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Abstract

Virotherapy is a cancer treatment that uses a virus that can target cancer cells to infect, replicate, and destroy them leaving
the healthy cells unharmed. Recently, considerable efforts have been made to understand the mechanisms and dynamics of
oncolytic virotherapy. In this paper, we study the dynamics of a basic model of oncolytic tumor virotherapy. This model
emphasizes the interaction between cancer-infected cells and cancer uninfected cells. To understand some of the consequences
of this contact from a mathematical point of view, we study the dynamics behavior of the model and present a qualitative
analysis of the equilibria. To illustrate which parameters in the model affect the outcome of virotherapy the most, we determine
bifurcation parameters and conduct a sensitivity analysis of the model’s parameters. Numerical simulations are conducted to
show the validity of our analysis.
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1. Introduction

Since the late 1880s, viruses have attracted considerable interest as possible agents of tumor destruc-
tion. The history of oncolytic viruses tells us that doctors have observed that some cancer patients do
go into remission after viral infection [15]. Since then, the approach of using viruses in tumor therapy
has gained considerable interest and still occupies a noticeable interest of researchers for cancer therapy.
The main question that most of the researchers tried to address for a long time was how to eliminate the
pathogenicity of those viruses so that they become suitable as drugs. It was found that under the right
circumstances, viruses are capable of destroying tumor tissue in human cancer patients. In the meantime,
it was found that the damage inflicted on tumor tissues is far more significant than the damage inflicted
on normal host tissues. Due to their pathogenicity, most of these viruses were not considered safe for
cancer therapy. However, thanks to adaptation and genetic engineering techniques, the pathogenicity can
be eliminated in most of the viruses without destroying their oncolytic potency [15]. This therapy using
selected viruses that can specifically target cancer cells is known as oncolytic virotherapy.
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Oncolytic virotherapy is a form of immunotherapy that uses certain viruses to attack, infect, replicate,
and destroy tumor cells. The idea is that when free viruses infect tumor cells they replicate themselves
in those cells; upon breaking down infected tumor cells, new virion particles burst out and proceed to
infect additional tumor cells. In this treatment, viruses can selectively replicate only in cancer cells but
leave healthy normal cells largely intact. The new viruses released from the lysed cells can subsequently
infect adjacent or distant tumor cells and trigger multiple cycles of infection. Recently, great efforts have
been made for understanding the dynamics and molecular mechanics of viral cytotoxicity of oncolytic
viruses. Those efforts provided an interesting possible alternative therapeutic approach to help cure
cancer patients. However, the outcomes of virotherapy depend in a complex way on the virus-cancer
interaction as well as the immune response. ([5, 7, 8, 20, 23])

Most of the clinically used cancer therapies have been developed empirically [11]. However, many
mathematical models have been recently developed to describe the outcome of such interaction ([3–12,
28, 33]). More models and different approaches are also developed to study the dynamics of virotherapy
([1, 2, 13, 20, 22, 23, 27–30]). Several mathematical models of virotherapy have been formulated using
some classical mathematical models such Lotka-Volterra models, and reaction-diffusion models. These
models usually assume that populations are well-mixed. However, this may not be the case as it is evident,
see for example [9], that the spacial component and local interactions are very important to population
growth.

Many current modeling approaches have generally lacked any experimental data to validate them.
To address this problem, [4, 5] have developed an in silico computational model that can describe the
dynamics between the tumor and virus populations in a spatially explicit manner. They used in vitro 2D
and 3D data to inform the model parameters and then use the computational model to explore various
critical properties of oncolytic viruses. They showed that the introduction of a third dimension alters the
dynamics significantly and that this has important implications for the outcome of therapy. However,
their study lacked the investigation of the mathematical qualitative properties of the model.

In this paper, we study the qualitative properties of the model from [4, 5] and we investigate the
stability of equilibrium points and describe the behavior of the solution. The model has significant aspects
that make it interesting, both mathematically and clinically. For instance, the model has an abundance
of equilibria. Specifically, it has five equilibrium points which make dynamic behavior more complicated
from one side, and rich and interesting from the other side. Clinically, the model allows for a more
realistic study of the dynamics of oncolytic viruses, as it can depict the case in which populations of
cancer and virus cannot move freely throughout the environment.

In addition to investigating the stability of the equilibrium points, we conduct a sensitivity analysis
of the model to show the effect and weight of each parameter in determining the dynamics. We also
carry out numerical simulations to prove our theoretical results. The obtained results were compared
to the results in the literature and provide a comprehensive mathematical analysis of the cancer-virus
interaction.

The paper is organized as follows. In Section 2, the mathematical model is introduced and parameters
are described. In Section 3 mathematical proofs of the important qualitative properties of the model
are presented. In Section 4, numerical simulations and sensitivity analysis of the model are conducted.
Finally, in Section 5 conclusions and discussions are provided.

2. Mathematical model

The model under consideration is a classical 3-species Lotka-Volterra system, those systems have
played a significant role in modeling the competition between species, which has a great impact on
studying different competition models in biology, ecology, and medicine. See, for instance, [13, 14, 24].
In our model, three types of cells are involved: normal cells denoted as x, cancer cells y, and infected
cancer cells v. This model is a mean-field model based on predator-prey interactions, and it describes the
interaction between tumor growth and viral infection of tumor cells. Despite the fact that the significant
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Table 1: Pameters’ description, ref. [4].
Parameter Description Value Unit

r Proliferation of normal cells 0.5 1/h cell
a Death rate of normal population 0.2 1/h cell
s Proliferation of the uninfected cells 1.0 mm3h/ cell
b Death rate of uninfected population 0.1 1/h cell
c Proliferation of the infected cells 1.2 mm3h/cell

d Death rate of the infected cells 0.1 1/h cell

interaction is mainly between infected and uninfected cells, the normal cells can be spatially affected
by this competition. Therefore, the three model compartments can capture the basic dynamics of such
interaction.

The model is formulated using the following scenario: A network with nodes occupied with the three
types of cells as well as empty ones can be used to model the virotherapy under consideration. When a
normal cell or cancer cell proliferates, the newly generated cell has to occupy a nearby empty node while
infected cells can only attack and occupy a node resided by a cancer cell as the virus is programmed to
attack only cancer cells, and the virus spreads from cell to cell ([18, 21]). Arrival times of the viruses vary
but follow the Poisson process with time to the next event being exponentially distributed. The model
assumes that the growth and death rates of the three types of cells can be varied. Also, virus infection
parameters can be specified ([4, 5]).

The model, described above, is governed by the following system of differential equations, where all
of the parameters are nonnegative:

dx

dt
= rx (1 − x− y− v) − ax,

dy

dt
= sy (1 − x− y− v) − by− cyv,

dv

dt
= cyv− dv. (2.1)

The initial values assumed in the model (2.1) are

x(0) > 0, y(0) > 0, and v(0) > 0,

where r represents the proliferation and a, b, and d represent the death rates of the respective populations.
The model assumes mass action kinetics and was fitted to data from in vitro studies ([4, 5]).

3. Qualitative analysis

In this section, we investigate the basic qualitative properties of the model (2.1) at the biologically
feasible equilibria. We prove the positivity and boundedness of solutions in a specific invariant domain.
Then we obtain steady-state solutions of the model and study their stability.

3.1. Positivity and boundedness
Theorem 3.1. All solutions of the system (2.1) are nonnegative and bounded in the invariance region with nonneg-
ative initial conditions in the region

Ω = {(x,y, v) ∈ R3
+ : x 6 1,y+ v 6 1}.

Proof. We show the nonnegativity of solutions first. Rewrite the first equation of model (2.1) as

dx

x
= φ1(x,y, v)dt,

where φ1(x,y, v) = r(1 − x− y− v) − a. By integrating over [0, t], we obtain

x(t) = x(0) exp [

∫t
0
φ1(x,y, v)ds].
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Since x(0) > 0, we have x(t) > 0 for all t > 0. From the second equation of model (2.1) we can write

dy

y
= φ2(x,y, v)dt,

where φ2(x,y, v) = s(1 − x− y− v) − b− cv. By integrating over [0, t], we obtain

y(t) = y(0) exp [

∫t
0
φ2(x,y, v)ds].

Since y(0) > 0, we have y(t) > 0 for all t > 0. From the third equation of model (2.1) we can write

dv

v
= φ3(x,y, v)dt,

where φ3(x,y, v) = cy− d. By integrating over [0, t], we obtain

v(t) = v(0) exp [

∫t
0
φ3(x,y, v)ds].

Since v(0) > 0, we have v(t) > 0 for all t > 0. Hence, the solutions x(t),y(t), and v(t) are nonnegative for
nonnegative initial data.

Now we prove that all solutions are bounded. Consider the initial value problem

dW

dt
= rW(1 −W), W(0) =W0. (3.1)

The solution to (3.1) is given by

W(t) =
W0

W0 + (1 −W0)e−rt
.

Note that lim supt−→∞W(t) 6 1, and also dx
dt 6 dW

dt . Thus, lim supt−→∞ x(t) 6 lim supt−→∞W(t) = 1.
Therefore, x(t) is bounded. Similarly, note that

dy

dt
+
dv

dt
= sy(1 − x− y− v) − by− dv 6 s(1 − (y+ v)).

Thus, y(t) + v(t) 6 1. Hence, lim supt−→∞ y(t) + v(t) 6 1. Therefore, all the solutions to the model (2.1)
are bounded in the invariant domain Ω.

3.2. Equilibria and basic reproduction number

The equilibrium points of the system are the steady-state solutions. Model (2.1) has five equilibrium
points as follows.

(i) The trivial equilibrium E0 = (0, 0, 0): represents a free equilibrium where all populations die out.
(ii) The cancer extinction equilibrium E1 = (1 − µ1, 0, 0): once cancer is extinct, the infected cells will

follow if their death rate is positive.
(iii) The virus extinction equilibrium E2 = (0, 1−µ2, 0): the virus population reaches zero which implies

that normal cells are also extinct.
(iv) The cancer-virus equilibrium E3 = (0, dc , sc−bc−dss+c ): normal cells die out leaving cancer cells and

virus-infected cells with stable sizes.
(v) Three population equilibrium E4 = (

c(r−a)−r(d+b)−as
rc , dc , asrc − b

c ): all three cell types are present
and have stable population sizes.



A. Abu-Rqayiq, H. Alayed, J. Math. Computer Sci., 31 (2023), 461–476 465

Where for simplicity of calculations and emphasizing the important parameters through the study, we
denote µ1 = a

r , and µ2 = b
s .

The basic reproduction number denoted by R0, can be considered as the number of secondary cases of
infection generated from a single virus in a population where all tumor cells are susceptible to infection.
Applying the Next Generation Method, let P = (x,y, v), then model (2.1) can be rewritten as P ′ =
F̃(P) − Ṽ(P), where the matrices F̃ and Ṽ represent respective new infection and transition, and they are
given by

F̃(P) =

 0
0
cyv

 and Ṽ(P) =

 −rx(1 − x− y− v) + ax
−sy(1 − x− y− v) + by+ cyv

dv

 .

Now, evaluating the Jacobian matrices associated with the above two matrices at the virus extinction
equilibrium E2, where all tumor cells are uninfected, we obtain

J(F̃(E2)) =

 0 0 0
0 0 0
0 0 c(1 − b

s )

 and J(Ṽ(E2)) =

 a− rb
s 0 0

s− b b− s s− b+ c− cb
s

0 0 d

 .

We denote F = J(Ṽ(E2)) and V = J(Ṽ(E2)). Applying the next-generation matrix [28], we obtain

FV−1 =

 0 0 0
0 0 0
0 0 c(s−b)

sd

 .

Then, we find that the basic reproduction number R0 is given by R0 = ρ(FV−1) =
c(s−b)
sd , where ρ(FV−1)

denotes the spectral radius of matrix FV−1.
The importance of R0 in the control of disease dynamics is evident from the extensive efforts to

estimate its value for various diseases and its role in the study of the dynamics of the disease [16].

3.3. Local stability analysis
In this section, we investigate the local stability of the equilibrium points of the model (2.1). We start

our qualitative analysis by finding the Jacobian matrix of the model. This is given by

J =

 r(1 − 2x− y− v) − a −rx −rx
−sy s(1 − x− 2y− v) − b− cv −sy− cy

0 cv cy− d

 .

Our main local stability results are summarized in the following theorem.

Theorem 3.2. For the system (2.1), the local behavior of the equilibria can be described as follows.

(i) The equilibrium point E0 is locally asymptotically stable if µ1 > 1 and µ2 > 1.
(ii) The equilibrium point E1 is locally asymptotically stable if µ1 < 1 and µ2 < 1.

(iii) The equilibrium point E2 is locally asymptotically stable if µ2 < 1, µ2 < µ1, and R0 < 1.
(iv) The equilibrium point E3 is locally asymptotically stable if µ1 > 1 and d > b, and AB−C > 0, where A, B,

and C are the coefficient of the associated characteristic polynomial.
(v) The equilibrium point E4 is locally asymptotically stable if s+2b

s+4b <
µ1
µ2
< d−b
a−b and c(r−a)

r(d−b)+s(a−d) > 1.

Proof.

(i) The Jacobian matrix evaluated at the disease-free equilibrium point is given by

J(E0) =

 r− a 0 0
0 s− b 0
0 0 −d

 .

Since the matrix is upper triangular, the eigenvalues are the entries of the main diagonal. Hence, the
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eigenvalues are negative when µ1 > 1 and µ2 > 1.

(ii) The Jacobian matrix evaluated at E1 is given by

J(E1) =

 a− r a− r a− r
0 sa

r − b 0
0 0 −d

 .

The eigenvalues of this upper triangular matrix are a− r, sar − b, and −d. They are negative if µ1 < µ2
and µ1 < 1.

(iii) The Jacobian matrix evaluated at E2 is given by

J(E2) =

 rb
s − a 0 0
b− s b− s b− s− c+ bc

s

0 0 c− d− bc
s

 .

The eigenvalues are λ1 = rb
s − a, λ2 = b− s, and λ3 = c− d− bc

s . These eigenvalues are all negative if
a > rb

s , s > b, and c− d− bc
s < 0. Hence, the stability conditions are µ2 < µ1, µ2 < 1, and R0 < 1.

(iv) The Jacobian matrix evaluated at E3 is given by

J(E3) =

 r(c−d+b)
c+s − a 0 0
−sdc −sdc −sdc − d

0 sc−bc−ds
c+s 0

 .

The characteristic polynomial is given by

λ3 +Aλ2 +Bλ+C = 0,

where

A =
sd

c
−
rb− rd+ rc

c+ s
+ a,

B =
s2dc− sbdc− s2d2 + sdc− bcd− d2s− rsbd− rsd

c+ s
+
asd

c
+

rd2s

c(c+ s)
,

C =
rsbdc2 − rs2dc2 + 2rs2cd2 − rsc2d+ rc2bd+ 2rscd2 − rsbcd2 − rs2d3 − rd2bc− rsd3

(c+ s)2

−
rs2bcd+ rsb2cd+ rs2bd2 − rsbcd+ rb2cd+ rsbd2 + as2dc2 + as3dc− asbc2d− as2bcd

(c+ s)2

−
acs2d2 − as3d2 + asdc2 + as2cd− abc2d− sabcd− acd2s− s2ad2

(c+ s)2 .

By the Routh-Hurwitz criterion, all roots of the characteristic equation have negative real parts if and only
if A > 0 and AB−C > 0. The first condition is satisfied if µ1 > 1 and d > b. The two conditions imply
the stability of the equilibrium point E3.

(v) The Jacobian matrix evaluated at E4 is given by

J(E4) =

 c(a−r)+r(d−b)+as
c

c(a−r)+r(d−b)+as
c

c(a−r)+r(d−b)+as
c

−sdc −sdc −sdc − d
0 sa

r − b 0

 .

The characteristic equation is given by

λ3 +Aλ2 +Bλ+C = 0.
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Where

A = r− a−
rd

c
+
rb

c
−
as

c
+
sd

c
,

B = (
bds

c
+ bd)(

as

br
− 1),

C = abd+ sad− rbd−
s2a2d

cr
−
sa2d

r
−
sad2

c
+
rbd2

c
−

2sabd
c

+
rb2d

c
.

By the Rough-Hurwitz criterion, all roots of the equation have negative real parts if and only if A > 0
and AB−C > 0. The first condition, A > 0 holds if c(r−a)

r(d−b)+s(a−d) > 1. The condition AB−C > 0 holds

if b(s+2b)
s(s+4b) <

a
r <

b(d−b)
s(a−b) . Hence, the conditions under which the equilibrium E4 is locally asymptotically

stable are
s+ 2b
s+ 4b

<
µ1

µ2
<
d− b

a− b
and

c(r− a)

r(d− b) + s(a− d)
> 1.

Remark 3.3. If the equilibrium point E0 is stable, then E1, E2, and E4 do not exist. Also, if E1 exists, then
E0 is not stable. If E1 is stable, then the other equilibria do not exist, and vice versa. This is the case for
all of the equilibria, i.e., if one equilibrium point exists, then the others do not exist.

3.4. Global stability analysis
We study the global stability of the equilibria by applying appropriate Lyapunov functions and con-

ducting a Lyapunov analysis. We also apply La Salle’s invariant principle [16] to determine global stability.

Theorem 3.4. For the system (2.1),

(i) the equilibrium E0 is globally asymptotically stable if µ1 > 1 and µ2 > 1;
(ii) the equilibrium point E1 is globally asymptotically stable if µ1 > 1 and µ1 >

2+s−b−d
2 ;

(iii) the equilibrium point E2 is globally asymptotically stable if µ2 = 1, s
c(s−1) > 1, and s

r−a > 1;

(iv) the equilibrium point E3 is globally asymptotically stable if a−r+1
2(s−b−1) > 1;

(v) the equilibrium point E4 is globally asymptotically stable if 2c+b
c+s < µ1 <

sad−2brd
r(c−d+b)−a(c+s) .

Proof.

(i) Consider the following Lyapunov function

V(x,y, v) = x+ y+ v.

Clearly, V is a positive definite function. Computing the derivative of V along the solutions of model (2.1),
we get

V ′ = (r− a)x+ (s− b)y− rx2 − rxy− syx− sy2 − dv.

If r < a and s < b, then V ′ 6 0 and V ′ = 0 if and only if x = y = v = 0. Thus, the largest invariant set in
{(x,y, v) ∈ Ω : V ′ = 0} is E0. Hence, by La Salle’s invariance principle [16], E0 is globally asymptotically
stable.

(ii) Define the Lyapunov function V(x,y, v) = 1
r(x− x1 − x1 ln x

x1
) + y+ v. Computing the derivative of V

along the solutions to the model (2.1) and collecting like terms

V
′
= x(1 + x1 −

a

r
) + y(x1 + s− b) + v(x1 − d) − xy− xv+ x1(

a

r
− 1) − syx− sy2 − syv− x2.

We note that
V
′
6 x(1 + x1 −

a

r
) + y(x1 + s− b) + v(x1 − d) + x1(

a

r
− 1),

if µ1 > 1 and µ1 >
2+s−b−d

2 . Also, V
′
= 0 if x = 1 − a

r and y = v = 0. Thus, the largest invariant set in
{(x,y, v) ∈ Ω : V

′
= 0} is E1. Hence, by La Salle’s principle, E1 is globally asymptotically stable.
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(iii) Define the Lyapunov function as

V(x,y, v) = x+
1
s
(y− y2 − y2 ln

y

y2
) + v.

Differentiating and collecting the like terms

V
′
= (r−a− s+ y2)x+ (1+ y2 −

b

s
)y+ (y2 −d+

c

s
y2)v+ (c− 1−

c

s
)yv+ (

b

s
− 1)y2 − rx

2 − rxy− rxv−y2,

where y2 = 1 − b
s . Note that

V
′
6 (r− a− s+ y2)x+ (1 + y2 −

b

s
)y+ (y2 − d+

c

s
y2)v+ (c− 1 −

c

s
)yv+ (

b

s
− 1)y2.

Thus, V
′
6 0 if µ2 = 1, s

c(s−1) > 1, and s
r−a > 1. Also, V

′
= 0 if x = 0, y = 1 − b

s , and v = 0. Thus,

the largest invariant set in {(x,y, v) ∈ Ω : V
′
= 0} is E2. Hence, by La Salle’s principle, E1 is globally

asymptotically stable.

(iv) Define the Lyapunov function

V(x,y, v) = x+ y− y3 − y3 ln
y

y3
+

1
v3

(v− v1 − v3 ln
v

v3
),

where y3 = d
c and v3 = sc−bc−ds

s+c . Differentiating and grouping coefficients of the positive terms

V
′
= (r− a− sy3)x+ (s+ sy3 − b− c)y+ (sy3 + cy3 −

d

v3
)v+ (

c

v3
− s− c)yv++(by3 − sy3 + d)

− rx2 − rxy− rxv− syx− sy2,

6 (r− a− sy3)x+ (s+ sy3 − b− c)y+ (sy3 + cy3 −
d

v3
)v+ (

c

v3
− s− c)yv+ (by3 − sy3 + d).

Note that V
′
6 0 if sd

c(a−r) 6 1, sd
c(b−s+c) 6 1, sc−bc−sdc 6 1, s

c+b > 1, and sc−bc−sd
c > 1. Combining

these conditions, we get the following condition for global stability of E3,

a− r+ 1
2(s− b− 1)

> 1.

Also V
′
= 0 at E3. Moreover, the largest invariant set in {(x,y, v) ∈ Ω : V ′ = 0} is E3. Hence, by La Salle’s

invariance principle, E3 is globally asymptotically stable.

(v) Define the Lyapunov function

V(x,y, v) =
1
r
(x− x2 − x2 ln

x

x2
) +

1
s
(y− y2 − y2 ln

y

y2
) +

1
s
(v− v2 − v2 ln

v

v2
),

where E∗ = (x2,y2, v2). Differentiating and grouping coefficients of the positive terms

V ′ = (1 + x2 + y2)x+ (1 + x2 + y2)y+ (x2 + y2 +
c

s
y2)v+ (

a

r
x2 +

b

s
y2 +

dv2

s
) − x2 − xy− xv

−
a

r
x− x2 − yx− y

2 −
b

s
y− y2 −

d

s
v−

c

s
v2y.

We find that V ′ 6 0 if 2c+b
c+s 6 µ1 6 sad−2brd

r(c−d+b)−a(c+s) . Thus under this condition, the equilibrium E4 is

globally stable. Also, V
′
= 0 at E4, which is the largest invariant set in {(x,y, v) ∈ Ω : V

′
= 0}.
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4. Numerical analysis

4.1. Numerical simulations

To illustrate our theoretical results, we use Matlab software with the Runge-Kutta method of order 4
to perform simulations for the solutions of the system (2.1). We may change certain parameter values of
the parameters to satisfy the existence and stability constraints of each equilibrium point. However, those
values must obey the stability conditions.

In light of the parameters’ values in Table 1, we use the following parameter variations, r = 0.3,a =
0.5, s = 0.2,b = .3,d = 0.1, and c = 1.2, to show that the solution curves approach the trivial equilibrium
point E0 = (0, 0, 0) as t approaches infinity. This choice of parameter values is compatible with the stability
conditions of E0, namely r < a and s < b. Thus, Figure 1 shows that E0 is locally asymptotically stable.

For the cancer extinction equilibrium point E1, we use the parameter values r = 0.5,a = 0.2, s =
0.3,b = 0.2,d = 0.1, and c = 1.2. So we have E1 = (0.6, 0, 0) and the solutions are locally asymptotically
stable as shown in Figure 2. Note that there are two cases for the parameter values according to stability
conditions of E1. The first case is when µ1 < µ2 < 1 and the other case is µ1 < 1 < µ2. The parameter
values above are compatible with the first case. However, if you choose b = 1 and s = 0.1, then the second
case holds. However, the dynamic behavior for the solutions stays the same.

The equilibrium point E2 is asymptotically stable as shown in Figure 3. The parameter values that
obey the stability conditions are a = 0.2, r = 0.5, s = 0.5, b = 0.1, c = 5, and d = 4. The stability is shown
in Figure 3 where E2 = (0, 0.5, 0). Unlike simulations in Figures 1 and 2 where dynamics depend only on
a, r, b, and s, the simulations depend on parameter values of the proliferation rate and death rate of the
infected cells, c and d, respectively, as well.

Figure 1: Dynamics of the model with initial values x = 0.9, y = 0.01, and v = 0.09. This figure shows that E0 is asymptotically
stable.
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Figure 2: Dynamics of the model with initial values x = 0.9, y = 0.01, and v = 0.09. This figure shows that E1 is asymptotically
stable.

Figure 3: Dynamics of the model with initial values x = 0.9, y = 0.01, and v = 0.09. This figure shows that E2 is asymptotically
stable.
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The equilibrium point E3 is locally asymptotically stable as shown in Figure 4. The parameter values
are a = 0.6, r = 0.3, b = 0.3, s = 0.8, c = 5, and d = 0.4. The solutions tend to the point E3 =
(0, 0.08, 0.07514) asymptotically. Cancer and infected cancer populations oscillate during the first 200
days, then they stable after that. However, the population of normal cells will die out. Also, simulations
of E2 depend on all parameter values.

Figure 4: Dynamics of the model with initial values x = 0.9, y = 0.01, and v = 0.09. This figure shows that E3 is asymptotically
stable.

For the equilibrium point E4, we choose parameter values that make the two local asymptotic condi-
tions valid. We choose a = 0.4, r = 0.5, b = 0.3, s = 0.4, c = 5, and d = 0.6. We choose the initial values
x = 0.05, y = 0.05, and v = 0.05. In this case, the solutions will converge to E4 = (0.076, 0.12, 0.004) as
shown in Figure 5.

4.2. Sensitivity analysis
In this section, we conduct a sensitivity analysis on our model to determine parameters that have a

high impact on the threshold RO and should be targeted by intervention strategies. This analysis allows
us to measure the relative change in a variable when a parameter changes. However, the sensitivity has
the drawback that it does not give the change of the quantity R0 relative to the size of the quantity. To
address this issue, elasticity of the reproduction number R0 can be used and defined as follows

E
p
RO

=
∂R0

∂p

p

R0
,

where p is a parameter [16]. The magnitude of the elasticity indices depends generally on the parameter
values found in the expression of RO.

Using parameter values from Table 2, the rate of change of R0, with respect to one parameter at a time
is as follows:

∂R0

∂s
=
cb

s2d
> 0,

∂R0

∂b
=

−c

sd
< 0,

∂R0

∂c
=
s− b

sd
> 0,

∂R0

∂d
=

−c(s− b)

sd2 < 0. (4.1)
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Figure 5: Dynamics of the model with initial values x = 0.05, y = 0.05, and v = 0.05. This figure shows that E4 is asymptotically
stable.

Figure 6: The sensitivity of R0 with respect to the parameters of the model (2.1).
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Table 2: Sensitivity of R0 evaluated for the parameter values given in Table 1.
Parameter Elasticity Index value

s 0.111
b -0.111
c 1.000
d -1.000

Equation (4.1) shows that R0 decreases when the parameter values of b and d increase. On contrast,
R0 increases when s and c increase as in Fig 6.

The elasticity indices values shown in Table 2 indicate that the two parameters c and d are the most
critical parameters of the model in calculating R0. That is, the higher the proliferation of the infected cells
and the lower the death rate of the infected cells, the higher the number of cancer cells. As a consequence,
virotherapy will fail under these changes. It is notable that the other parameters, namely, b and s are not
much influential in calculating RO.

Figure 7: The left figure shows the impact of variation of the parameter c in the number of infected cells y ( there is a visible
difference). The right figure shows the impact of variation of parameter s in the number of the infected cells y ( no visible
difference)

Figure 6 shows (left figure) a visible difference in the number of infected cells as the parameter c has
changed from the original value 1.2 to a new value c = 2. The figure also shows (right figure) that there is
no significant change in the number of infected cells if we change the parameter s from the original value
s = 1 to the new value s = 2. This agrees with the elasticity index from Table 2.

5. Discussion and conclusions

In this paper, we studied a model of oncolytic virotherapy that was developed in the studies [4, 5]
to describe the virus-cancer cells interaction. In our work, we studied the qualitative properties of the
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solutions and used the obtained results to complement and extend the other studies. We hope that our
study can lead to a better understanding of the interaction between virus cells and cancer cells.

In the above references, it is proved that a high virus clearance rate can result in treatment failure.
However, decreasing the virus clearance rate slightly while keeping the other parameter values unchanged
results in treatment success. This agrees with the result obtained in [5].

Our study shows that when µ1 < 1, and if µ1 < µ2, then the treatment is successful regardless of the
values of the proliferation and death of the virus, i.e., c and d, respectively. This result seems to agree
only partially with the result obtained in [4, 5], and thus it is worth focusing on. This result is shown in
Figure 2 where the solutions converge to the cancer extinction equilibrium E1, where we notice that once
cancer is extinct, the virus population will follow soon.

When µ2 < µ1, µ2 < 1, and if R0 < 1, then the viruses will extinct and the normal cells will follow.
In this case, the disease will be dominant and the treatment fails. The virus-infected cells go extinct
and the tumor cells will occupy the simulation space as tumor cells grow faster than normal cells E2.
Mathematically, solutions will converge to E2 as shown in Figure 3. Unlike simulations of the equilibrium
solutions E0 and E1, the dynamics depend on the values of the parameters c and d and this agrees with
the stability conditions of our study.

Under the conditions in Theorem 3.2 (iv), the solutions oscillate at the beginning of the therapy, then
they tend to be stable as shown in Figure 4. At the cancer-virus equilibrium E3, normal cells die out
leaving cancer cells and virus-infected cells with stable population sizes. This is another case where
therapy is not successful since normal cells are completely destroyed and tumor cells and infected tumor
cells coexist E3.

The equilibrium point E4 exists and is asymptotically stable under the conditions of Theorems 3.2 and
3.4. The three populations will coexist with nonzero stable sizes of E4. Figure 5 shows all populations
tend to a stable behavior after approximately 200 days of the treatment.

Finally, the trivial equilibrium point E0 is reached when both the ratio of the death rate of normal cells
to the proliferation rate, µ1 and the ratio of the death rate of cancer cells to their growth rate are less than
one. All populations die out E0 as shown in Figure 1.

While studying virotherapy is still in the beginning stages, at least mathematically and clinically,
studying and modifying different models of virotherapy is necessary to understand the dynamics of
the treatment and to optimize it. We believe that the results and observations of this paper can lead to a
better understanding of virotherapy especially the interaction between infected tumor cells and uninfected
tumor cells.

One of the questions we tried to address is what range of virus parameters can maximize the chance
for successful therapy. In our study, we showed how the dynamics of model (2.1) are largely dependent
on specific parameter values of replication and death rates of normal and cancer cells, r, a, and s, b,
respectively. Those critical virus parameters that we denoted as µ1 and µ2 can result in qualitatively
different dynamics of the model (2.1). However, varying the virus replication c and death rate of virus d
can only affect the dynamics of the equilibrium points E2,E3, and E4.

The sensitivity analysis conducted in Section 5 shows that the parameters c and d are the most influ-
ential parameters on the basic reproduction number. This agrees with the results we obtained from the
qualitative analysis of the equilibria.

As a possible future research, some dynamical behavior cannot be explained well from the determin-
istic model, especially when solutions start to approach zero after a specific time. Therefore incorporating
some stochastic effects can produce a different behavior starting from that moment.
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