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Abstract
In this paper, we propose a numerical approach for solving p-dimensional stochastic Volterra integral equations using the

Walsh function approximation. The main goal is to transform integral equations into an algebraic system and solve this further to
get an approximate solution to the integral equation. The convergence and error analysis of the proposed method are studied for
integral equations having functions in the Lipschitz class. The computation of various examples for which analytical solutions
are available shows that the proposed method is more accurate than the existing techniques for solving linear p-dimensional
stochastic Volterra integral equations.
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1. Introduction

In recent decades, stochastic integral equations [13, 14] have been widely used in different fields like
financial mathematics [3], physics, biology, engineering, and many others. Since it is not always possible
to have an exact solution to the problem, numerical approximation to the integral equation becomes
vital. To approximate the stochastic integral equation, orthogonal functions like block pulse function,
Haar wavelet, Legendre polynomial, and others have been applied to approximate the stochastic integral
equation [7–12, 16–18]. The fact that a computer can accurately estimate any Walsh function’s (which is
a binary-valued function that takes values 1 and −1) current value at any given time gives it a significant
edge over traditional trigonometric functions. Chen and Hsiao solved the variational problem using the
Walsh function [1] in 1975. In 1979, they solved the integral equation using the same concept [6].

In this paper, we used the Walsh function to approximate the following p-dimensional stochastic
Volterra integral equation (SVIE)

x(t) = f(t) +

∫t
0
k(s, t)x(s)ds+

p∑
γ=1

∫t
0
kγ(s, t)x(s)dBγ(s), s, t ∈ [0, T),

∗Corresponding author
Email addresses: paikaraypritpritam@gmail.com (Prit Pritam Paikaray), sbeuria108@gmail.com (Sanghamitra Beuria),
ncparida@gmail.com (Nigam Chandra Parida)

doi: 10.22436/jmcs.031.04.07

Received: 2023-03-24 Revised: 2023-04-18 Accepted: 2023-05-10

http://dx.doi.org/10.22436/jmcs.031.04.07
http://dx.doi.org/10.22436/jmcs.031.04.07
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.031.04.07&domain=pdf


P. P. Paikaray, S. Beuria, N. C. Parida, J. Math. Computer Sci., 31 (2023), 448–460 449

where, p is a positive integer and for γ = 1, 2, . . . ,p, x(t), f(t), k(s, t), and kγ(s, t) are the stochastic
processes defined on the same probability space (Ω, F,P). Bγ(t) are independent Brownian motions, x(t)
is an unknown stochastic process, and

∫t
0 kγ(s, t)x(s)dBγ(s) is Itô integral. The purpose of the work is to

convert a p-dimensional SVIE into a system of an algebraic equation and then solve the system to get an
approximate solution.

2. Walsh function and its properties

Definition 2.1 (Rademacher function). Rademacher function ri(t), i = 1, 2, . . ., for t ∈ [0, 1) is defined by
[19]

ri(t) =

{
1, i = 0,
sgn(sin(2iπt)), otherwise,

where,

sgn(x) =

{ 1, x > 0,
0, x = 0,
−1, x < 0.

Definition 2.2 (Walsh function). The nth Walsh function for n = 0, 1, 2, . . . , denoted by wn(t), t ∈ [0, 1) is
defined [19] as

wn(t) = (rq(t))
bq .(rq−1(t))

bq−1 .(rq−2(t))
bq−2 · · · (r1(t))

b1 ,

where n = bq2q−1 + bq−12q−2 + bq−22q−3 + · · ·+ b120 is the binary expression of n. Therefore, q, the
number of digits present in the binary expression of n is calculated by q =

[
log2 n

]
+ 1 in which

[
·
]

is
the greatest integer less than or equal to ′· ′.

The first m Walsh functions for m ∈N can be written as an m-vector by

W(t) =
[
w0(t) w1(t) w2(t) · · ·wm−1(t)

]T .

The Walsh functions satisfy the following properties.

Orthonormality: The set of Walsh functions is orthogonal, i.e.,∫ 1

0
wi(t)wj(t)dt =

{
1, i=j,
0, otherwise.

Completeness: For every f ∈ L2[0, 1), ∫ 1

0
f2(t)dt =

∞∑
i=0

f2
i ||wi(t)||

2,

where fi =
∫1

0 f(t)wi(t)dt.

Walsh function approximation: Any real-valued function f(t) ∈ L2[0, 1) can be approximated as

fm(t) =

m−1∑
i=0

ciwi(t)

where, ci =
∫1

0 f(t)wi(t)dt. The matrix form of the approximation is given by

f(t) = FTTWW(t) (2.1)

where F =
[
f0 f1 f2 · · · fm−1

]T and fi =
∫(i+1)h
ih f(s)ds and TW is called the operational matrix for

the Walsh function.
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One can see from [2] that,
TWT

T
W = mI and TTW = TW .

Similarly, k(s, t) ∈ L2([0, 1)× [0, 1)) can be approximated by

km(s, t) =
m−1∑
i=0

m−1∑
j=0

cijwi(s)wj(t),

where, cij =
∫1

0

∫1
0 k(s, t)wi(s)wj(t)dtds, with the matrix form as

k(s, t) =WT (s)TWKTWW(t) =WT (t)TWK
TTWW(s), (2.2)

where K = [kij]m×m,kij =
∫(i+1)h
ih

∫(j+1)h
jh k(s, t)dtds.

In the next section, we will find a relation between the block pulse function and the Walsh function,
which is later used to convert the SVIE to an algebraic equation.

3. Relationship between Walsh function and block pulse functions (BPFs)

Definition 3.1 (Block pulse functions). For a fixed positive integer m, an m-set of BPFs φi(t), t ∈ [0, 1) for
i = 0, 1, . . . ,m− 1 is defined as

φi(t) =

{
1, if i

m 6 t < (i+1)
m ,

0, otherwise.

φi is known as the ith BPF.

The set of all m BPFs can be written concisely as an m-vector,

Φ(t) =
[
φ0(t) φ1(t) φ2(t) · · ·φm−1(t)

]T , t ∈ [0, 1).

The BPFs are disjoint, complete, and orthogonal [5]. The BPFs in vector form satisfy

Φ(t)Φ(t)TX = X̃Φ(t) and ΦT (t)AΦ(t) = ÂΦ(t),

where, X ∈ Rm×1, X̃ is the m×m diagonal matrix with X̃(i, i) = X(i) for i = 1, 2, 3, . . . ,m,A ∈ Rm×m

and Â =
[
a11 a22 · · · amm

]T is the m-vector with elements equal to the diagonal entries of A. The
integration of BPF vector Φ(t), t ∈ [0, 1) can be performed by [5]∫t

0
Φ(τ)dτ = PΦ(t), t ∈ [0, 1),

where P is called the deterministic operational matrix of integration. Hence, the integral of every function
f(t) ∈ L2[0, 1) can be approximated as ∫t

0
f(s)ds = FTPΦ(t).

Similarly, Itô integral of the BPF vector Φ(t), t ∈ [0, 1) can be performed by [9]∫t
0
Φ(τ)dB(τ) = PSΦ(t), t ∈ [0, 1),

where, PS is called the stochastic operational matrix of integration. Hence, the Itô integral of every
function f(t) ∈ L2[0, 1) can be approximated as in [9] by∫t

0
f(s)dB(s) = FTPSΦ(t).

The following theorem describes a relationship between the Walsh function and the block pulse func-
tion.
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Theorem 3.2. Let the m-set of Walsh function and BPF vectors be W(t) and Φ(t), respectively. Then the BPF
vectors Φ(t) can be used to approximate W(t) as W(t) = TWΦ(t), m = 2k, and k = 0, 1, . . ., where TW =[
cij
]
m×m, cij = wi(ηj), for some ηj =

(
j
m , j+1

m

)
and i, j = 0, 1, 2, . . . ,m− 1.

Proof. Let wi(t), i = 0, 1, 2, . . . ,m − 1, where m = 2k, be the ith element of the Walsh function vector.
By expanding wi(t) into an m-term vector of BPFs, we have wi(t) =

∑m−1
j=0 cijφj(t) = CTiΦ(t), i =

0, 1, 2, . . . ,m− 1, where CTi is the ith row and cij is the(i, j)th element of matrix TW ,

cij =
1
h

∫ 1

0
wi(t)φj(t)dt =

1
h

∫ (j+1)h

jh

wi(t)dt.

Using the mean value theorem for integrals, we can write

cij =
1
h

∫ (j+1)h

jh

wi(t)dt =
1
h

(
(j+ 1)h− jh

)
wi(ηj) = wi(ηj),

where ηj ∈
(
j
m , j+1

m

)
, m = 1

h . Since wi(t) is constant in the interval
(
j
m , j+1

m

)
, we choose cij = wi(

2j+1
2m ),

i, j = 0, 1, 2, . . . ,m− 1. Hence W(t) = TWΦ(t).

From the above theorem, it is easy to see Φ(t) = 1
mTWW(t). With the above condition, we prove the

following theorem.

Lemma 3.3 (Integration of Walsh function). Suppose that W(t) is a Walsh function vector, then the integral of
W(t) w.r.t. t is given by

∫t
0 W(s)ds = ∧W(t), where ∧ = 1

mTWPTW and

P =
1
h


1 2 2 · · · 2
0 1 2 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

 .

Proof. Let W(t) be a Walsh function vector, and then the integral of W(t) w.r.t. t is∫t
0
W(s)ds =

∫t
0
TWΦ(s)ds = TW

∫t
0
Φ(s)ds = TWPΦ(t) =

1
m

(
TWPTW

)
W(t) = ∧W(t),

where ∧ = 1
m

(
TWPTW

)
.

Here, ∧ is called the Walsh operational matrix of integration.

Lemma 3.4 (Stochastic integration of Walsh function). Suppose that W(t) is a Walsh function vector, then the
Itô integral of W(t) is given by

∫t
0 W(s)dB(s) = ∧SW(t), where ∧S = 1

mTWPSTW and

PS =


B(h2 ) B(h) · · · B(h)

0 B( 3h
2 ) −B(h) · · · B(2h) −B(h)

...
...

. . .
...

0 0 · · · B(
(2m−1)h

2 ) −B((m− 1)h)

 .

Proof. Let W(t) be a Walsh function vector, and then the Itô integral of W(t) is∫t
0
W(s)dB(s) =

∫t
0
TWΦ(s)dB(s) = TW

∫t
0
Φ(s)dB(s) = TWPSΦ(t) =

1
m

(
TWPSTW

)
W(t) = ∧SW(t),

where ∧S = 1
m

(
TWPSTW

)
.

Here, ∧S is called the Walsh operational matrix for Itô integral.
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4. Numerical solution of stochastic Volterra integral equation

Consider the following p-dimensional linear stochastic Volterra integral equation

x(t) = f(t) +

∫t
0
k(s, t)x(s)ds+

p∑
γ=1

∫t
0
kγ(s, t)x(s)dBγ(s), s, t ∈ [0, T), (4.1)

where, for γ = 1, 2, . . . ,p, x(t), f(t), k(s, t), and kγ(s, t) are the stochastic processes defined on the same
probability space (Ω, F,P). Bγ(t) are independent Brownian motions, x(t) is the unknown stochastic
process, and

∫t
0 kγ(s, t)x(s)dBγ(s) is Itô Integral.

As given in equations (2.1) and (2.2) we approximate f(t), k(s, t), kγ(s, t) for s, t ∈ [0, T) as

f(t) = FTTWW(t), (4.2)

where F =
[
f0 f1 f2 · · · fm−1

]T and fi =
∫(i+1)h
ih f(s)ds. Also,

k(s, t) =WT (s)TWKTWW(t) =WT (t)TWK
TTWW(s), (4.3)

where K = [kij]m×m,kij =
∫(i+1)h
ih

∫(j+1)h
jh k(s, t)dtds. Similarly, for γ = 1, 2, . . . ,p,

kγ(s, t) =WT (s)TWKγTWW(t) =WT (t)TWK
T
γTWW(s), (4.4)

where Kγ = [kij]m×m,kij =
∫(i+1)h
ih

∫(j+1)h
jh kγ(s, t)dtds. Assume that

x(t) = XTTWW(t), (4.5)

where X =
[
x0 x1 x2 · · · xm−1

]T and xi =
∫(i+1)h
ih x(s)ds. Substituting (4.2), (4.3), (4.4), and (4.5) in (4.1)

we have

XTTWW(t) = FTTWW(t) +

∫t
0
WT (t)TWK

TTWW(s)WT (s)TWXds

+

p∑
γ=1

∫t
0
WT (t)TWK

T
γTWW(s)WT (s)TWXdBγ(s)

= FTTWW(t) +WT (t)TWK
TTW

∫t
0
W(s)WT (s)TWXds

+

p∑
γ=1

WT (t)TWK
T
γTW

∫t
0
W(s)WT (s)TWXdBγ(s).

(4.6)

Now ∫t
0
W(s)WT (s)TWXds = TWX̃PTWW(t). (4.7)

Similarly, ∫t
0
W(s)WT (s)TWXdBγ(s) = TWX̃P

γ
STWW(t), (4.8)

where

P
γ
S =


Bγ(

h
2 ) Bγ(h) · · · Bγ(h)

0 Bγ(
3h
2 ) −Bγ(h) · · · Bγ(2h) −Bγ(h)

...
...

. . .
...

0 0 · · · Bγ(
(2m−1)h

2 ) −Bγ((m− 1)h)

 .
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Substituting (4.7) and (4.8) in (4.6) we get

XTTWW(t) = FTTWW(t) +mWT (t)TWK
T X̃PTWW(t) +m

p∑
γ=1

WT (t)TWK
T
γX̃P

γ
STWW(t)

= FTTWW(t) +WT (t)TWHTWW(t) +

p∑
γ=1

WT (t)TWHγTWW(t)

= FTTWW(t) +mĤTTWW(t) +m

p∑
γ=1

ĤTγTWW(t),

i.e., (
XT − FT −mĤT −m

p∑
i=1

ĤTγ

)
TWW(t) = 0,

where, H = mKT1 X̃P and Hγ = mKTγX̃P
γ
S . Here, Ĥ and Ĥγ are m-vector with elements equal to the

diagonal entries of H and Hγ, respectively. Hence,

(
X− F−mĤ−m

p∑
γ=1

Ĥγ

)
= [0]m×1

can be solved to yield a solution to the given linear SVIE (4.1).

5. Error analysis

In this section, we analyse the error between the approximate solution and the exact solution of the
stochastic Volterra integral equation. Before we start the analysis, let us define ‖X‖2 = E(|X|2)

1
2 .

Theorem 5.1. If f ∈ L2[0, 1) satisfies the Lipschitz condition with Lipschitz constant C, then ‖em(t)‖2 = O(h),
where em(t) = |f(t) −

∑m−1
i=0 ciwi(t)| and ci =

∫1
0 f(s)wi(s)ds.

Proof. Let fm(t) =
∑m−1
i=0 ciwi(t), where ci =

∫1
0 f(s)wi(s)ds. Suppose f satisfies the Lipschitz condition.

Now,

em(t) = |f(t) − fm(t)| 6 ω(
1

2k
, f) 6 Ch.

Here ω( 1
2k , f) is called the modulus of continuity of the function f [4]. Therefore,

‖em(t)‖2 6 Ch = O(h).

Theorem 5.2. Suppose k ∈ L2
(
[0, 1)× [0, 1)

)
satisfies the Lipschitz condition with the Lipschitz constant L. If

km(x,y) =
∑m−1
i=0

∑m−1
j=0 cijwi(x)wj(y), cij =

∫1
0

∫1
0 k(s, t)wi(s)wj(t)dtds, then ‖em(x,y)‖2 = O(h), where

|em(x,y)| = |k(x,y) − km(x,y)|.

Proof. From [4], it is evident that,

km(x,y) =
m−1∑
i=0

m−1∑
j=0

( ∫ 1

0

∫ 1

0
k(s, t)wi(s)wj(t)dtds

)
wi(x)wj(y)

=

m−1∑
i=0

m−1∑
j=0

(

∫ 1

0

∫ 1

0
k(s, t)wi(s)wi(x)wj(t)wj(y)dtds)
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=

∫ 1

0

∫ 1

0
k(s, t)Dm(t⊕ y)Dm(s⊕ x)dtds = 2k.2k

∫
∆

(k)
i

∫
∆

(k)
j

k(s, t)dtds,

where Dm(t) =
∑m−1
i=0 wi(t) is called the Dirichlet kernel and for l = i, j, ∆(k)

l =
[
l

2k , l+1
2k
)
, 0 6 l < 2k − 1,

[4]. Hence,

|km(X) − k(X)| 6 22k
∫
∆

(k)
i

∫
∆

(k)
j

|k(T) − k(X)|dT ,

where X = (x,y) and T = (s, t). Also note that if k is uniformly Lipschitz with the Lipschitz constant L,
then

|km(X) − k(X)| 6 22k
∫
∆

(k)
i

∫
∆

(k)
j

L|T −X|dT .

Therefore,
‖km(X) − k(X)‖2 6

√
2Lh = O(h).

Theorem 5.3. Suppose xm(t) is the approximate solution of the linear p-dimensional SVIE (4.1). If

1. f ∈ L2[0, 1), k(s, t) ∈ L2
(
[0, 1)× [0, 1)

)
, and kγ(s, t) ∈ L2

(
[0, 1)× [0, 1)

)
satisfies the Lipschitz condition

with Lipschitz constants C, L, and Lγ, respectively, where for γ = 1, 2, . . . ,p;
2. |x(t)| 6 σ, |k(s, t)| 6 ρ and for γ = 1, 2, . . . ,p, |kγ(s, t)| 6 ργ,

then
‖x(t) − xm(t)‖2

2 = O(h2).

Proof. Let (4.1) be the given SVIE and

xm(t) = fm(t) +

∫t
0
km(s, t)xm(s)ds+

p∑
γ=1

∫t
0
kγm(s, t)xm(s)dBγ(s)

be the approximation to the solution using the Walsh function. Then

x(t) − xm(t) = f(t) − fm(t) +

∫t
0

(
k(s, t)x(s) − km(s, t)xm(s)

)
ds

+

p∑
γ=1

∫t
0

(
kγ(s, t)x(s) − kγm(s, t)xm(s)

)
dBγ(s).

We know that (a1 + a2 + · · ·+ ap+2)
2 6 (2p+ 3)(a2

1 + a
2
2 + · · ·+ a2

p+2). Therefore

|x(t) − xm(t)|2 6 (2p+ 3)|f(t) − fm(t)|2 + (2p+ 3)
∣∣∣∣∫t

0

(
k(s, t)x(s) − km(s, t)xm(s)

)
ds

∣∣∣∣2
+ (2p+ 3)

p∑
γ=1

∣∣∣∣∫t
0

(
kγ(s, t)x(s) − kγm(s, t)xm(s)

)
dBγ(s)

∣∣∣∣2,

which implies that

E
(
|x(t) − xm(t)|2

)
6 E

(
(2p+ 3)|f(t) − fm(t)|2 + (2p+ 3)

∣∣∣∣∫t
0

(
k(s, t)x(s) − km(s, t)xm(s)

)
ds

∣∣∣∣2
+ (2p+ 3)

p∑
γ=1

∣∣∣∣∫t
0

(
kγ(s, t)x(s) − kγm(s, t)xm(s)

)
dBγ(s)

∣∣∣∣2).
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Hence,

E
(
|x(t) − xm(t)|2

)
6 (2p+ 3)E

(
|f(t) − fm(t)|2

)
+ (2p+ 3)I0 + (2p+ 3)

p∑
γ=1

Iγ, (5.1)

where

I0 = E

(∣∣∣∣∫t
0

(
k(s, t)x(s) − km(s, t)xm(s)

)
ds

∣∣∣∣2), Iγ = E

(∣∣∣∣∫t
0

(
kγ(s, t)x(s) − kγm(s, t)xm(s)

)
dBγ(s)

∣∣∣∣2).

Now

|k(s, t)x(s) − km(s, t)xm(s)| 6 |k(s, t)||x(s) − xm(s)|+ |k(s, t) − km(s, t)||x(s)|
+ |k(s, t) − km(s, t)||x(s) − xm(s)|.

Let |k(s, t)| 6 ρ, |x(s)| 6 σ and using Theorem 5.2, we get

|k(s, t)x(s) − km(s, t)xm(s)| 6
√

2Lhσ+ (ρ+
√

2Lh)|x(s) − xm(s)|,

which gives

I0 6 E

((∫t
0

∣∣∣∣k(s, t)x(s) − km(s, t)xm(s)

∣∣∣∣ds)2)
, 6 E

((∫t
0

(√
2Lhσ+ (ρ+

√
2Lh)|x(s) − xm(s)|

)
ds

)2)
.

By Cauchy-Schwarz inequality, for t > 0 and f ∈ L2[0, 1),∣∣∣∣∫t
0
f(s)ds

∣∣∣∣2 6 t
∫t

0
|f|2ds.

Therefore,

I0 6 E

(∫t
0

(√
2Lhσ+ (ρ+

√
2Lh)|x(s) − xm(s)|

)2
ds

)
,

this implies,

I0 6 2(
√

2Lhσ)2 + 2(ρ+
√

2Lh)2
∫t

0
E
(
|x(s) − xm(s)|2

)
ds. (5.2)

As

E

((∫t
0
f(s)dB(s)

)2)
= E

(∫t
0
f2(s)ds

)
,

for γ = 1, 2, . . . ,p,

Iγ 6 E

(∫t
0

(
2(
√

2Lγhσ)2 + 2(ργ +
√

2Lγh)2|x(s) − xm(s)|2
)
ds

)
.

Hence,

Iγ 6 2(
√

2Lγhσ)2 + 2(ργ +
√

2Lγh)2
∫t

0
E(|x(s) − xm(s)|2)ds. (5.3)

Using Theorem 5.1 and equations (5.2) and (5.3) in (5.1), we get

E
(
|x(t) − xm(t)|2

)
6 (2p+ 3)C2h2 + (2p+ 3)

(
2(
√

2Lhσ)2 + 2(ρ+
√

2Lh)2
∫t

0
E
(
|x(s) − xm(s)|2

)
ds
)
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+ (2p+ 3)
p∑
γ=1

(
2(
√

2Lγhσ)2 + 2(ργ +
√

2Lγh)2
∫t

0
E(|x(s) − xm(s)|2)ds

)
,

which implies that,

E
(
|x(t) − xm(t)|2

)
6 R1 + R2

∫t
0
E
(
|x(s) − xm(s)|2

)
ds,

where

R1 = (2p+ 3)
(
C2h2 + 2(

√
2Lhσ)2 + 2

p∑
γ=1

2(
√

2Lγhσ)2
)

and

R2 = (2p+ 3)
(

2(ρ+
√

2Lh) +
p∑
γ=1

2(ργ +
√

2Lγh)2
)

.

Using Gronwall’s inequality, we have

E
(
|x(t) − xm(t)|2

)
6 R1 exp

(∫t
0
R2ds

)
.

Hence,
‖x(t) − xm(t)‖2

2 = E
(
|x(t) − xm(t)|2

)
6 R1e

R2 = O(h2).

6. Numerical examples

Example 6.1 ([11]). Consider the linear stochastic Volterra integral equation

x(t) = x0 +

∫t
0
r(s)x(s)ds+

3∑
γ=1

∫t
0
αγ(s)x(s)dBγ(s), s, t ∈ [0, 1),

where, x0 = 1
12 , r(s) = s2, α1(s) = sin(s), α2(s) = cos(s), and α3(s) = s, with the exact solution x(t) =

x0e
∫t

0(r(s)−
1
2
∑
γ=1αγ(s)

2)ds+
∑3
γ=1
∫t

0 αγ(s)Bγ(s)ds for 0 6 t < 1. B(t) = (B1(t),B2(t),B3(t)) is a 3-dimensional
Brownian motion, and x(t) is an unknown stochastic process defined on the probability space (Ω, F,P).

Table 1: Mean error, standard deviation of error, and interval of confidence for mean error in Example 6.1 with n = 20.
m x̄E sE 95% interval of confidence for error mean

Lower Upper
4 0.014005945459 0.019754394387 0.005348200393 0.022663690526
8 0.008937461602 0.016080255117 0.001889979068 0.015984944135
16 0.008982012760 0.008617089506 0.005205406771 0.012758618749
32 0.007189414115 0.012132261046 0.001872216273 0.012506611957
64 0.008312512269 0.008705582905 0.004497122338 0.012127902201
128 0.005024746531 0.004560862918 0.003025860224 0.007023632837
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Figure 1: Example 6.1’s approximate and exact solutions for m = 32 and m = 64.
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Figure 2: Example 6.1’s error trend for m = 64, n = 20, and n = 50.

Example 6.2 ([8]). Consider the linear stochastic Volterra integral equation

x(t) = x0 +

∫t
0
rx(s)ds+

4∑
γ=1

∫t
0
αγx(s)dBγ(s), s, t ∈ [0, 1),

where, x0 = 1
200 , r = 1

20 , α1 = 1
50 , α2 = 2

50 , α3 = 4
50 , and α4 = 9

50 , with the exact solution x(t) =

x0e
(r− 1

2
∑4
γ=1α

2
γ)t+

∑4
γ=1αγBγ(t) for 0 6 t < 1. B(t) = (B1(t),B2(t),B3(t),B4(t)) is a 4-dimensional Brownian

motion, and x(t) is an unknown stochastic process defined on the probability space (Ω, F,P).

Table 2: Mean error, standard deviation of error, and interval of confidence for mean error in Example 6.2 with n = 20.
m x̄E sE 95% interval of confidence for error mean

Lower Upper
4 5.21192035e-05 8.41927264e-06 4.84292946e-05 5.58091124e-05
8 5.43804073e-05 5.26997898e-06 5.20707372e-05 5.66900774e-05
16 5.10944392e-05 5.50663806e-06 4.86810487e-05 5.35078298e-05
32 5.27546751e-05 6.30718751e-06 4.99904283e-05 5.55189219e-05
64 5.43255751e-05 1.03246528e-05 4.98005965e-05 5.88505537e-05
128 5.13975170e-05 6.74564509e-06 4.84411077e-05 5.43539264e-05
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Figure 3: Example 6.2’s approximate and exact solutions for m = 32 and m = 64.
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Figure 4: Example 6.2’s error trend for m = 64, n = 20, and n = 50.

Example 6.3. Consider the linear stochastic Volterra integral equation

x(t) = x0 +

∫t
0
k(s+ t)x(s)ds+

3∑
γ=1

∫t
0
kγ(s, t)x(s)dBγ(s),

where s, t ∈ [0, 1) in which x0 = 1
12 , k(s, t) = (s+ t)2, k1(s, t) = (s+ t), k2(s, t) = cos(s+ t) and k3(s, t) =

sin(s+ t). Here B(t) = (B1(t),B2(t),B3(t)) is a 3-dimensional Brownian motion, and x(t) is an unknown
stochastic process defined on the probability space (Ω, F,P).

Table 3: Numerical result for m = 32, m = 64, and m = 128 with n = 20 in Example 6.3.
t m = 25 m = 26 m = 27

0.1 0.09178598260 0.09869603885 0.08456237710
0.2 0.09657047975 0.09980363155 0.09166300290
0.3 0.09778185105 0.10929645010 0.12167983355
0.4 0.10744011755 0.13044535415 0.12254597820
0.5 0.26446428645 0.30381744415 0.25289232770
0.6 0.17720699205 0.19736396275 0.17564435724
0.7 0.29340060635 0.28647728650 0.24266162791
0.8 0.36339662485 0.45221749100 0.30225293181
0.9 0.69920166095 0.72602463780 0.61880977113
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Figure 5: Example 6.3’s approximate solution for m = 32, m = 64, and m = 128 with 20 iterations.

7. Conclusion

A new method to solve the linear p-dimensional SVIE has been proposed and investigated. The
convergence and error analysis of the method have been carried out to confirm the validity of the method,
which shows the method has a linear order of convergence. The method was illustrated by solving the
problems given in the previous section. The numerical results of the problems show that the method has
more accurate values in comparison with the earlier results. This method can be further developed to
obtain the solution of the nonlinear stochastic Volterra integral equation and stochastic Volterra integral
equation with singular kernel by using which many physical world problems can be solved. As the
method has a linear order of convergence, we can modify the Walsh function to have a higher order of
convergence.
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