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Abstract

We consider a mathematical model which describes the bilateral, frictionless contact between two
elastic bodies. We will establish a variational formulation for the problem and prove the existence
and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of
the domain tends to zero. In which case, the uniqueness result of the solution for the limit problem
are also proved. (©2016 All rights reserved.
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1. Introduction

In this paper, we study a problem involving boundary conditions describing real phenomena
such as contact and friction between two elastic bodies. The problem presented in this work is
very frequent in applications. For instance the physical domains are defined such that the height is
much smaller than the length. These are the assumptions of elasticity and Visco-elasticity of a tire.
The model for the lassa hemorrhagic fever and the model of the groundwater owing within a leaky
aquifer [I 2]. Other applications are related to the mechanism of ball bearing. Scientific researches
in mechanics are articulated around two main components: one devoted to the laws of behavior
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and the other on boundary conditions imposed on the body. Several works have been done on the
mechanical contact with the various laws of behavior and various friction boundary conditions close
to our problem, however these papers were restricted only to the results of existence and uniqueness
of the weak solution under several assumptions. Let us mention for example the work by [12] in
which the authors obtained the existence and uniqueness result by construction of an appropriate
mapping which is shown to be a contraction on a Hilbert space. Other similar problems can be
found in monographs such as [13], and the literature quoted there. In the last few years, some
research papers have been written dealing with both the asymptotic analysis of an incompressible
fluid in a three-dimensional thin domain, when one dimension of the fluid domain tends to zero can
be found in [7HI0]. The authors in [5] studied the asymptotic and numerical analysis for a unilateral
contact problem with Coulomb’s friction between an elastic body and a thin elastic soft layer. More
recently, the asymptotic analysis of a dynamical problem of isothermal elasticity with non linear
friction of Tresca type was studied in [6]. The asymptotic convergence of a dynamical problem of
a non-isothermal linear elasticity with friction were studied in [16]. The numerical solutions of this
type of problem are studied in e.g. [I4, [15]. Furthermore, the authors in [3] have given a new
hyperbolic function solutions for some nonlinear partial differential equation arising in mathematical
physics. The goal of this paper is to study the asymptotic behavior of a boundary value problem in
a three dimensional thin domain €2 with non linear friction of Tresca type. The novelty here consist
in the fact that we study the contact between two bodies (¢ = Qf U 25) and we assume that on the
common part of the boundary there is no separation between the bodies during the process, that is,

x
the contact is bilateral. The use of the small change of variable z:—B, transforms the initial problem

posed in the domain ¢ into a new problem posed on a fixed domain 2 = €2; U {25 independent of
the parameter €. We prove some estimates on the displacement independent of the small parameter.
The passage to the limit on e, permits us to obtain the existence and uniqueness of the limit of a
weak solution to the problem described in the abstract.

This article is organized as follows. In Section [2] we introduce some notations and preliminary. In
Section [3] we describe the model and present its variational formulation. In Section [4] we find some
estimates and prove convergence theorem by using several inequalities. Finally, we obtain all the
properties of our original problem.

2. Notations and preliminaries

We denote by S; the space of second order symmetric tensors on R? and |.| the Euclidean norm
on R3. Thus, for every u,v € R3, w-v = wv;, |v| = (v-v)'/2, and for every o,7 € S3, 0.7 = 0475,
|7| = (7,7)"/2. Here and below, the indices i and j run between 1 and 3 and the summation convention
over repeated indices is adopted.

Let Qf and €5 be two bounded domains in R3. Everywhere in this paper, we use a superscript
[ to indicate that a quantity is related to the domain Q5,1 = 1,2, where (0 < ¢ < 1) is a small
parameter that will tend to zero. For each domain 2, we assume that its boundary 0€2] is the
class C' and is partitioned into three disjoint measurable parts, which Q5 = @ U T U fil and
995 = wUT5UTs,, where w is fixed region in the plane 2’ = (21, 2,) € R?. The upper surface I'S
is defined by x3 = eh(2’), and the upper surface I'j is defined by x3 = —eh(z’) where h is a smooth
bounded function such that 0 < h, < h(2') < A* for all (2/,0) in w. I'7,,l = 1,2 is the lateral
boundary. We denote by {2° the domain 2] U 25 and we put

0] = {(x/,m) €R? (2/,0)cw, 0<umx3<ch (x')} ,
Q5 = {(2',23) € R®,(2/,0) €w, —eh(2)) <x3 <0}
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We shall use the notation

ov;
oz,
V() ={veH (2)°: v=0onT;UT}}, =12

H' () = {v e L2 () € L? (%), Vi,j=1, 3} ,

The spaces H' () and V (€) are real Hilbert spaces. All these spaces are endowed with their
natural norms ||.||, ,. and scalar product (., .), Qs
s :

Moreover, we need the following functional spaces:
VE={(v1,v2) e V(Q]) x V(Q5): vi.vy + Vo =0o0nw}.

The spaces V¢ is real Hilbert spaces endowed with the canonical inner products (.,.),. and the
associated norms ||(.,.)||,-, where

9 9 1/2
[ v2)llye = (I8 ) + V2l og))

We still denote the norm of the space H' ()% x H' (Q5)° by ||(,.) I1.0s wqs- Since the boundary 99
is Lipschitz continuous, the unit outward normal vector v; on the bouﬁdaer 0827 is defined a.e.. For
every vector field vi € H' () 1 = 1,2 we use the notation v§ for the trace of v§ on 9QF and we
denote by vj, and v;j. the normal and the tangential components of v; on the boundary, given by

E __ <€ € __ <& _ € : _ _
v, =Vj.v, V. =V]— Vv, withv=v =—u.

For a regular stress field o7, the application of its trace on the boundary to v; is the Cauchy stress
vector o;v;. We define, similarly, the normal and tangential components of the stress on the boundary
by the formulas

o;, = (oiv) v, o =ojy —of,.u.

To describe the boundary conditions, let us first introduce a vector function g, = (gi;), cicy s L=1,2,
such that
/ quvds=0,1=12
08

We assume that the function g¢; is in H %(89‘5)3, the space of traces of functions from H'(25)? on
osY;.
Due to [, gi.vy ds = 0,1 = 1,2, it is well known that there exists a function G° = (Gf), ., (see.
; <i<
[4]) such that
G5 € H' (Q)® with G5 = g, on 9.

3. The model and its variational formulation

The physical setting is as follows. We consider two elastic bodies that occupy the domains 25
and €25. The two bodies are in bilateral, frictionless, contact along the common part w.

We denote by uj = (uj;),<;<5 ,{ = 1,2 the displacement vectors, by of = (O’fij)1<ij<3, =12,
the stress tensor and by d;; (u]) the linearized strain tensors. We model the materials with linear
elastic constitutive laws

O—laij (U?) = Q/leij (ula) + )\ldkk (u?) 52']" 1< i;ja k< 37 l= L 27

where, 1, A; denote the Lamé coeflicients § = (d;;) the identity tensor.
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e The upper surface I'j , [

=1, 2 being assumed to be fixed so:

u =0, =12

e OnI'7 , [ =1, 2 the displacement is known and parallel to the w-plane:

u; =g with g;3 =0, [ =1,2.

e We describe now the conditions on the common surface w. We assume that the contact is

bilateral, i.e.,

Therefore,

Consequently,

g

uj, +u5, =0 on w.

v = —vy and o].v1= — 05.V2 01 W.

13
v

— g __ £ g __ g __ 13
=0, =05, and 0, = 0] = —05, on w.

However, the tangential velocity is unknown and satisfies the Tresca boundary condition:

’0-76" <k = ui‘r_u;T =S,
lo¢| =k = IN>0, u, —uj, =s— Ao,

on w.

The steady-state transmission problem for the elastic bodies is given by the following mechanical

problem.
Problem P#. Find a displacement field uj = (uf;), ;<5 : Qf — R, [ =1, 2 such that
dive] + £ff = 0 in Qf, (3.1)
divos + £5 = 0 in Q3, (3.2)
o1 (u}) = 2pnd (u7) + Mde (u7) 6 in €, (3.3)
5 (U5) = 2p2d (03) + Agdix (u3) 6 in €25, (3.4)
uj =0 on I'], (3.5)
u; =0 on I, (3.6)
uj =g onlg, (3.7)
u; =gp onl'g, (3.8)
uj.v —u5.v =0 on w, (3.9)
o;.v—o5.v=0o0nw, (3.10)
{ 7| <K = i, —ug, =, on w. (3.11)

|0'75_’ :ké‘ e El)\ZO, uiT—ugTZS_)\O'f.,
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Lemma 3.1 ([I1]). The condition of Tresca (3.11)) is equivalent to
(uf —uj —s)o+ k| (uj —u—s)| =0 onw. (3.12)

Theorem 3.2. Let (uf, u3) be the solution of (B.1)—-(3.11]), then it checks the following variational
problem
Find (uj,u3) € V© such that
A((Ui, ug) ) (901 - ui» P2 — ug)) + J° (9017 §02) - J° (uia u;) (313)
> Jo: £5 - (o1 —uf) da + Jo. £5 - (92 —ug) dz V (o1, 02) € V7,

where

A((ur,u2), (01,02)) = {Q/M /Q dij (W) dij (1) dx + )\l/

div (w;) div (¢;) d:c} :
1<i<2 Q7
JE (Vl,VQ) = / k’a‘ (V].T — Vo, — S) ’dl‘l

Proof. Suppose (uj, u) be the solution of (3.1)—(3.11)) that is sufficiently regular. Multiplying equa-
1 Uy

tion (3.1) by (¢1 — uj) and equation (3.2) by (2 — uj), where (1, p2) € V&, and we use Green’s
formula on each subdomain Qf, [ = 1,2, we get

0 0
e~ (g —uE,) dx + s —— (o — u5;) d
/&%Ul” 8$j (()01 ulz) X /S;g 021] axj (902 u2) €z

- / o115 (p1i — uy;) ds — / 0525 (2i — u3;) ds (3.14)
003 005
= [ fiilpu—uy)de+ [ f5 (g2 — u5;) do V (o1, 02) € VE.
95 Q3

According to the boundary conditions (3.5)) - (3.10]), we find

€ € € €
/ O145V15 (1 — ui;) ds + / O9;;V25 (¢pai — us5;) ds
008 005

= /nyl (p1 —uj)da’ + / o5vs (o — uj) da’,

w

=/ﬁwhﬂm%w%ﬂ@wf+cﬂmfmmw—wfmwwmx

— [ o201 = ) — (a5, — w5,

Therefore,
g a € £ a £ € € € €
/Qeio—lij_axj (p1i — ui;) do + /QS 02’7_8% (21 — ug;) dr + J* (@1, 02) — J° (uf, u3)

— | fi(en—uy)de — [ f3; (p2i — uy;) dx
QF Q5

— [ o2 (o = o = 9) — (i — - )
4 [ orr = o = = Ju, = g, o]}

Using (3.12)) we deduce directly the variational inequality (3.13)). ]
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The existence and uniqueness results of the weak solution to the problem (3.1))—(3.11)) is obtained
in the following theorem.

Theorem 3.3. Assuming that (£5,£5) € L*(Q5)® x L2 (Q5)°, k* € L?(w), there exists a unique
solution (ug,uj) € V° to (3.13)).

Proof. A bilinear form A(.,.) is coercive on V¢ x V.
Indeed, let (v§,v§) an element of V¢. By Korn’s inequality, we obtain

A(VEvE) L (V6 vE) > 2 /

0

dyy (V) dyy (v5) dae + 20 / dyy (v3) diy (vE) dz,

L
2 2

> 205 (i1 I3 o) + 12 I3 o))

>2u_Ch ||(V§>V§>||%/e ]

where C}, > 0, is the constant of Korn and p_ = min(puq, pa).

Therefore,
A ((uf,u5), (vi, vi))l < > <2uz/ |dij (up) dij (vi)|dz + N [ |div (uf) div (V?)|d93>
1<1<2 L Q
< > (20l g 1Vl + A1l g 195 )
1<1<2

< C[(uf, w3)lly [[(vi va)llve s
where, C' = max (2u + N).

On the other hand, J¢ is a convex and continuous functional on V. Then the existence and
uniqueness of (uj, uj) in V¢ satisfying the variational inequality (3.13]). O

4. The problem in a fixed domain

This section is devoted to the study of a priori estimates on the displacement u® = (uj,uj),
solution of our variational problem. For the asymptotic analysis of problem f, we use the
approach which consist in transposing the problem initially posed in the domain €2f which depend
on a small parameter € in an equivalent problem posed in the fixed domain §2; which is independent

of €. For that, we introduce a small change of the variable z:ﬁ, so for (x,x3) in f we have (z, z)
€
in
O ={(2,2) eR* (2,0) cw, 0<z<h(a)}
Qp = {(2/,2) eR* (2/,0) ew , —h(2') <2< 0}

We denote by 0, =w U, UT L, | = 1,2 its boundary, then we define the following functions in €2

{ ﬂl&l (x/7 Z) - uf@ (II,ZE:;) ) L= 17 27

U5, (v, 2) = ety (2, 23), 1 =1, 2. (4.1)

For the data of the problem (3.1)—(3.11)), we suppose that they depend on ¢ in a following manner:

f, (2, 2) = *5 (2, x3)

k= EkE, [ = 1,2, (42)

g (@', z) = g7 (2’ 23),,
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with f, k and g; independent of ¢.
The vector G introduced in Section [2| will be defined as follows

GA'li (2, 2) =G5, (2, 23),i=1,2,
’ i 1=1,2. 43
{ G (2, 2) = e 1G5 (v, 23) (4.3)

Now we introduce the functional framework on €; U €. For this, we note

V(Ql>:{Q€H1(QZ) IQ OODFZUFLZ},
V={(V1,v2) e V() xV(Q): Vi.v—Vor=0o0nw},

H. () = {@: (11, %) € L2 (0)”

Hz = Hz (Ql) X Hz (Qg),
V() = {@l c H! (91)2 19, = (o, pi2), Py =0on I UT, fori = 1,2}.

1
2 2
Y
O’Ql

~ o~ ~ 112 —~ 12 2
151,92, = (19103 a0y + F2ll )

(9vh

7, € L*(Q),i=1,2 and Gl:OonFl},

H, (), 1=1,2, is a Banach space for the norm

2
~ = 2
||VZHHZ(QZ) = {Z <||Vli||0,Ql + ‘

=1

ovy;

02

With these new notations, the variational problem (3.13]) is equivalent to the following problem:
( Find (0], 05) € V, such that
A((GF,83), (p1 — 0, P2 — 05)) + J (1, ¢2)
N 2 ~ ~
—J(a,a5) > fQT f1; (91 — 05,) dr + ¢ fQ[i fi3 (P13 — 0f3) do (4.4)
i=1

2 ~ ~
+ 21 f92 fo; (Poi — 03;) dr + ¢ fQQ fo3 (P23 — 053) do V (P1,2) €V,

where,
ﬂ@&g=/ﬂ@h—@fwww,
and

A((af, 65) , (P1 — 0f, @2 — 03))

ous.  0us 0
2 11 lj ~ /
—¢ Z {ul /Qz (61*]- + T ) o, (Pu — uy;) dx dz}

1<i,j,1<2
ai\[/lez 28’&/?3 a ~ ~E 2 a A~ ~AE !
+ Z {m/ﬂ (82 +e oz, 8,2( —up) +¢€ oz, (P13 — ugy) | da'dz
1<, <2 l
aAE

o o
+ Z {2u152/(2 8_5'§<90l3_ul3) da:dz—{—)\leQ/ div (4}) div (gol—ul)da:'dz}.
l

Q



Y. Letoufa, H. Benseridi, M. Dilmi, J. Math. Computer Sci. 16 (2016), 336-350 343

In the next, we will obtain estimates on u¢ = (G5, a5). These estimates will be useful in order to
prove the convergence of u° toward the expected function. For this, we introduce some results which
will be used in the next. The detailed description can be found in [§].

||v§5l||0,§22€ < ¢ ||D (@l)”LZ(Ql) 7l = 17 27 for (@179/52) cV (KOTTL Znequa’llty)7

ou3; 0us,
0z 0Oz

T br
ab < a_ —|— — V(a,b) € R?, (Young inequality).

, 1 = 1,2 (Poincaré inequality),

150 ), e, <
0,Q1 XQQ

Theorem 4.1. Assuming that (fl,fg) € L2 () x L2 (), the friction coefficient k in L™ (w),
then there exists a constant C' > 0 independent of € such that

2 ois, dus,\||” L /0, dag,\|°
IS Z 7. D +é 9, ' D
1<i,j<2 Ly Lj 0,021 X2 < < 0,21 x Q2
9 . . ) (4.5)
H(aulz aum) 4 (6%3 8“23) <C
) ~ .
1<i<2 0,821 xQ2 8:132 axl 0,01 xQ02

Proof. Let (uj, u5) be a solution to the problem (3.13)), we deduce
A((uf, u3), (o1 —uf, o —w3)) + J° (1, ) = J° (uf, u3)
> [ f(or-udot [ Epa—u)ds Yionp) € Ve

As J* (uj,u3) > 0 is positive, we have

A((uf, u5), (uf, u3)) < A((uf, u5), (¢1,2)) + J° (@1, 2) +/ frujde

£
1

(4.6)
+/ fSuSdr — / fLorde — / f50odx ¥ (p1,02) € V©.
3 1 3
From Korn’s inequality, there exists a constant C'x > 0 independent of €, such that
Crc (200 9705 5 o + 202 [IV0513 ) < A((15, 05), (w5, u5)) (4.7)

Similarly, using Holder and Young inequalities, we get

A((uf,u3), (¢1,92)) < Z {/QE 2u |dij (ag)] |dij (¢1)] dx + )\l/ |div (u])| |div (¢1)] da:}

1<I<2 QF
1 1
uzCK R 22 2
< / iy (w5 d / S iy (o) do

N
D=

Ly (/EV‘” X i (uf) dm)

1<I<2

2\ , 2
div (¢)|” dx
( Qs \/MTK| (el )
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< Z (# ||dz] (ule)||i2(ge) 4/“ ||d” (QDl)Hm(Qa))

1<I<2

c A
(M K/ div (uf)? da + 220 | tdiv (),
1<I<2 uCx Qf

and as ) ;oo |di (v)[> < |Vv]? and |div (v)|* < |[Vv|?, we obtain

e HCK e fal
A((uf,u3), (p1,92)) < X2 { [Vu ||on+ IIVSOIHOQs
1<1<2 (4.8)
mCK . (/\l) '
+ VU5 [Ig or + == IVerllgar ¢ -
1w, C
The analogue of (4.8]) gives:
e e o Ck o (eh*)”
[ grusde+ [ tiusa < Z( IVl + e IV lRe | (49
i 3 1<1<2
€ 5 ,ulCK ch* c
[ oo+ [ gt < Z( Volieg + ) o Hm)- (4.10)
i 2 1<I<2
G5, the variational inequality (4.6} . ) is as following:

Using (4.7)—(4.10|) and choosing ¢ =

G5 and py =

> 2uCx | Vuill e < A((ui, u3)., (uf, u3))

1<1<2
Cr . 4y . MCK .
< 3 { P IV + IV Gy + P IV
1<1<2
2 (/\z) . ,uzCK (5h*) e
+ IVGil5.0: + IVuillo o + 5 2Cr IVE 16 0
MlCK . (eh?)” h*)2 o2
IVGi o + ok V87 g
which implies
9 2(\)? MCK 4#! .
Z <HCk |V ||OQE < Z ||OQ6 + + VG ||()Qs - (4.11)
8 NZCK 2
1<1<2 1<1<2
Multiplying (4.11) by € and for 0 < & < 1, we see that:
9 e2 e2 2()\+)2 p+Ck 4M+
5h-Cic = (190505 + V03l 05) < - ml+ (M_CK | ve
2(01)°  u.Cx 4
n ‘ i (Ar)” | pe K M+ H G2
u C’K 0,0 u_Cr 2
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with g = min (p1, p2) , gy = max (p1, o) and Ay = max (A1, A2) . So

9 € £\ 12
- T, Vg < L (FRTE)L
A 4 2
+<( +)° +“+CK+ “*)H(VGH,VGQ) .
N—CK 2 0,21 X2
Thus
€ e\|[12
(V5 V)2 gy, < €
where,
aus, dug,\ || oS, 015, \ ||
EH(VUE,VUE)HQ . 5252 ( lz’ 21) ( 13’ 23)
1 2/ 110,095 x5 1<ZZj<2 Ox; " Oz, 0.01 % dz = 0z 0.01 X2
2 e e 2
H(auu 8“21) 4t <8u13,6u23) <,
1<i<2 0,91 X2 Ox; ~ Ox; 0,01 X2
9/,6 CK
Co = <Vf1, Vf2>
Oﬂlxﬂz
(A)” | p4Ck 4M+ H 2
G,G)j .
+ (HCK+ 2 + <V LV 2) 0,01 %

This completes the proof.

5. Study of the limit problem

Theorem 5.1. Under the same assumptions of Theorem[L.1] there exists (uf,uy) = (uf;, us;) in H,,

1 =1,2, such that

(05, 13;) = (uf,uz;), (1<1<2) weakly in H.,

—) (0,0), (1<4,j<2) weakly in L* (Q1) x L* (Qy),

(828u13 52%) —(0,0), (1<i<2) weaklyin L* () x L* (),

—) — (0,0) weakly in L* () x L*(Qy),
(eti54, eli5s) — (0,0)  weakly in L* (1) x L? (Qy) .
Proof. The convergences of (5.1)—(5.5)) are a direct result of inequalities (4.5]).

Theorem 5.2. Under the same assumptions of Theorem[p.1], the solution (uf, u}) satisfies

0%u 0*u PO
<m0;7ma;>:@@>mﬁfoﬁmﬁ,

(5.1)

(5.2)
(5.3)

(5.4)

(5.5)



Y. Letoufa, H. Benseridi, M. Dilmi, J. Math. Computer Sci. 16 (2016), 336-350 346

ouy ous, 0 . .
[ Z / 11 — uﬁ) dz' dz + U2 Z /8—218— (QOQZ — u%) dx'dz
1<i<2¢) 1<i<2¢y = oz
+ ‘](9017902) - j(ulaug) (57)
/fh $1i — uy;) do'dz + Z /fgZ Poi — uy;) dr'dz, ¥ (1, $2) € V () X V (Qa).
1<7,<QQ 1<7,<QQ

Proof. Using the convergence results of Theorem in the variational inequality (4.4)), and as J s
convex and lower semi-continuous, we obtain

ul ul 0= T(5 Tk ok
H1 Z / (921 &z —ay;) da'dz + po Z / 8,22 az Bos — 1%, da'dz + J (31, Ps) — J (u?, ul)

1<z<2 1<z<2

Z /fh —uj;) de'dz + Z /fm P — us;) da'dz Y (@1, ¢2) € V.

1<z<2Q 1<z<2Q

Now we choose (,511‘ = UL + wli s @21' = ugl + wgi, 7= 1,2, with <¢1i7w2i>1<2’<2 € Hol (Ql> X H& (Qg) ,
we find o

8“11 877D17/ / au?z a¢21 /
= Z/ 0z do'dz+ pa Z/ 0z 82 vdz

1<i<2 v/ h 1<i<2
¢ / /
= E frivuda'dz + E f2¢1/127;d96 dz.
1<i<2 /2 1<i<2 ¥ 22

Utilising Green’s formula, we deduce

0 (ouy; 0 [ 0oul; L
—/Qlﬂla(a >1/11zd96d2 /QQM&((?Z)%ZCZUCW

fritvyda’dz + Foithoida’dz.
2 Qo

So,

ouy, 0?us; . 2 2
<( M1 9.2 = Jii s =2 G 2 - fzz ) 7(¢1i7¢2i)> =0, i=1,2, V(Yu, ) € Hy (1) x Hy (Q2),

thus
0?3, 82u ; ;o . R -
( it = 22) - (fh-,f%), i=1,2in HV(Q) x H () (5.8)
and as <f1,-, f2z> € L? () x L* (), then (5.8) is valid in L? (1) x L? (). O

Theorem 5.3. Under the assumptions of preceding theorems, we have the following inequality

= pamy in L2 (w)?, (5.9)

/% (|t + s7— s5 — s| — |s7 — s5 — s|)da’ — / wmrpde’ >0 Vip € L? (w)?, (5.10)
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pa || k=SS = a.e in w, (5.11)
i |mf| =k =38 > 0 such that s7 — s5 = s + Sy,
where Sur
* * (] * u, /
= 0 = —(2,0), 1 =1,2.
s =uj(2',0), m 92 (',0), )
Also 7}, sy satisfy the following:
h 0
/ F+ /u{(a:’,y)dy + /Lg/u;(:c’,y)dy V(2 )dx' =0 Vi € H' (w), (5.12)
w 0 —h

where

)

£ 0 0
fl(m',y):// (2, 0)dOdE, Fo(x',y) // 5 (', 0)dbde,
00 ¢

Y

F(@',y) = Fi(x',y) + Fo(2', —y) and F(z') = | F(a',y)dy — hF (2, h).

O\:

Proof. The variational inequality (4.4) becomes

ous.  0u;;\ 0
2 li lj - /
dx'd
€ Z lul/ (ax] + amz) 81"]- (SO ulz) €T az
0

1<i,5,1<2

87}1‘;‘; 281}/?3 a ~ g 2 a A ~AE /
+ Z Mz/<a+€ Dz; $(<Pli—uu)+€ oz, (13 — tg3) | da'dz
Q

1<i,1<2
2 au a 2 . ~E . ~ ~E /
+¢ E 21 (gplg — ) dr'dz ) +e g N[ div (4f) div (¢ — uf) da'dz
1<I<2 ! 1<1<2 !

M%Tmﬁmm—/wm—ﬁ—mw

/flz — ay;) dz'dz +5/f13 P13 — Uis) da'dz

1<i<2

/sz o — 15;) da'dz +6/f23 (Pag — ligy) da'dz.
1<i<2

From [8, Lemma 5.3], we can choose ¢1; = u¥; + th1; , $oi = ub; + g, @ = 1,2, with (¢1;,0s;) €
HﬁluFLl(Ql) X H%QUpL (Qs2), where

H%ZUFL Ql {(,DZEH (QZ)Z QOZZOOH FlUFLl},lzl,Q,

then

0 0 1 / 0 i 1 / T * * T (ox %
Mlz/ L dz+u22/ L dr'dz + J (11 + 87,09 + 53) — J (s, 3)

Z Z
1<z<2 l<7,<2
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Z /flz Yda’dz + Z /sz Woida’dz.

1<z<2 1<z<2

Using Green’s formula on each subdomain Qf, [ = 1,2, we get

o2 0w, ,
Z / { 1 au;}%zdx dZ—i‘/MTl Ardo + Z / { M2%}¢21d$ dz
0

1<i<2 1<i<2

—/u275.¢2d0+//%(|2/11—wz—i-sf—s;—sl—|3’{—s§—5|)daz’

w

= Z Frtbuda'dz + Z foithoida’dz.

1<i<2 v/ 1<i<2 v 2

By (p.4)), we deduce for v, € H%ZUFLZ(QZ)Q, l=1,2,

/ F(ln — o + 57— 5 — s — [s} — 55 — s]) da’ — / (mmihy — pamsepe) da’ > 0.
This inequality holds for all ¢; € D(w)?, | = 1,2, and by the density of D(w) in L(w) we deduce

/z%<|w1—w2+s;—s;—s|—|s:—s;—s|>dm'
w (5.13)
~ [ o = e d’ 2 0 Vv € 12 ().

In the particular case for v, = ¥y = £, we find
/ (i — poms) da’ = 0 Vip € L? (w)?,

which implies (/5.9)).
From (5.9) and (5.13]), we deduce directly the inequality (5.10). The proof of (5.11)) are similar
to those given in case of the problem of fluids (see. [4]).

To prove ((5.12)), we integrate twice the first equation of (5.6 between 0 and z, and the second
between z and 0, we obtain

z & __
—pauy; (2’ 2) + sty + ey = [ [ fu(@, y)dyds,
00 i=1,2 (5.14)
fio2ms; — pigus, (2, 2) 4 pass; = [ [ fal(a',y)dyde,
z €

then for z = h in the first equation of (5.14) and in the second z = —h, we find

h &
p18y; + pihmy; = ff (@, y)dyds,
%00 i=1,2
—p2hTy; + pasy; = f f (@', y)dyd¢.
—h ¢
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By (5.9), we deduce
ho€ 0
18T + [2Sy // 12 y)dydE + //fgZ 2 y)dydE. (5.15)
00

—h ¢

Now, we integrate the first equation of ([5.14]) between 0 and h, and the second between —h and 0,

we obtain , , .
—fi fui(:v’,y)dy +pusth + o umi = ffl (', y)dy,
h2 0
— 5 2T — hi2 Jus(2’,y)dy + passh = f Folz',y)dy
“h
with
y & 0 0
://1x9d9d£etf2xy //2x9d9d§
0 0 y £
Therefore,
h 0 h
h (187 + p2ss) —ul/UY(I’,y)dy—uz/u;(:r’,y)dy = /f(fv' y)dy
0 “h 0
with
‘/T_-(xlay) = «’T_-l(m,ay) + F2(x/a _y)a
which gives ((5.12]).

(5.16)

]

Theorem 5.4. Under the assumptions of Theorem [5.1], the solution (u},u}) of the limit problem

- 18 unique i H,.

Proof. Let (uj,uj) and (v}, v}) be the two solutions of the limit problem (5.4)—(5.5)), then

aulz / au2z * !
MlZ/ 5 8,2 —uy;) dx dz+u22/ 5, 82 —uy;) da'dz
+ J(801>902) — J (uf, uj)

> Z/f“ 1 — uj;) da'dz + Z/fgZ Poi — uy;) dx'dz, ¥ (p1, p2) € V(1) X V (),

1= 1Q1 i= 1Q2
67}12 A av2z A * !
m;/ P 8,2 — vy da:dz—i—,ugz/ 5 82 9i — Vy;) dz'dz
=19, =g,

+ J(P1,92) = J (VI v3)

> Z/f“ 1 — v3;) da'dz + Z/f2z Poi — v5;) da'dz, Y (@1, P2) € V (1) X V().

1= 191 1= 192

(5.17)

(5.18)
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Taking @7 = v§ and @ = v} in (5.17)), then p; = uf and P = uj in (5.18) and summing the two
inequalities, we find for Wy = uj — v and Wy = uj — v3,

9 o
f1 Z/ le (le) de'dz + i Z/ 82 WQz) EP (sz) dx'dz <0,

which implies

0 ? 0 2
e (Wl) o + 792 (WQ) o, <0,
SO
_ o I
’&W 0 H&WZ oo
By Poincaré inequality, we deduce
Wil =0 and [[We, q,) = 0.
So |7 172)]|, —o.
We deduce that (uf, u}) = (v}, v3) almost everywhere in H,. O
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