SGT on U, but not SST.

Result 3. An IST is independent of SST and SGT. The next example shows it.

Example 2.9. Let $U = \{a, b, c\}$, $T = \{t_1, t_2\}$, and $\sigma = \{\tilde{\emptyset}, \tilde{U}, F_T, H_T\}$, where, $F_T = \{(t_1, \{a, c\}), (t_2, U)\}$, $H_T = \{(t_1, \{b\}), (t_2, \{b\})\}$, then σ is an GST and SST on U, but not IST. On other hand, the collection σ in Example 2.7 is an IST on U, but is neither SST and nor SGT on U.

The relationships among ST, SST, IST, and SGT can be summarized as follows:



Definition 2.10. Let (U, σ) be a generalized topological space and T be a fixed set of parameters. The family $g_{\sigma} = \{F_T : F(t) = A \text{ for all } t \in T \text{ and } A \in \sigma\}$ defines an SGT, called stable SGT on U generated by σ . In general, an SGTS (U, g, T) is called stable if any Sg-open set in (U, g, T) is stable.

Definition 2.11. An SGTS (U, g, T) is called a strong stable soft generalized topological space (briefly, strong stable SGTS) if $g = \{H_T : H(t) = B \text{ for all } t \in T \text{ and } B \subset U\}$. In this case any S-singleton point x_T in U_T is an Sg-open set.

Definition 2.12. Let (U, g, T) be an SGTS, the collection $g_t = \{H(t) : H_T \in g\}$ for each $t \in T$ defines a generalized topology on U, called a parametric GT.

Remark 2.13.

(1) If (U, g, T) is a strong stable SGTS, we have:

- (i) any element in (U, g, T) is both Sg-open and Sg-closed set;
- (ii) (U, g_t) is a discrete space for all $t \in T$;
- (iii) every (U, g_{σ}, T) is a subspace of a strong stable SGTS (U, g, T);
- (iv) every strong stable SGTS (U, g, T) is a subspace of soft discrete space (U, τ, T).
- (2) Let (U, σ) be a discrete TS, we have the SGT g_{σ} , which is defined in Definition 2.10, is a strong stable SGT on U.

Definition 2.14. For SGT (U, g, T), if $H^c \in g$ for every $H \in g$, then (U, g, T) is called a complemental SGTS.

Example 2.15.

- (1) Let $U = \{a, b, c\}$, $T = \{t_1, t_2\}$, and the class $\sigma = \{\emptyset, U, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Then σ is a GT on U and from Definition 2.10, we have the class $g_{\sigma} = \{\widetilde{\emptyset}, \widetilde{U}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is an SGT on U.
- (2) Let $U = \{x, y, z\}$, $T = \{t_1, t_2\}$ and $\tau = SS(U)$ be a soft discrete topology on U. The class $g = \{\widetilde{\emptyset}, \widetilde{U}, x_T, y_T, z_T, \{x, y\}, \{x, z\}, \{y, z\}\}$ is a strong stable SGT on U and any element in g is both Sg-open and Sg-closed set. Moreover, g is a complemental SGT and it is a subspace of τ . On other hand, $g_{t_1} = g_{t_2} = \{\emptyset, U, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}\}$ is a discrete topology on U.

Definition 2.16. An S-set H_T in (U, g, T) is said to be an Sg-neighborhood (briefly, Sg-nbd) of x_t if there is an $F_T \in g$ such that $x_t \in F_T \subseteq H_T$.

Notation. O_{x_t} refers to an Sg-open set containing x_t , and is called an Sg-open nbd of x_t .

Definition 2.17. Let H_T be an S-set in SGTS (U, g, T). Then the Sg-closure $cl_g(H_T)$ of H_T is the S-intersection of all Sg-closed super sets of H_T , and the Sg-interior $int_g(H_T)$ of H_T is the S-union of all Sg-open sets contained in H_T .

Proposition 2.18. Let (U, g, T) be an SGTS and H_T , $K_T \in SS(U)$, we have:

- (i) $H_T \in g^c$ if and only if $cl_g(H_T) = H_T$;
- (ii) $H_T \cong F_T$ implies $cl_g(H_T) \cong cl_g(F_T)$;
- (iii) $x_t \in cl_g(H_T)$ if and only if $O_{x_t} \cap H_T \neq \widetilde{\emptyset}$ for all $O_{x_t} \in g$.

Proof. The proofs of (i) and (ii) are obvious.

(iii) Let $x_t \in cl_g(H_T)$, then $x_t \in F_T$ for all $F_T \in g_c$ such that $H_T \subseteq F_T$. Suppose that there is an Sg-open set O_{x_t} containing x_t with $O_{x_t} \cap H_T = \widetilde{\emptyset}$, then $H_T \subseteq O_{x_t}^c$. This is a contradiction. Hence the result holds. Conversely, suppose that $x_t \notin cl_g(H_T)$, then $x_t \in (cl_g(H_T))^c = O_{x_t}$, i.e., there is an Sg-open set containing x_t such that $H_T \cap (cl_g(H_T))^c = \widetilde{\emptyset}$, and the result holds. \Box

Definition 2.19. Let (U, g, T) be an SGTS and $Y \subseteq U$. The family $g_Y = \{\tilde{Y} \cap H_T : H_T \in g\}$ is an SGT on Y, and (Y, g_Y, T) is called an SGT-subspace of (U, g, T). For the SGT-subspace (Y, g_Y, T) of (U, g, T) and $H_E \in SS(Y)$ we have H_T is an Sg-open set in Y if and only if $H_T = \tilde{Y} \cap G_T$ for some $G_T \in g$.

Definition 2.20. Let (U, g, T) be an SGTS, $H_T \in SS(U)$, and $x_t \in SP(U)$, then the soft generalized kernel of H_T , denoted as SGK (H_T) is the S-set given as SGK $(H_T) = \widetilde{\cap} \{F_T \in g : H_T \subseteq F_T\}$. In particular, the soft generalized kernel of $x_t \in SP(U)$ is given by SGK $(x_t) = \widetilde{\cap} \{F_T \in g : x_t \in F_T\}$.

Lemma 2.21. Let (U, g, T) be an SGTS and $H_T \in SS(U)$. Then $SGK(H_T) = \widetilde{\cup} \{x_t \in SP(U) : cl_g(x_t) \widetilde{\cap} H_T \neq \emptyset_T\}$.

Proof. Let $x_t \in SGK(H_T)$. Suppose that $cl_g(x_t) \cap H_T = \widetilde{\emptyset}$, then $H_T \subseteq (cl_g(x_t))^c$ and $x_t \notin (cl_g(x_t))^c$, which is an Sg-open set containing H_T . This contradicts with $x_t \in SGK(H_T)$. So, $cl_g(x_t) \cap H_T \neq \widetilde{\emptyset}$ and $SGK(H_T) \subseteq \widetilde{\cup} \{x_t \in SP(U) : cl_g(x_t) \cap H_T \neq \widetilde{\emptyset}\}$.

Conversely, let $cl_g(x_t) \cap H_T \neq \widetilde{\emptyset}$. Suppose $x_t \notin GSK(H_T)$, then there is an $K_T \in g$ such that $H_T \subseteq K_T$ and $x_t \notin K_T$. Now let $y_t \in cl_g(x_t) \cap H_T$, we have $y_t \in cl_g(x_t)$ and since K_T is an Sg-open set containing y_t this implies $x_t \in K_T$, a contradiction. So $x_t \in SGK(H_T)$.

Lemma 2.22. Let (U, g, T) be an SGTS and $x_t \in SP(U)$, then $y_t \in SGK(x_t)$ if and only if $x_t \in cl_q(y_t)$.

Proof. It is obvious.

Lemma 2.23. Let (U, g, T) be an SGTS and x_t , $y_t \in SP(U)$, then $SGK(x_t) \neq SGK(y_t)$ if and only if $cl_g(x_t) \neq cl_g(y_t)$.

Proof. Let SGK(x_t) \neq SGK(y_t), there is $z_t \in$ SP(U) with $z_t \in$ SGK(x_t) and $z_t \notin$ SGK(y_t). If $z_t \in$ SGK(x_t), from Lemma 2.21, we get $x_t \cap cl_g(z_t) \neq \emptyset$ implies $x_t \in cl_g(z_t)$, that is $cl_g(x_t) \subseteq cl_g(z_t)$. Similarly, if $z_t \notin$ SGK(y_t) we get $y_t \notin cl_g(z_t)$. Since $cl_g(x_t) \in cl_g(z_t)$ and $y_t \notin cl_g(x_t)$, we have $y_e \notin cl_g(x_t)$. Hence $cl_g(x_t) \neq cl_g(y_t)$.

Conversely, let $cl_g(x_t) \neq cl_g(y_t)$, there is $z_t \in SP(U)$ with $z_t \in cl_g(x_t)$ and $z_e \notin cl_g(y_t)$. Thus, there is an Sg-open set containing z_t and so x_t but not y_t . Hence $y_t \notin SGK(x_t)$ and the proof is complete. \Box

Now, let us give the next definition which is obtained by replacing τ and S-open sets in [29] with g and Sg-open sets, respectively.

Definition 2.24. An SGTS (U, g, T) is said to be:

- (i) soft generalized T_0 (briefly, SGT₀) iff for any x_t , $y_t(x \neq y)$ there are Sg-open sets H_T and F_T such that $x_t \in F_T$ and $y_t \notin H_T$ or $y_t \in H_T$ and $x_t \notin H_T$;
- (ii) soft generalized T₁ (briefly, SGT₁) iff for any x_t , $y_t(x \neq y)$ there are Sg-open sets H_T and F_T such that $x_t \in H_T$, $y_t \notin H_T$ and $y_t \in F_T$, $x_t \notin F_T$;
- (iii) soft generalized T₂ (briefly, SGT₂) iff for any x_t , $y_t(x \neq y)$ there are Sg-open sets H_T and F_T such that $x_t \in H_T$, $y_t \in F_T$ and $H_T \cap F_{ET} = \widetilde{\emptyset}$.

Remark 2.25. Clearly, $SGT_2 \implies SGT_1 \implies SGT_0$

3. On soft generalized R_0 and R_1 spaces

In the following, we introduce and study two new classes of soft generalized separation properties, called SGR_i , i = 0, 1 and investigate some characterizations for them.

Definition 3.1. An SGTS (U, g, T) is called soft Generalized R_0 (briefly, SGR₀) iff for any $x_t \neq y_t \in SP(U)$ with $x_t \in cl_q(y_t)$ implies $y_t \in cl_q(x_t)$.

Theorem 3.2. An SGTS (U, g, T) is SGR₀ if and only if $cl_g(x_t) \subseteq H_T$ for all $H_T \in g$, $x_t \in H_T$.

Proof. Let (U, g, T) be SGR₀. Suppose $cl_g(x_t) \not\subseteq H_T$ for some $H_T \in g$ and $x_t \in H_T$, there is an S-point y_t such that $y_t \in cl_g(x_t), y_t \notin H_T$. So that $y_t \cap H_T = \emptyset$ for some $H_T \in g, x_t \in H_T$ and $x_t, y_t \in SP(U)$ with $x \neq y$. Thus $x_t \notin cl_g(y_t)$. This is a contradiction. Thus, the necessary part holds.

Conversely, let $x_t \notin cl_g(y_t)$, there is an Sg-open set K_T containing x_t such that $y_t \cap K_T = \emptyset$ this implies that $y_t \notin K_T$. By hypothesis $cl_g(x_t) \subseteq K_T$, we get $y_t \notin cl_g(x_t)$. Therefore (U, g, T) is SGR₀.

Theorem 3.3. For SGTS (U, g, T) and $x_t \in SP(U)$, the next items are equivalent:

(1) (U, g, T) *is* SGR₀;

(2) for any $H_T \in g^c$ with $x_t \notin H_T$, we have $cl_g(x_t) \widetilde{\cap} H_T = \emptyset$;

(3) for any x_t , $y_t \in SP(U)$ ($x \neq y$), either $cl_g(x_t) = cl_g(y_t)$ or $cl_g(x_t) \cap cl_g(y_t) = \emptyset$.

Proof.

 $(1) \Longrightarrow (2)$ It follows from that of the above theorem.

(2) \Longrightarrow (3) Let $x_t \neq y_t \in SP(U)$ with $cl_g(x_t)\neq cl_g(y_t)$, there is $z_t \in cl_g(x_t)$ and $z_t \notin cl_g(y_t)$ (or, $z_t \in cl_g(y_t)$) and $z_t \notin cl_g(x_t)$). Thus there is $H_T \in g$ such that $y_t \notin H_T, z_t \in H_T$ and so, $x_t \in H_T$. Therefore, $x_t \notin cl_g(y_t)$. From (2) we get, $cl_g(x_t) \cap cl_g(y_t) = \emptyset$. The proof of the rest case is similar.

 $\begin{array}{l} (3) \Longrightarrow (1) \ \text{Let} \ x_t \neq y_t \in SP(U) \ \text{with} \ x_t \widetilde{\notin} cl_g(y_t), \text{we get} \ cl_g(x_t) \neq cl_g(y_t). \ \text{From (3), we have} \ cl_g(x_t) \widetilde{\cap} cl_g(y_t) \\ = \widetilde{\emptyset} \ \text{which implies} \ y_t \widetilde{\in} cl_g(y_t) \widetilde{\subset} (cl_g(x_t))^c \ \text{and so}, \ y_t \widetilde{\notin} cl_g(x_t). \end{array}$

Corollary 3.4. An SGTS (U, g, T) is SGR₀ if and only if for any $x_t \neq y_t \in SP(U)$ with $cl_g(x_t)\neq cl_g(y_t)$ implies $cl_g(x_t) \cap cl_g(y_t) = \emptyset$.

Proof. It follows from that of the above theorems.

Theorem 3.5. For SGTS (U, g, T) the next statements are equivalent:

(1) $(\mathbf{U}, \mathbf{g}, \mathbf{T})$ is SGR_0 ; (2) $H_T \in \mathbf{g}^c \Longrightarrow H_T = SGK(H_T)$; (3) $H_T \in \mathbf{g}^c$ and $\mathbf{x}_t \in H_T \Longrightarrow SGK(\mathbf{x}_t) \subseteq H_T$; (4) $\mathbf{x}_t \in SP(\mathbf{U}) \Longrightarrow SGK(\mathbf{x}_t) \subseteq cl_q(\mathbf{x}_t)$.

Proof.

(1) \Longrightarrow (2) Let $H_T \in g^c$. Suppose that $x_t \notin H_T$, we have $x_t \in H_T^c$ which is an Sg-open set containing x_t . Since (U, g, T) is SGR₀, we get $cl_g(x_t) \in H_T^c$ implies $cl_g(x_t) \cap H_T = \emptyset$. From Lemma 2.21, we get $x_t \notin SGK(H_T)$. So, $H_T = SGK(H_T)$.

(2) \Longrightarrow (3) It follows from that $F_T \subseteq G_T$ implies $SGK(F_T) \subseteq SGK(G_T)$.

 $(3) \Longrightarrow (4)$ Obvious.

 $\begin{array}{ll} (4) \Longrightarrow (1) \ \text{Let} \ x_t \ \neq \ y_t \ \in \ SP(U) \ \text{with} \ x_t \widetilde{\in} cl_g \ (y_t). \ \text{From Lemma 2.22, we get} \ y_t \widetilde{\in} SGK \ (x_t). \ \text{Since} \\ x_t \widetilde{\in} cl_g \ (x_t), \ \text{which is an Sg-closed set and from (4), we have} \ y_t \widetilde{\in} SGK \ (x_t) \ \widetilde{\subseteq} cl_g \ (x_t), \ \text{that is} \ y_t \widetilde{\in} cl_g \ (x_t) \\ \text{and this completes the proof.} \end{array}$

Proposition 3.6. An SGTS (U, g, T) is SGR₀ if and only if $cl_q(x_t) \subseteq SGK(x_t)$ for all $x_t \in SP(U)$.

Proof. It follows from Lemma 2.22 and Theorem 3.2.

From Lemma 2.22 and the above proposition, one can verify the next corollary.

Corollary 3.7. An SGTS (U, g, T) is SGR₀ if for any $x_t \in SP(U)$, SGK $(x_t) = cl_q(x_t)$.

Theorem 3.8. An SGTS (U, g, T) is SGR₀ if and only if for any $x_t \neq y_t \in SP(U)$ with SGK $(x_t) \neq SGK(y_t)$ implies SGK $(x_t) \cap SGK(y_t) = \widetilde{\emptyset}$.

Proof.

 $\implies \text{Let } (U, g, T) \text{ be an } SGR_0 \text{ and } x_t \neq y_t \in SP(U) \text{ with } GSK(x_t) \neq GSK(y_t). \text{ By Lemma 2.23, we get } \\ cl_g(x_t) \neq cl_g(y_t). \text{ Suppose } SGK(x_t) \cap SGK(y_t) \neq \widetilde{\emptyset}, \text{ there is } z_t \in SGK(x_t) \cap SGK(y_t). \text{ Since } z_t \in SGK(x_t), \text{ from Lemma 2.22 we have, } x_t \in cl_g(z_t) \text{ implies } cl_g(x_t) \in cl_g(z_t). \text{ Since } x_t \in cl_g(x_t) \text{ and from Corollary 3.4, } \\ \text{we get } cl_g(x_t) = cl_g(z_t). \text{ Similarly, since } z_t \in SGK(y_t), \text{ we have } cl_g(y_t) = cl_g(z_t) = cl_g(x_t). \text{ This is a contradiction. Therefore, } SGK(x_e) \cap SGK(y_e) = \widetilde{\emptyset}.$

 $\begin{array}{ll} \displaystyle \Leftarrow & \text{Let } x_t \neq y_t \in SP(U) \text{ with } cl_g(x_t) \neq cl_g(y_t). \text{ From Lemma 2.23, we have } SGK(x_t) \neq GSK(y_t). \text{ By hypothesis, we get } SGK(x_e) \cap SGK(y_e) = \widetilde{\emptyset}. \text{ Suppose that } cl_g(x_t) \cap cl_g(y_t) \neq \widetilde{\emptyset}, \text{ there is } z_t \in SP(U) \text{ such that } z_t \in cl_g(x_t) \text{ and } z_t \in cl_g(y_t). \text{ Form Lemma 2.22, we have } x_t \in GSK(z_t) \text{ and } y_t \in SGK(z_t) \text{ and by Lemma 2.21, we obtain, } SGK(x_t) \cap SGK(z_t) \neq \widetilde{\emptyset} \text{ and } SGK(y_t) \cap SGK(z_t) \neq \widetilde{\emptyset}. \text{ By hypothesis we get, } SGK(x_t) = SGK(z_t) \text{ and } SGK(z_t) = SGK(z_t) = SGK(z_t). \text{ So, } SGK(x_t) \cap SGK(y_t) \neq \widetilde{\emptyset}. \text{ This is a contradiction. Thus } cl_g(x_t) \cap cl_g(y_t) = \widetilde{\emptyset}. \text{ Hence by Corollary 3.4, we obtain the result.} \end{array}$

Definition 3.9. An SGTS (U, g, T) is called soft generalized R_1 (briefly, SGR₁) iff for any $x_t \neq y_t \in SP(U)$, with $cl_g(x_t)\neq cl_g(y_t)$, there are Sg-open sets H_T , K_T such that $x_t \in H_T$ and $y_t \in K_T$ with $H_T \cap K_T = \widetilde{\phi}$.

Proposition 3.10. Every SGR₁ space is SGR₀.

Proof. Let $x_t \neq y_t \in SP(U)$ with $x_t \notin cl_q(y_t)$, then $cl_q(x_t) \neq cl_q(y_t)$. Since (U, g, T) is SGR₁, there is $H_T \in g$ such that $y_t \in H_T$ and $x_t \notin H_T$. So $y_t \notin cl_g(x_t)$, and this completes the proof.

The converse of the above theorem is not necessary true, the next example shows it.

Example 3.11. Let U be an infinite set. The class $g = \{\emptyset\} \cup \{H_T : (H(t))^c \text{ is a finite subset of U for all } t \in T\}$ is SGT on U and (U, g, T) is called an SG cofinite space. Now one can verify g is SGR₀. But it is not SGR₁. Indeed, suppose that (U, g, T) is SGR₁ and $x_t \neq y_t \in SP(U)$ with $cl_g(x_t)\neq cl_g(y_t)$, there are $F_T, G_T \in g$ such that $x_t \in F_T$, $y_t \in G_T$ and $F_T \cap G_T = \emptyset$ implies $(F(t))^c \cup (G(t))^c = U$. Since $(F(t))^c$, $(G(t))^c$ are finite subsets of U, this means that U is finite. This is a contradiction. Thus (U, q, T) is not SGR₁.

Theorem 3.12. Every strong stable SGTS (U, g, T) is SGR_i, i = 0, 1.

Proof. For the case i=1, let (U, g, T) be a strong SGTS and $x_t, y_t \in SP(U)(x \neq y)$ such that $cl_g(x_t) \neq cl_g(y_t)$, there are Sg-open sets x_T, y_T such that $x_t \in x_T$ and $y_t \in y_T$ with $x_T \cap y_T = \emptyset$. Hence (U, g, T) is SGR₁. The proof of other case is obvious.

Corollary 3.13. *Every stable* SGTS (U, g, T) *is* SGR_i, i = 0, 1.

Theorem 3.14. An SGTS (U, g, T) is SGR₁ if and only if for any $x_t \neq y_t \in SP(U)$ with SGK $(x_t) \neq SGK(y_t)$, there are $H_T, K_T \in g$ such that $cl_q(x_t) \subseteq H_T$, $cl_q(y_t) \subseteq K_T$ and $H_T \cap K_T = \emptyset$.

Proof. It follows by using Lemma 2.22.

Proposition 3.15. For SGTS (U, g, T), the next statements are equivalent.

- (1) (U, g, T) is SGR₁.
- (2) For any $x_t \neq y_t \in SP(U)$ with $x_t \widetilde{\notin} cl_g(y_t)$, there are $F_T, G_T \in g$ such that $x_t \widetilde{\in} F_T$, $y_t \widetilde{\in} G_T$, and $F_T \widetilde{\cap} G_T = \widetilde{\emptyset}$.
- (3) For any $x_t \neq y_t \in SP(U)$ with $cl_g(x_t) \neq cl_g(y_t)$, there are F_T , $G_T \in g$ such that $cl_g(x_t) \cong F_T$ and $cl_g(y_t) \cong G_T$ with $F_T \cap G_T = \emptyset$.

Proof. It follows from the above theorem and Lemma 2.23.

Theorem 3.16. *Every complemental* SGTS (U, g, T) *is* SGR_i, i = 0, 1.

Proof. We will prove only the case i = 1. The proof of other case is similar. Let $x_t \neq y_t \in SP(U)$ and $x_t \notin cl_q(y_t)$, then $x_t \in (cl_q(y_t))^c = H_T \in g$. Since (U, g, T) is a complemental SGTS, we have $y_t \in cl_q(y_t) =$ $G_T \in g$. Clearly, $H_T \cap G_T = \emptyset$ and so, from Proposition 3.15 (2), the result holds.

Corollary 3.17. *Every* SR_i *space is* SGR_i *, for* i = 0, 1*.*

4. More properties and relations

Theorem 4.1. Every SGT subspace (Y, g_Y, T) of SGR_i (U, g, T) is SGR_i, i = 0, 1.

Proof. We will show the case i = 1. The proof of the rest case is similar. Let $x_t \neq y_t \in SP(Y)$ with $cl_g(x_t) \neq cl_g(y_t)$, then x_t, y_t are different S-points in U with $cl_g(x_t) \neq cl_g(y_t)$. Since (U, g, T) is SGR₁, there are $F_T, G_T \in g$ such that $x_t \in F_T$ and $y_t \in G_T$ with $F_T \cap G_T = \emptyset$. So there are Sg-open sets $H_T^Y = Y_T \cap F_T \in g_Y$ and $V_T^Y = Y_T \cap G_T \in g_Y$ containing x_t, y_t , respectively, with $U_F^Y \cap V_F^Y = \emptyset$. Therefore (Y, g_Y, T) is SGR₁. \Box

The next example shows a SGTS with SGR_i and another GTS which does not have GR_i for i = 0, 1.

Example 4.2. Let $U = \{a, b, c\}$ and $T = \{t_1, t_2\}$. The class $g = \{\emptyset, \tilde{U}, F_{1T}, F_{2T}\}$, where $F_{1T} = \{(t_1, U)\}$ and $F_{2T} = \{(t_2, U)\}$ is a SGT on U. One can verify that (U, g, T) is SGR₀ and SGR₁. On the other hand, the class $\tau = \{\emptyset, \{a\}, \{a, b\}\}$ is a GT on U which is not GR₀. Indeed, for the different points $a, b \in U$ with $cl(a) = U \neq cl(b) = \{b, c\}$, we have $cl(a) \cap cl(b) = \{b, c\} \neq \emptyset$.

Theorem 4.3. If (U, g, T) is SGR_i, then (U, g_t) is GR_i for all $t \in T$, i = 0, 1.

Proof. We will prove the case i = 1. The proof of the case i = 0 is similar. Let $x, y \in U$ and $x \neq y$ with $cl(x) \neq cl(y)$, then either $x \notin cl(y)$ or $y \notin cl(x)$. Thus, $x_t \notin cl_g(y_t)$ or $y_t \notin cl_g(x_t)$ this implies $cl_g(x_t) \neq cl_g(y_t)$. Since (U, g, T) is SGR₁, there are $H_T, K_T \in g$ such that $x_t \in H_T$ and $y_t \in K_T$ with $H_T \cap K_T = \emptyset$ and so, there are H(t) and $K(t) \in g_t$ such that $x \in H(t)$ and $y \in K(t)$ with $H(t) \cap K(t) = \emptyset$ for all $t \in T$. Therefore (U, g_t) is GR₁ for all $t \in T$.

The next example shows that the converse of the above theorem may not be true.

Example 4.4. Let $U = \{a, b\}$ and $T = \{t_1, t_2\}$. Consider the class $g = \{\tilde{\emptyset}, \tilde{U}, H_{1T}, H_{2T}, H_{3T}, H_{4T}\}$, where $H_{1T} = \{(t_1, \{a\})\}, H_{2T} = \{(t_1, \{a\}), (t_2, \{a\})\}, H_{3T} = \{(t_1, \{a\}), (t_2, \{b\})\}, \text{ and } H_{4T} = \{(t_1, \{a\}), (t_2, U)\}, \text{ which is a SGT on U and the class } g_{t_2} = \{\emptyset, U, \{a\}, \{b\}\} \text{ is a GT on U. It is clear that } (U, g_{t_2}) \text{ is GR}_1 \text{ and } GR_0.$ But (U, g, T) is not SGR_0. Indeed, for $a_{t_1}, b_{t_1} \in SP(U)(a \neq b)$, we have, $\tilde{U} = cl_g(a_{t_1}) \neq cl_g(b_{t_1}) = b_{t_1}$ but $cl_g(a_{t_1}) \widetilde{\cap} cl_g(b_{t_1}) \neq \widetilde{\emptyset}$. Hence (U, g, T) is not SGR_1.

Proposition 4.5. Let (U, g, T) be a strong stable SGTS, then (U, g, T) is SGR_i if and only if (U, g_t) is GR_i for all $t \in T$ and i = 0, 1.

Proof. We will give the proof for i = 1. The proof for the case i = 0 is similar.

 \implies The proof follows from that of Theorem 4.3.

 $\begin{array}{l} \displaystyle \Leftarrow \ \ Let \ x_t \neq y_t \in SP(U) \ \text{with} \ cl_g(x_t) \neq cl_g(y_t), \ \text{then} \ x \neq y \ \text{with} \ cl(x) \neq cl(y). \ \text{Since} \ (U,g_t) \ \text{is} \ GR_1, \ \text{there} \ \text{are} \ g\text{-open subsets} \ F, \ K \ of \ U \ \text{such} \ \text{that} \ x \in F \ \text{and} \ y \in K \ \text{with} \ F \cap K = \emptyset \ \text{imply there} \ \text{are} \ H_T, \ V_T \widetilde{\in} g \ \text{such} \ \text{that} \ F = H(t) \ \text{and} \ K = V(t) \ \text{for} \ \text{all} \ t \in T \ \text{with} \ x_t \widetilde{\in} H_T \ \text{and} \ y_t \widetilde{\in} V_T \ \text{with} \ H_T \widetilde{\cap} V_T = \widetilde{\emptyset}. \ \text{Therefore,} \ (U,g,T) \ \text{is} \ SGR_1. \end{array}$

Theorem 4.6. A GTS (U, σ) is GR_i if and only if (U, g_{σ}, T) is SGR_i, i = 0, 1.

Proof. We will give the proof for i = 1. The proof for the case i = 0 is similar.

 \implies The proof is similar to that of the converse part in the above proposition.

 $\begin{array}{l} \displaystyle \xleftarrow{} \ \ Let \ x \neq y \in U \ \text{with} \ cl(x) \neq cl(y), \ \text{we have either} \ x \notin cl(y) \ \text{or} \ y \notin cl(x) \ \text{and this implies that} \\ \displaystyle x_t \notin cl_g(y_t) \ \text{or} \ y_t \notin cl_g(x_t), \ \text{then} \ cl_g(x_t) \neq cl_g(y_t). \ \text{Since} \ (U, g_{\sigma}, T) \ \text{is} \ SGR_1, \ \text{there are} \ F_T, G_T \widetilde{\in} g_{\sigma} \ \text{such that} \\ \displaystyle x_t \widetilde{\in} F_T, y_t \widetilde{\in} G_T \ \text{and} \ F_T \widetilde{\cap} G_T = \widetilde{\emptyset}. \ \text{Thus, there are disjoint g-open sets} \ A, B \in \sigma \ \text{such that} \ x \in F(t) = A \ \text{and} \ y \in G(t) = B \ \text{for all} \ t \in T. \ \text{Hence} \ (U, \sigma) \ \text{is} \ GR_1. \end{array}$

Theorem 4.7. If (U, g, T) is SGT_i, then it is SGR_{i-1}, for i = 1, 2.

Proof. We will prove the case i = 1. The proof for the case i = 2 is obvious. Let (U, g, T) be SGT₁ and H_T be an Sg-open set containing x_t . We need to prove that $cl_g(x_t) \subseteq H_T$. So let $y_t \notin H_T$, then $x_t \notin cl_g(y_t)$ and x_t, y_t are different S-points. Since (U, g, T) is SGT₁, there is $K_T \in g$ such that $y_t \in K_T$ and $x_t \notin K_T$, then $y_t \notin cl_g(x_t)$. Therefore $cl_g(x_t) \subseteq H_T$. This completes the proof.

The converse of the above theorem may not be true. The next example shows it.

Example 4.8. Let $U = \{a, b\}$ and $T = \{t_1, t_2\}$. The class $g = \{\emptyset, \tilde{U}, F_{1T}, F_{2T}\}$, where, $F_{1T} = \{(t_1, U)\}$ and $F_{2T} = \{(t_2, U)\}$ is an SGT on U. One can verify (U, g, T) is SGR₀ and SGR₁ but not SGT₁. Indeed, for two S-points a_{t_1}, b_{t_1} , the Sg-open sets which are containing a_{t_1} are \tilde{U} and F_{1T} but also, they are containing b_{t_1} . Thus (U, g, T) is not SGT₁. Moreover, one can check that (U, g, T) is not SGT₂.

Theorem 4.9. For SGTS (U, g, T), we have:

(1) (U, g, T) is SGT₂ \iff it is both SGR₁ and SGT₀;

(2) $(\mathbf{U}, \mathbf{g}, \mathsf{T})$ is $\mathsf{SGT}_1 \iff it is both \ \mathsf{SGR}_0$ and SGT_0 .

Proof. We will show the case (1). The proof of the other case is similar.

The necessity part follows from Theorem 4.7 and Remark 2.25.

Conversely, let $x_t \neq y_t \in SP(U)$ with $x_t \notin cl_g(y_t)$. Since (U, g, T) is SGR_0 , then $y_t \notin cl_g(x_t)$ and so, $cl_g(x_t) \neq cl_g(y_t)$. Again, (U, g, T) is SGR_1 , so there are disjoint Sg-open sets F_T , H_T containing x_t, y_t , respectively. Hence (U, g, T) is SGT_2 .

Corollary 4.10. (U, g, T) *is* SGT₂ \iff *it is both* SGR₁ *and* SGT₁.

Definition 4.11. An S-map $f_{up} : (U, g, T) \longrightarrow (V, \sigma, E)$ is called:

- (i) Sg-continuous if $f_{up}^{-1}(F_E) \in g$ for any Sg-open set $F_E \in \sigma$ ([27]);
- (ii) Sg-open if $f_{up}(G_T) \in \sigma$ for any Sg-open set $G_T \in g([27])$;
- (iii) Sg-homeomorphism if it is bijective, Sg-continuous, and Sg-open.

Definition 4.12. A property is called a soft generalized-topological property if the property is preserved by Sg-homeomorphism.

Theorem 4.13. For a bijective Sg-continuous map $f_{up} : (U, g, T) \longrightarrow (V, \sigma, E)$, if (V, σ, E) is SGR_i, then (U, g, T) is also SGR_i, i = 0.1.

Proof. We will prove only the case i = 1. The proof of the rest case is similar. To show that (U, g, T) is SGR₁, let $x_t, y_t \in SP(U)(x \neq y)$. Since f_{up} is one-one, there are two distinct S-points a_e, b_e in V such that $f_{up}(x_t) = a_e$ and $f_{up}(y_t) = b_e$. Since (V, σ, E) is SGR₁, there are two Sg-open sets $H_{1E}, H_{2E} \in \sigma$ such that $a_e \in H_{1E}$ and $b_e \in H_{2E}$ and so, $x_t \in f_{up}^{-1}(H_{1E})$ and $y_t \in f_{up}^{-1}(H_{2E})$. Since f_{up} is Sg-continuous, we have $f_{up}^{-1}(H_{1E}), f_{up}^{-1}(H_{2E})$ are Sg-open sets in (U, g, T) with $f_{up}^{-1}(H_{1E}) \cap f_{up}^{-1}(H_2E) = \emptyset$. Thus (U, g, T) is SGR₁. \Box

Theorem 4.14. For a bijective Sg-open map $f_{up} : (U, g, T) \longrightarrow (V, \sigma, E)$, if (U, g, T) is SGR_i, then (V, σ, E) is also SGR_i, i = 0.1.

Proof. We will prove only the case i = 1. The proof of the rest case is similar. To show that (V, σ, E) is SGR₁. Let $a_e \neq b_e \in SP(V)$. Since f_{up} is onto, there are two distinct S-points x_t, y_t in U such that $f_{up}(x_t) = a_e$ and $f_{up}(y_t) = b_e$. By hypothesis, there are two Sg-open sets $H_{1T}, H_{2T} \in g$ such that $x_t \in H_{1E}, y_t \in H_{2E}$ and so, $a_e \in f_{up}(H_{1T})$ and $b_e \in f_{up}(H_{2T})$. Since f_{up} is Sg-open, we have $f_{up}(H_{1T})$, $f_{up}(H_{2T})$ are Sg-open sets in (V, σ, E) with $f_{up}(H_{1E}) \cap f_{up}(H_{2T}) = \emptyset$. Hence (V, σ, E) is SGR₁.

From the above two theorems, we have the next theorem.

Theorem 4.15. Let $f_{up} : (U, G, T) \longrightarrow (V, \sigma, E)$ be an Sg-homeomorphism map, then (U, g, T) is SGR_i if and only if (V, σ, E) is SGR_i, i = 0.1.

Corollary 4.16. The soft generalized properties SGR_i are SG-topological property, for i = 0, 1.

Corollary 4.17. From Remark 2.25, Proposition 3.10, Corollary 3.17, and Theorems 4.7 and 4.9, the following implications hold and describe the relationships between SGR_i and other soft separation properties.

$$\begin{array}{c} \mathsf{SGT}_2 \Longrightarrow \mathsf{SGT}_1 \Longrightarrow \mathsf{SGT}_0 \\ \Downarrow \qquad & \Downarrow \\ \mathsf{SGR}_1 \Longrightarrow \mathsf{SGR}_0 \\ \Uparrow \qquad & \Uparrow \\ \mathsf{SR}_1 \Longrightarrow \mathsf{SR}_0 \end{array}$$

5. Conclusion

In this work, we defined and studied a new class of soft generalized properties called soft generalized R_0 and R_1 axioms in soft generalized topological spaces, and have obtained some characterizations of these properties. We also, investigated the relationships between various generalized topological structures of soft topology and presented several results with supported examples. In the future work, we will study the notions of R_0 and R_1 properties in supra soft topological spaces and investigate some soft generalized notions such as compactness and connectedness in this new setting. It is stated that the results obtained in the paper may be useful for further research on soft set theory and its applications.

Acknowledgement

The authors are grateful to the anonymous referees for their valuable comments. This study was supported by King Saud University. Deanship of Scientific Research. College of Science Research Center.

References

- [1] H. Aktaş, N. Çağman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. 1
- [2] A. Al-Omari, T. Noiri, A unified theory of contra-(μ, λ)-continuous functions in generalized topological spaces, Acta Math. Hungar, 135 (2012), 31–41.
- [3] A. Al-Omari, Soft topology in ideal topological spaces, Hacet. J. Math. Stat., 48 (2019), 1277–1285 1
- [4] H. S. Al-Saadi, H. Aygün, A. Al-Omari, Some notes on soft hyperconnected spaces, J. Anal., 28 (2020), 351-362. 1
- [5] T. M. Al-Shami, New Structure: Infra Soft Topological Spaces, Math. Probl. Eng., 2021 (2021), 12 Pages. 1, 2
- [6] T. M. Al-Shami, Partial belong relation on soft separation axioms, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. 1
- [7] N. Çağman, S. Enginoğlu, Soft set theory and uni-int decision making, European J. Oper. Res., 207 (2010), 848-855. 1
- [8] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358.
- [9] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. 1
- [10] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357. 1, 1.2
- [11] S. Das, S. K. Samanta, Soft Matric, Annals Fuzzy Math. Info., 6 (2013), 77-94. 1
- [12] S. A. El-Sheikh, A. M. Abd El-Latif, Decompositions of some types of supra soft sets and soft continuity, Int. J. Math. Trends Tech., 9 (2014), 37–56. 1, 2
- [13] F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621–2628. 1
- [14] D. N. Georgiou, A. C. Megaritis, Soft set theory and topology, Appl. Gen. Topol., 15 (2014), 93–109. 1
- [15] O. Göçür, A. Kopuzlu, Some new properties on soft separation axioms, Ann. Fuzzy Math. Inform., 9 (2015), 421-429. 1
- [16] Y. B. Jun, C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci., 178 (2008), 2466–2475.
- [17] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. 1, 1
- [18] P. K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. 1
- [19] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. 1
- [20] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. 1
- [21] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. 1
- [22] B. Roy, On generalized R₀ and R₁ spaces, Acta Math. Hungar., **127** (2010), 291–300. 1.3
- [23] S. Saleh, On some new properties in soft topological spaces, Ann. Fuzzy Math. Inform., 17 (2019), 303–312. 1, 1.5
- [24] S. Saleh, K. Hur, On some lower soft separation axioms, Ann. Fuzzy Math. Inform., 19 (2020), 61–72.
- [25] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011), 1786–1799. 1, 1.4
- [26] O. Tantawy, S. A. El-Sheikh, S. Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform., 11 (2016), 511–525. 1
- [27] J. Thomas, S. J. John, On soft generalized topological spaces, J. New results Sci., 3 (2014), 1–15. 1, 2, i, ii
- [28] J. Thomas, J. John, On soft µ-compact soft generalized topological spaces, J. Uncertain. Math. Sci., 2014 (2014), 1–9. 1
- [29] J. Thomas, J. John, Soft generalized separation axioms in soft generalized topological spaces, Int. J. Sci. Eng. Res., 6 (2015), 969–974. 1, 2
- [30] İ. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171–185. 1