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Abstract
We explore here a study to derive purely explicit formulas for entries of the n− th powers of doubly Lefkovitch matrices.

Our tool is based on some linear properties of difference equations, including recursive, analytical and derivative aspects of
solutions to these equations. Three algorithms for computing the entries of the powers of doubly Lefkovitch matrix are built.
Moreover, illustrative applications and examples are furnished.
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1. Introduction

Recently, some studies are devoted to the so-called doubly Lefkovitch matrices defined by,

L = L([aj], [sj], [dj], [bj]) =



a1 a2 a3 a4 · · · ar
s1 d1 0 0 · · · br−2
0 s2 d2 0 · · · br−3
... · · · . . . . . . . . .

...
... · · · . . . . . . dr−2 b1
0 · · · · · · 0 sr−1 dr−1


, (1.1)

where bj (1 6 j 6 r− 2), aj (1 6 j 6 r) and dj (1 6 j 6 r− 1) are in R+ and 0 < sj 6 1 (1 6 j 6 r− 1).
Some properties of matrices (1.1) have been studied in [2], where the authors consider the problem of
inverse eigenvalue. Moreover, the doubly Lefkovitch matrices can be considered as an extension of the
Usher matrices U, where U = L([ai], [sj], [dj], [0]), (see, for example, [8]). On the other side, the doubly
Lefkovitch matrices can be viewed as the doubly Leslie matrices L where L = L([ai], [sj], [d̂j], [bj]), with
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[d̂j] = (0, · · · , 0,dr−1) (see, for example, [1]), which can be used as a fundamental tool to compute the
n− th powers of doubly Lefkovitch matrices. Furthermore, they can also be viewed as a generalization of
Leslie matrices L, defined by L = L([ai], [sj], [0], [0]) (see, for example, [4],[3]). In the current literature, it
was shown, in various research papers, that the Lefkovitch matrices are related to the study of population
dynamics. Therefore, the computation of the powers of the Leslie and doubly Leslie matrices or the Usher
matrices, play a central role, in describing the evolution of the population vector (see for instance [3, 4, 8]).

The main goal of this study is to introduce a new computational method for investigating the entries
of the powers of doubly Lefkovitch matrices (1.1). More precisely, our method permits us to give various
explicit formulas for the entries of the powers Ln of the doubly Lefkovitch matrices (1.1), using the
properties of the linear difference equation with constant coefficients described by,

vn+1 = γ1vn + γ2vn−1 + · · ·+ γrvn−r+1, for n > r, (1.2)

where γ1,γ2, ...,γr are constant coefficients and v1, v2, ..., vr are the initial conditions (see [6, 7]). Our
method is based on three approaches for expressing the general terms vn given by (1.2), namely, the
recursive, the analytic, and the derivative approaches. In addition, we outline these three approaches for
investigating three algorithms to compute the entries of the powers of matrices (1.1). To highlight the
importance of our implementations, we compare the running time of these algorithms with the existing
one in the numpy module of Python 3.10.

The outline of this study is as follows. Section 2 is devoted to some explicit formulas for the entries
of the powers of the doubly Lefkovitch matrices (1.1). More precisely using the properties of linear
difference equations (1.2) we develop three explicit expressions of the entries of the powers of matrices
(1.1). In Section 3, some compact formulations for the entries of the vector of the population dynamics are
offered as an application to dynamical populations. In Section 4 we develop three algorithms to compute
the entries of the powers of matrices (1.1), then we compare the running time of these algorithms with
the existing one in the numpy module of Python 3.10. Finally, concluding remarks and perspectives are
presented.

2. Entries of the powers of the doubly Lefkovitch matrix

2.1. The linear recursive approach for computing the entries of the powers of the matrix (1.1)
The main goal here is to establish some compact formulas for the entries of the n − th powers of

the doubly Lefkovitch matrix (1.1), in terms of a family of sequences defined by the linear recursive
relation (1.2) and specific initial conditions. To this aim, the first step consists in considering the similarity
between the doubly Lefkovitch matrix and the doubly Leslie matrix. Then, we utilize a tool based on the
n− th power of the r× r doubly Leslie matrix established in [1]. That is, we will prove in this article
that every doubly Lefkovitch matrix L = L([aj], [sj], [dj], [bj]) is similar to a doubly Leslie matrix, namely,
L = P−1LP = L([φj], [sj], [0], [ψj]), where L is the doubly Leslie matrix of the form,

L =


φ1 φ2 φ3 · · · φr

s1 0 0 · · · ψr−2

0 s2 0 · · ·
...

...
. . . . . . . . . ψ1

0 · · · 0 sr−1 0

 , (2.1)

such that the coefficients φj (1 6 j 6 r) are as follows,
φj = −

ξ
j
1

Λ
j−1
1

+
j∑

k=1

ξ
j−k
k

Λ
j−1
k

ak, for 1 6 j 6 r− 1,

φj = −
ξ
j
1

Λ
j−1
1

+
j∑

k=1

ξ
j−k
k

Λ
j−1
k

ak +
r−1∑
l=2

br−lm1,l, for j = r,
(2.2)
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with

ξ
p
i =


(−1)p

∑
i6i1<i2<···<ip6r−1

di1di2 · · ·dip , if 0 < p 6 r− i,

1, if p = 0,
0, if r− i < p,

(2.3)

and

Λ
j
i =


j∏

k=i

sk, if i 6 j 6 r− 1,

1, if j = i− 1,
(2.4)

and mi,j (1 6 i, j 6 r) are the entries of the matrix P−1, where the coefficients ψj (1 6 j 6 r− 2) are as
follows, 

ψ1 = b1,

ψj =
j∑

k=1
bkmr−j,r−k, for 2 6 j 6 r− 2.

(2.5)

In addition, the entries pi,j (1 6 i, j 6 r) of the matrix P are defined by,
pi,j =

ξ
j−i
i

Λ
j−1
i

, if j > i,

pi,j = 0, if i > j,
pi,j = 1, if i = j,

(2.6)

where ξpi (1 6 i 6 r, 0 6 p 6 r) are given by formulas (2.3) and Λj
i (1 6 i 6 r, 0 6 j 6 r) are given by

(2.4).
Since L = PLP−1 then, for every integer n > 0, we have,

Ln = PLnP−1. (2.7)

Therefore, the entries of the powers of the doubly Lefkovitch matrix L = L([aj], [sj], [dj], [bj]), will be
readily available from the entries of the powers of the doubly Leslie matrix L. It is known, that the
computation of the powers Ln of the doubly Leslie matrix L, in terms of a family of sequences (1.2), has
been established in [1]. More precisely, the entries of Ln are given in terms of the family of sequences
{v

(s)
n }n>1, indexed by s (1 6 s 6 r), defined as follows,{

v
(s)
n+1 = γ1v

(s)
n + γ2v

(s)
n−1 + · · ·+ γrv

(s)
n−r+1, for n > r,

v
(s)
n = δs,n, for 1 6 n 6 r.

(2.8)

such that 
γ1 = c1 + f1,
γj = −

∑
i+k=j,i 6=0,k6=0

cifk + cj + fj for 2 6 j 6 r− 1,

γr = −
∑

i+k=r,i 6=0,k6=0
cifk + cr,

(2.9)

with c1 = Φ1; ci = Φi

i−1∏
j=1
sj for 2 6 i 6 r where φj(1 6 j 6 r) are given by formulas (2.2) and

f1 = 0; fj = Ψj−1

r−1∏
k=r−j+1

sk for 2 6 j 6 r− 1, where ψj (1 6 j 6 r− 2) are given by (2.5) .

To compute the entries of the powers of the doubly Lefkovitch matrix, we present some preliminary
results that are necessary for the rest of the paper.
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Lemma 2.1. ([9]) Let L be a doubly Leslie matrix of the form (2.1) and B their associated matrix companion, we
have,

L = QBQ−1, (2.10)

where,

B =


γ1 γ2 γ3 · · · γr
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 , (2.11)

such that the scalars γj (1 6 j 6 r) are given by formulas (2.9), and the entries of the matrix Q are denoted by
Γi,j(1 6 i, j 6 r), where, 

Γi,j = 0, if i > j,

Γi,j =
−fj−i

r−1∏
k=i

sk

, if j > i,

Γi,i =
1

r−1∏
k=i

sk

, for 1 6 i 6 r− 1,

Γr,r = 1,

(2.12)

and the entries of the matrix Q−1 are denoted by µi,j (1 6 i, j 6 r), namely, Q−1 = (µi,j)16i,j6r.

The following Lemma can be obtained by a standard iterative process of formula (2.10) in Lemma 2.1
and entries of the n− th power of the companion matrix B (2.11) expressed in terms of sequences (2.8).

Lemma 2.2 ([1]). Let L be a doubly Leslie matrix, then the entries of the matrix power Ln, are expressed in terms
of sequences (2.8) as follows,

L
(n)
ij =

r∑
p=i

Γi,p

j∑
k=1

µk,jv
(r+1−k)
n+r+1−p, (2.13)

where the sequences {v(s)n }n>1 (1 6 s 6 r) are defined by (2.8), the coefficients Γi,j (1 6 i, j 6 r) are as in (2.12)
and the µi,j (1 6 i, j 6 r) are the entries of Q−1.

Therefore, combining expressions (2.7) and (2.13) of Lemma 2.2, we get an explicit formula for the
entries of the powers of the doubly Lefkovitch matrix.

Theorem 2.3. (entries of the powers of the doubly Lefkovitch matrix.) Let L = (Lij)16i,j6r be the doubly Lefkovitch
matrix (1.1) and L the associated doubly Leslie matrix (2.1). Then, the entries L(n)

ij of the power Ln, are expressed
under the following form,

L
(n)
ij =

r∑
h=1

mh,j

r∑
k=i

pi,k

r∑
p=k

Γk,p

h∑
s=1

µs,hv
(r+1−s)
n+r+1−p, (2.14)

for every n > 0, where the sequences {v(s)n }n>1 (1 6 s 6 r) are defined by (2.8), the coefficients pi,j(1 6 i, j 6 r)
are as in (2.6), mi,j are the entries of the matrix P−1, the coefficients Γi,j(1 6 i, j 6 r) are defined by (2.12) and
the µi,j (1 6 i, j 6 r) are the entries of Q−1.

Proof. For every n > 0, we have Ln = P−1LnP. Since the entries of Ln are identified by Expres-
sion (2.13) and Ln = PLnP−1, where the entries of matrix P are given by formula (2.6) and en-
tries of P−1 are denoted by mi,j, thus we can get the entries of the matrix Ln as follows, L(n)

ij =
r∑

h=1
mh,j

r∑
k=i

pi,k
r∑

p=k

Γk,p
h∑

s=1
µs,hv

(r+1−s)
n+r+1−p.
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As an application, we exhibit here a numerical example to illustrate how to apply the formula of
Theorem 2.3, we detail the following example.

Example 2.4. Consider the following doubly Lefkovitch matrix (1.1) of order 3× 3 defined by,

L =

 2 24 20
0.6 1 9
0 0.8 3

 . (2.15)

Then, the associated Leslie matrix L and the matrices P, P−1 are as follows,

L =

 6 5.6666667 2.5
0.6 0 9
0 0.8 0

, P =

1 −6.66666667 6.25
0 1 −3.75
0 0 1

, P−1 =

1 6.66666667 18.75
0 1 3.75
0 0 1

.

The family of sequences (2.8) are defined as follows,{
v
(s)
n+1 = 6v(s)n + 10.60000002v(s)n−1 − 42.7v(s)n−2, for n > 2,
v
(s)
i = δs,i, for 0 6 i 6 2.

Suppose that the computation of L5 is required. First, Expression (2.13) shows that we have,

L5 =

 11361.84 12214.3067 20484.0998
1229.4960012 1235.520007 2629.440009
144.5760001 193.5680009 211.4400007

 .

Second, since the entries L(5)
ij of L5 are given by Expression (2.14), we derive that,

L5 =

4068.799984896805 32312.63993530412 100018.39953952564
687.336001 5091.88001 16635.24

144.576 1157.408 3648.12001

 .

2.2. Powers of doubly Lefkovitch matrix by the analytic approach
We are concerned in this subsection with the analytic formula of the entries of the doubly Lefkovitch

(1.1). Formulas (2.14) shows that these entries are expressed in terms of the family of sequences defined
by (2.8). Therefore, to reach our goal, we recall that, the analytic formula of each sequence {v

(s)
n }n>1,

indexed by s (1 6 s 6 r), is given by,

v
(s)
n =

l∑
i=1

mi−1∑
j=0

β
(s)
i,j n

j

 λni , 1 6 s 6 r, (2.16)

where, for each fixed s(1 6 s 6 r), the β(s)
i,j are computed by solving the following generalized Vander-

monde system of r linear equations,

l∑
i=1

mi−1∑
j=0

β
(s)
i,j n

j

 λni = δs,n, 1 6 n 6 r,

with λ1, λ2, · · · , λl are distinct roots of the characteristic polynomial of sequences (2.8) with multiplicities
m1,m2, · · · ,ml (m1 + · · ·+ml = r), respectively (see, for example, [5]).

Combining Expressions (2.14) and (2.16), we show that the entries of the powers of doubly Lefkovitch
matrix can be formulated in terms of the characteristic roots λi (1 6 i 6 l) and their multiplicities mi,
and the scalars β(s)

i,j . Indeed, we get the following result.
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Theorem 2.5. Let L = (Lij)16i,j6r be the doubly Lefkovitch matrix (1.1) and L the associated doubly Leslie matrix
(2.1). Then, the analytic expressions of the entries L(n)

ij of the power Ln, are given by,

L
(n)
ij =

r∑
h=1

mh,j

r∑
k=i

pi,k

r∑
p=k

Γk,p

h∑
s=1

µs,h

l∑
u=1

(
mu−1∑
t=0

β
(r+1−s)
u,t (n+ r+ 1 − p)t

)
λn+r+1−p
u , (2.17)

for every n > 0, where the coefficients pi,j(1 6 i, j 6 r) are as in (2.6), mi,j are the entries of the matrix P−1, the
coefficients Γi,j(1 6 i, j 6 r) are defined by (2.12), the µi,j (1 6 i, j 6 r) are the entries of Q−1 and the β(s)

i,j are

computed by solving the linear generalized Vandermonde system of equations v(s)n = δs,n for 1 6 n 6 r.

As an application, we exhibit here the previous doubly Lefkovitch matrix used in Example 2.4 to
illustrate how to apply the formula of Theorem 2.5.

Example 2.6. Let us consider again the doubly Lefkovitch matrix used in Example 2.4. By direct computation, we
show that the characteristic roots are λ1 = −2.85677971, λ2 = 2.21281587 and λ3 = 6.64396385. The analytic
formula (2.16) show that each sequence

{
v
(s)
n

}
n>1

(1 6 s 6 3) takes the form,

v
(s)
n = (−2.85677971)nβ(s)

1,0 + (2.21281587)nβ(s)
2,0 + (6.64396385)nβ(s)

3,0 ,

where the real numbers β(s)
k,0 (s = 1, 2, 3, 1 6 k 6 3) are derived from the initial conditions v(s)

n = δn,s, by solving
a generalized Vandermonde system of equations. And a straightforward computation gives,


β
(1)
1,0 = −0.10685, β

(1)
2.0 = 0.38183, β

(1)
3,0 = −0.02260.

β
(2)
1,0 = 0.064368, β

(2)
2,0 = 0.07619, β

(2)
3,0 = 0.00230.

β
(3)
1,0 = −0.00727, β

(3)
2,0 = −0.02012, β

(3)
3,0 = 0.00357.

Suppose that the calculation of L5 is required. Then, using (2.17), we can check that,
L
(5)
11 = 4068.8000089474,L(5)

12 = 32312.640018464,L(5)
13 = 100018.39994186, L(5)

21 = 687.3360017496,
L
(5)
22 = 5091.880008017,L(5)

23 = 16635.24000260, L(5)
31 = 144.57600032582,L(5)

32 = 1157.3782836101,L(5)
33 =

3648.1199992108.

2.3. Powers of doubly Lefkovitch matrix by the derivative approach

We recall that the derivative expression of sequences {v
(s)
n }n>1, indexed by s (1 6 s 6 r) is given by

the following formula,

v
(s)
n+1 =

l∑
i=1

r∑
p=1

A
(s)
p ×

f
(mi−1)
i,n−p+1(λi)

(mi − 1)!
, n > r, (2.18)

where the function fi for 1 6 i 6 l is defined by fi,n(x) =
xn−1

l∏
k=1,k6=i

(x− λk)mk

, A(s)
j = γrv

(s)
j + · · ·+ γjv

(s)
r

for 1 6 j 6 r and λ1, λ2, · · · , λl are distinct roots of the characteristic polynomial of sequences (2.8) with
multiplicities m1,m2, · · · ,ml (m1 + · · ·+ml = r), respectively (see, for example, [5]).

Formula (2.18) illustrates the important rule of the properties of sequences (2.8), notably their deriva-
tive formula, to explore more properties of the doubly Lefkovitch matrix. Indeed, we get the result by
combining the expressions (2.14) and (2.18).
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Theorem 2.7. Let L = (Lij)16i,j6r be the doubly Lefkovitch matrix (1.1) and L the associated doubly Leslie matrix
(2.1). Then, the entries L(n)

ij of the power Ln, are given as follows,

L
(n)
ij =

r∑
h=1

mh,j

r∑
k=i

pi,k

r∑
p=k

Γk,p

h∑
s=1

µs,h

l∑
u=1

r∑
t=1

Ar+1−s
t ×

f
(mu−1)
u,n+r−p−t+1(λu)

(mu − 1)!
, (2.19)

for every n > 0, where the coefficients pi,j(1 6 i, j 6 r) are as in (2.6), mi,j are the entries of the matrix P−1, the
coefficients Γi,j(1 6 i, j 6 r) are defined by (2.12) and the µi,j (1 6 i, j 6 r) are the entries of Q−1.

As an application, we exhibit here a numerical example to illustrate how to apply the formula (2.19)
of Theorem 2.7, we detail the following example.

Example 2.8. Let’s consider the doubly Lefkovitch matrix used in Example 2.4 The characteristic polynomial is
P(X) = X3 − 6X2 − 10.6X+ 42 and the roots of this polynomial are λ1 = −2.85677971, λ2 = 2.21281587, λ3 =

6.64396385. The derivative formulas of the sequences
{
v
(s)
n

}
n>1

(1 6 s 6 3) associated with this doubly Lefkovitch

matrix (2.15) are,

v
(s)
n =

1
48.165

[
A

(s)
1 (−2.85678)n−1 +A

(s)
2 (−2.85678)n−2 +A

(s)
3 (−2.85678)n−3

]
−

1
22.464

[
A

(s)
1 (2.21281)n−1 +A

(s)
2 (2.21281)n−2 +A

(s)
3 (2.21281)n−3

]
+

1
42.10

[
A

(s)
1 (6.64396)n−1 +A

(s)
2 (6.64396)n−2 +A

(s)
3 (6.64396)n−3

]
,

where the numbers A(s)
p for 1 6 p, s 6 3 are defined by A

(s)
1 = −42v(s)1 + 10.60000002v(s)2 + 6v(s)3 ,

A
(s)
2 = −42v(s)2 + 10.60000002v(s)3 ,A3(s) = −42v(s)3 . Then, we have, A(1)

1 = −42,A(1)
2 = 0,A(1)

3 = 0,A(2)
1 =

10.60000002,A(2)
2 = −42,A(2)

3 = 0 and A(3)
1 = 6,A(3)

2 = 10.60000002,A(3)
3 = −42. Suppose that the computa-

tion of the power L5 is required. Then, using formula (2.19), we get,

L
(5)
ij =

3∑
h=1

mh,j

3∑
k=i

pi,k

3∑
p=k

Γk,p

h∑
s=1

µs,h

l∑
u=1

3∑
t=1

A
(4−s)
t fu,9−p−t (λu)

Therefore, a straightforward computation allows us to obtain,
L
(5)
11 = 4068.8000093760, L(5)

12 = 32312.640101136, L(5)
13 = 100018.40032292, L(5)

21 = 687.336002020,
L
(5)
22 = 5091.8800426682,L(5)

23 = 16635.240067640, L(5)
31 = 144.5760003189,L(5)

32 = 1157.4080036367,L(5)
33 =

3648.120011552.

3. Application to a discrete matrix dynamical system

This section is devoted to the application of the doubly Lefkovitch matrix in a dynamical population.
Let’s consider the linear matrix difference equation

N(n+ 1) = LN(n), for n > 0, (3.1)

where L is a doubly Lefkovitch matrix (1.1) and N(n) =t (x1(n); x2(n); · · · ; xr(n)) is the dynamical vector
constructed from the initial condition N(0) =t (x1(0), x2(0), · · · , xr(0)) with xj(n) ∈ R(1 6 j 6 r). A
standard iterative process shows that the matrix equation (3.1) takes the form,

N(n) = LnN(0), for n > 0, (3.2)

Therefore, a simple matrix multiplication using Formula (3.2) and formulas (2.14), (2.17) and (2.19)
allows us to deduce the compact expressions for the entries xm(n)(1 6 m 6 r) of the vector N(n) =t

(x1(n), x2(n), · · · , xr(n)) describing the population dynamics.
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Theorem 3.1. (entries of the vector of the population dynamics.) Let L =
(
Lij
)

16i,j6r
be the doubly Lefkovitch

matrix defined in (1.1). Suppose that λ1, λ2, · · · , λl are the distinct roots of the polynomial P(X) = Xr − γ1X
r−1−

· · ·− γr of multiplicities m1,m2, · · · ,ml, respectively. Then, for every n > 0 , the entries xb(n)(1 6 b 6 r), of
the vector N(n) = t (x1(n); x2(n); · · · ; xr(n)), are given by,

xb(n) =

r∑
d=1

r∑
h=1

mh,d

r∑
k=b

pb,k

r∑
p=k

Γk,p

h∑
s=1

µs,hv
(r+1−s)
n+r+1−pxd(0), (3.3)

xb(n) =

r∑
d=1

r∑
h=1

mh,d

r∑
k=b

pb,k

r∑
p=k

Γk,p

h∑
s=1

µs,h

l∑
u=1

(
mu−1∑
t=0

β
(r+1−s)
u,t (n+ r+ 1 − p)t

)
λn+r+1−p
u xd(0),

(3.4)

xb(n) =

r∑
d=1

r∑
h=1

mh,d

r∑
k=b

pb,k

r∑
p=k

Γk,p

h∑
s=1

µs,h

l∑
u=1

r∑
t=1

Ar+1−s
t ×

f
(mu−1)
u,n+r−p−t+1(λu)

(mu − 1)!
xd(0), (3.5)

where N(0) = t (x1(0); x2(0); · · · ; xr(0)) is the initial vector,
{
v
(s)
n

}
n>1

(1 6 s 6 r) are the sequences (2.8), the

coefficients pi,j(1 6 i, j 6 r) are as in (2.6), mi,j are the entries of the matrix P−1 the coefficients Γi,j(1 6 i, j 6 r)
are defined by (2.12), the µi,j (1 6 i, j 6 r) are the entries of Q−1 and the β(s)

i,j are computed by solving the linear

generalized Vandermonde system of equations v(s)n = δs,n for 1 6 n 6 r.

We illustrate through the following example how to apply our results of Theorem 3.1.

Example 3.2. Suppose that the doubly Lefkovitch matrix and the initial population vector are the following, L = 3 50 10
0.75 2 150

0 0.25 5

, N(0) =

11
19
28


Then, the associated doubly Leslie matrix L and the matrices P and P−1 are as follows

L =

 10 8.67 570
0.75 0 150

0 0.25 0

, P =

1
−28

3
160
3

0 1 −20
0 0 1

, P−1 =

1
28
3

400
3

0 1 20
0 0 1


The family of sequences {v

(s)
n } are as follows{

v
(s)
n+1 = 10v(s)n + 44v(s)n−1 − 268.125v(s)n−2, for n > 3,
v
(s)
n = δs,n, for 1 6 n 6 3.

Suppose we need to compute N(6), then using formulas (3.3), (3.4) and (3.5) we get

N(6) =t (4337761815.176; 744984471.48; 27877959.54175).

4. Algorithms

In this subsection, we will develop efficient computational algorithms for entries of the n− th powers
of doubly Lefkovitch matrix (1.1).



A. Aloui, M. Rachidi, J. Math. Computer Sci., 31 (2023), 287–304 295

4.1. Algorithm based on the linear recursive approach for computing the entries of the powers of the matrix (1.1)
The recursive algorithm for finding the entries of the powers of an r× r doubly Lefkovitch matrix, Ln,

can be summarized in Algorithm 1. For reasons of practical convenience, the following notations will be
used, in the development of our algorithms:

• p is the matrix P given by (2.6).

• m is the matrix P−1.

• dl is the doubly Leslie matrix L expressed by (2.1).

• Γ is the matrix Q.

• µ is the matrix Q−1.

• b is the matrix B.

• v3 is the sequences {v
(s)
n }n>1 given by (2.8).

4.2. Algorithm based on the analytic approach for computing the entries of the powers of the matrix (1.1)
The algorithm for finding the entries of the powers of an r× r doubly Lefkovitch matrix, Ln, using an

analytic approach, can be summarized in Algorithm 2. The steps from 1 to 4 of Algorithm 2 are the same
as those in Algorithm 1. The next step consists on computing β(s)

i,j for each fixed s (1 6 s 6 r). In the last
step of Algorithm 2, we use the expression (2.17) to compute the entries of the powers of matrices (1.1).

4.3. Algorithm based on the derivative approach for computing the entries of the powers of the matrix (1.1)
The algorithm for finding the entries of the powers of an r× r doubly Lefkovitch matrix, Ln, using

the derivative approach, can be summarized in Algorithm 3. The steps from 1 to 4 of Algorithm 3 are the
same as those in Algorithm 1. The next step consists on computing fi,n(λ) and A(s)

j for 1 6 j 6 r. In the
last step of Algorithm 3, we use the expression (2.19) to compute the entries of the powers of matrices
(1.1).

4.4. Numerical Example
In this subsection, we give an illustrative example. All tests were performed in Python 3.10.0. Consider

the 4× 4 matrix L given by

>> L =


4 14 10 11

0.6 1 0 5
0 0.8 3 10
0 0 0.2 4

 (4.1)

Suppose we need to compute L90. Therefore, using Algorithms 1,2 and 3, we obtain

>> L90 =


6.08651680× 1070 2.18891740× 1071 3.46110157× 1071 2.42148011× 1072

7.31608456× 1069 2.63111157× 1070 4.16029605× 1070 2.91065545× 1071

2.62350508× 1069 9.43501201× 1069 1.49185780× 1070 1.04374400× 1071

2.43164464× 1068 8.74501693× 1068 1.38275624× 1069 9.67413600× 1069


We remark that we obtain the same result as the function matrix power() of the numpy module

existing in Python 3.10.0. To highlight the efficiency of our algorithms, we compare the running time of
these algorithms. The running time of these algorithms is summarized in Table 1.

In Table 1, we fix the length of the matrix to r = 4 and vary the power n. We observed that the mean
elapsed time of the recursive and analytic approaches is much less than the derivative approach. We can
also observe that the mean elapsed time of Algorithm 1 and Algorithm 2 are almost the same as the mean
elapsed time of the function matrix power().
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Table 1: Mean elapsed time over 10 runs for the doubly Lefkovitch matrix (4.1)
Mean elapsed time

n recursive approach analytic approach derivative approach matrix power() function

5 0.0421875 0.06875 7.0046875 0
10 0.0734375 0.0734375 6.978125 0.0046875
15 0.1171875 0.0671875 7.3015625 0
20 0.1515625 0.0703125 7.3015625 0.003125
25 0.1859375 0.0703125 6.978125 0
30 0.23125 0.0703125 7.1 0
35 0.2734375 0.06875 7.1671875 0.003125
40 0.3421875 0.1265625 7.2453125 0.00625
45 0.3625 0.1625 6.821875 0.0078125
50 0.2484375 0.159375 4.134375 0.0015625
55 0.24375 0.14375 3.778125 0
60 0.2703125 0.1390625 3.7765625 0.0015625

5. Concluding Remarks and perspectives

In this paper, we propose three approaches for computing the entries of the powers of the doubly
Lefkovitch matrix, namely recursive, analytic and derivative approaches. These approaches are based
on the properties of linear difference equations of the Fibonacci type. Furthermore, we developed three
algorithms based on these approaches to compute the n− th powers of the doubly Lefkovitch matrix. To
the best of our knowledge, our results are not current in the literature on this important subject. Finally,
it seems to us that our results may have interesting perspectives in various fields of mathematics and
applied sciences, notably on population dynamics.

Appendix A.

Algorithm 1: Computing Ln denoted as power l by recursive approach
1 Step 1 : Compute entries of the matrix P using expression (2.6)
2 Step 2 : Compute entries of the matrix P−1 using the function inv() of numpy.linalg module
3 Step 3 : Compute entries of the matrix L defined by (2.1) using the function dot() of numpy module
4 Step 4 : Compute the entries of companion matrix C and entries of matrices Q and Q−1, where L = QCQ−1

5 Step 5 : Compute v
(s)
n defined by (2.8)

6 Step 6 : Compute entries of the matrix L using expression (2.14) wich we will detail bellow
Input: L,n,p,m,dl,gamma,mu,and b
Output: Ln

7 power l = zeros((n,n))
8 for i = 1 : len matrix+ 1 do
9 for j = 1 : len matrix+ 1 do

10 som = 0
11 for h = 1 : r+ 1 do
12 for k = i : r+ 1 do
13 for p = k : r+ 1 do
14 for s = 1 : r+ 1 do
15 som = som+m[h− 1][j− 1] ∗ p[i− 1][k− 1] ∗ gamma[k− 1][p− 1] ∗mu[s− 1][h− 1] ∗ v3(n+

len matrix− u+ 1, len matrix+ 1 − s,dl,b)[n+ len matrix− u]
16 end
17 end
18 end
19 end
20 power l[i− 1][j− 1] = som
21 end
22 end
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Algorithm 2: Computing Ln denoted as power l by analytic approach
1 Steps 1-4 : The same as those in Algorithm 1

2 Step 5 : Compute β
(s)
i,j

3 Step 6 : Compute entries of the matrix L using expression (2.17) wich we will detail bellow
Input: n,m,p,gamma,mu and L
Output: Ln

4 power l = zeros((n,n))
5 for i = 1 : len matrix do
6 for j = 1 : len matrix do
7 som = 0
8 for h = 1 : r do
9 for k = i : r do

10 for p = k : r do
11 for s = 1 : h do
12 f = beta vanderm(l, r+ 1 − s)
13 for u = 1 : l do
14 for t = 0 : mu − 1 do
15 som = som+m[h− 1][j− 1] ∗ p[i− 1][k− 1] ∗ gamma[k− 1][c− 1] ∗mu[s− 1][h− 1] ∗

f[u− 1] ∗ ((n+ len matrix− c+ 1) ∗ ∗t) ∗ ((unique elements[u− 1]) ∗ ∗(n+
len matrix− c+ 1))

16 end
17 end
18 end
19 end
20 end
21 end
22 power l[i− 1][j− 1] = som
23 end
24 end

Algorithm 3: Computing Ln denoted as power l by derivative approach
1 Steps 1-4 : The same as those in Algorithm 1

2 Step 5 : Compute fi,n(λ) Step 6 : ComputeA
(s)
j

Step 7 : Compute entries of the matrix L using expression (2.19) wich we will detail bellow
Input: n,m,p,gamma,mu and L

Output: Ln

3 power l = zeros((n,n))
4 for i = 1 : len matrix+ 1 do
5 for j = 1 : len matrix+ 1 do
6 additionner = 0
7 for h = 1 : len matrix+ 1 do
8 for k = i : len matrix+ 1 do
9 for c = k : len matrix+ 1 do

10 for s = 1 : h+ 1 do
11 for u = 1 : l do
12 for t = 0 : mu − 1 do
13 additionner = additionner+m[h− 1][j− 1] ∗ p[i− 1][k− 1] ∗ gamma[k− 1][c− 1] ∗

mu[s− 1][h− 1] ∗A j(t, len matrix+ 1 − s,gam) ∗ sym.diff(fun f(u,n+
len matrix− c− t+ 1), x,multiplicity[u− 1] − 1)
power l[i− 1][j− 1] = additionner

14 end
15 end
16 end
17 end
18 end
19 end
20 end
21 end
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from __future__ import division
import numpy as np
import numpy . linalg as alg
from numpy . linalg import inv
from scipy . linalg import circulant
from scipy . linalg import companion
from numpy . linalg import matrix_power
import time
from itertools import combinations
import sympy as sym
from time import process_time

# function witch generate doubly_lefkovitch matrix ( expression 1.1 in the article )
def doubly_lefkovitch (a , s , b, d) :

a = np. atleast_1d(a)
s = np.atleast_1d(s)
b = np.atleast_1d(b)
d = np.atleast_1d(d)
if a. ndim != 1:

raise ValueError (" Incorrect shape for a . a must be one - dimensional ")
if s. ndim != 1:

raise ValueError (" Incorrect shape for s . s must be one - dimensional ")
if b. ndim != 1:

raise ValueError (" Incorrect shape for b . b must be one - dimensional ")
if a. size != s . size + 1:

raise ValueError (" Incorrect lengths for f and s . The length "
" of s must be one less than the length of f .")

if a. size != b . size + 2:
raise ValueError (" Incorrect lengths for f and b . The length "

" of b must be one less than the length of f .")
if a. size != d . size + 1:

raise ValueError (" Incorrect lengths for f and b . The length "
" of b must be one less than the length of f .")

if s. size == 0:
raise ValueError (" The length of s must be at least 1.")

if d. size == 0:
raise ValueError (" The length of d must be at least 1.")

tmp = a [0] + s [0] + b [0]+d[0]
n = a . size
l = np . zeros (( n , n ) , dtype = tmp . dtype )
l [0] = a
l [ list ( range (1 , n) ) , list ( range (0 , n - 1) ) ] = s
l [ list ( range (1 , n-1) ) ,n -1]= b
l [ list ( range (1 , n) ) , list (range (1,n))]= d
return l

#formule 2.4

#formule 2.5
def xi(i,p,l):

xi=0
r=len(l)
if r-i<p:

xi=0
if p==0:

xi=1
if 0<p & p<=r-i:

L=[]
for k in range(i,r):

L.append(l[k][k])
Liste=[]
for i in combinations(L,p):
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Liste.append(i)
result=[]
for j in Liste:

result.append(np.product(j))
xi=((-1)**p)*np.sum(result)

return xi

#formule 2.6
def nabla(i,j,l):

r=len(l)
s=[]
prod=1
nabla=1
for m in range(1,r):

s.append(l[m][m-1])
if j==i-1:

nabla=1
if i!=0 & i<=j & j<=r-1:

for k in range(i,j+1):
prod *=s[k-1]

nabla=prod
return nabla

#formula 2.8
def matrices_p(l):

n=len(l)
p=np.zeros((n,n))
for i in range(1,n+1):

for j in range(1,n+1):
if j>i:

p[i-1][j-1]=xi(i,j-i,l)/nabla(i,j-1,l)
if i>j:

p[i-1][j-1]=0
if i==j:

p[i-1][j-1]=1
return p

#inverse of the matrix P
def inv_mat_p(p) :

m = inv(p)
return m

#formula 2.4
def doubly_leslie(l,p,m):

r=len(l)
c=np.dot(m,l)
dl=np.dot(c,p)
return dl

def matrix_compan (dl , gamma , mu ) :
e = np . dot (mu , dl)
b = np . dot (e , gamma )
return b

def delta(i , s) :
if i == s :

return 1
else :

return 0

def v3(n ,s ,dl , b) :
r = len(dl) # matrix length
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if(n <= r): return delta(s,n) #case where 1 <= n <=r
else:

len_matrix = len(dl)
gamma = np.zeros(r)
for i in range (0 , r) : # define gamma[0] to gamma[r-1]

gamma[i] = b[0][i]
V = np.zeros(n)
for i in range (0,r): # define V[0] to V[r-1]

V [i] = delta (i+1,s)
for j in range (r,n) : # define V[r] to V[n-1]

for k in range (0,r) :
V [j] += gamma [k]* V[j-k-1]

return V

def mat_p(dl):
len_matrix = len(dl)
gamma = np. zeros (( len_matrix , len_matrix ) )
for i in range (1,len_matrix+1):

for j in range (1,len_matrix+1) :
prod =1
if i == j & i != len_matrix:

for k in range (i,len_matrix) :
prod *= dl[k][k-1]
gamma [i-1][i-1]=1/prod

if i>j :
gamma[i-1][j-1]=0

if j>i:
if j-i==1:

gamma[i-1][j-1]=0
else :

produit =1
for s in range ( len_matrix - j+i+1, len_matrix) :

fois =1
produit *= dl[s][s-1]
for h in range (i,len_matrix) :

fois *= dl[h][h-1]
gamma[i-1][j-1]= -(dl[len_matrix-j+i][len_matrix-1]*produit)/fois

else :
gamma[len_matrix-1][len_matrix-1]=1

return gamma

def inv_mat_p(gamma):
mu = inv ( gamma )
return mu

#entries of the powers of doubly Lefkovitch matrix using recursive approach
def power_matrix_doublyLefkovitch_recursive(l,n,p,m,dl,gamma,mu,b):

len_matrix = len(l)
power_l = np.zeros((len_matrix,len_matrix))
for i in range (1,len_matrix+1 ) :

for j in range (1,len_matrix+1) :
som =0
for h in range(1,len_matrix+1):

for k in range(i,len_matrix+1):
for u in range(k , len_matrix+1) :

for s in range(1,h+1) :
som+=m[h-1][j-1]*p[i-1][k-1]*gamma[k-1][u-1]*mu[s-1][h-1]*

v3(n+len_matrix-u+1,len_matrix+1-s,dl,b)[n+len_matrix-u]↪→

power_l[i-1][j-1]=som
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return power_l

#
def beta_vanderm (dl, s ) :

len_matrix = len(dl)
beta = np.zeros(len_matrix)
mat = np.zeros((len_matrix,len_matrix) , dtype = complex )
vect = np.zeros(len_matrix)
evals , evecs = np.linalg.eig(dl)
unique_elements , counts_elements = np.unique(evals,return_counts=True)
for n in range (1,len_matrix+1) :

for f in range (1,len_matrix+1) :
vect[f-1]= delta (s , f)
#print(vect)

result = []
for k in range (1,len(counts_elements)+1) :

for j in range (0 , counts_elements[k-1]) :
result.append (( (n) ** j)*unique_elements[k-1])

#print(result)
mat = np.vander(result,n+1)
mat2=np.delete(mat,[len_matrix], 1)
#print('mat2',mat2)
mat3 = np.rot90(mat2)
#print('mat3',mat3)
#print('vect',vect)
beta = np.linalg.solve(mat3,vect)
return beta

#computing entries of the power of the doubly Lefkovitch matrix using analytic approach
def power_matrix_analytic_doublyL(l,n,p,m,dl,b,gamma,mu):

len_matrix = len(l)
power_l=np.zeros((len_matrix,len_matrix),dtype=np.complex_)
evals , evecs = np.linalg.eig(dl)
unique_elements , counts_elements = np.unique(evals,return_counts=True)
for i in range(1,len_matrix+1):

for j in range(1,len_matrix+1) :
som =0
for h in range(1,len_matrix+1):

for k in range(i,len_matrix+1):
for c in range (k,len_matrix+1):

for s in range(1,h+1) :
f= beta_vanderm(dl,len_matrix+1-s)
for u in range(1,len(unique_elements)+1):

for t in range(0,counts_elements[u-1]):
som += m[h-1][j-1]*p[i-1][k-1]*gamma[k-1][c-1]*mu[s-1][h-1]*

f[u-1]*((n+len_matrix-c+1)**t)*
((unique_elements[u-1])**(n+len_matrix-c+1))

↪→

↪→

power_l[i-1][j-1]=som
return power_l

def mul_valpropre ( dl ) :
eigenvalues = np . linalg . eigvals ( dl)
test , multiplicity = np . unique ( eigenvalues , return_counts = True )
return test , multiplicity

def fun_f (i ,n ) :
x = sym . symbols ('x ')
y =1
c =1
for k in range (0 , len ( test ) ) :

if k != i -1:
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y *= pow (( x - test [ k ]) , multiplicity [ k ])
c = pow (x ,n -1) /y

return c

# fonction calcul ajs verifiee
def fun_a (j ,s ,dl ,b ) :

sommer =0
len_matrix = len(dl)
gamma2 = np.zeros(len_matrix )
for i in range (0,len_matrix ):

gamma2 [i] = b[0][len_matrix-i-1]
# print gamma2
for o in range (j ,len(dl)) :

print(len(v3(o,s,dl,b)))
sommer += gamma2 [o-j ]* v3(o,s,dl,b)[len(v3(o,s,dl,b))-1]

return sommer

def fact ( n ) :
""" fact (n ) : calcule la factorielle de n ( entier >= 0) """
if n <2:

return 1
else :

return n* fact (n -1)

def gamma_function(b):
r = len(b) # matrix lenght
len_matrix = len(b)
gam = np.zeros(r)
for i in range (0 , r):

gam[i] = b[0][i] # define gamma[0] to gamma[r-1]
return gam

def A_j(j,s,gam):
Aj = 0
r = len(gam)
if(j > r or j<0): return Aj
for i in range(j,r+1):

#print("i = ",i, "g = ",r-i+j )
Aj += gam[r-i+j-1]*delta(i,s)

return Aj

def power_matrix_derivative_method(l,n,m,p,gamma,mu,dl,b):
len_matrix = len (l)
power_l = np.zeros((len_matrix,len_matrix) , dtype = np . complex_ )
x = sym.symbols ('x ')
for i in range (1 , len_matrix+1 ) :

for j in range (1 , len_matrix +1) :
additionner =0
for h in range(1,len_matrix+1):

for k in range(i,len_matrix+1):
for c in range (k , len_matrix+1 ) :

for s in range (1 , h +1) :
for u in range (1 , len ( test ) +1) :

for t in range (1, len_matrix +1) :
additionner += m[h-1][j-1]*p[i-1][k-1]*gamma[k-1,c-1]*mu[s-1,h-1]*

A_j(t,len_matrix+1-s,gam)* sym.diff(fun_f(u,n+len_matrix-c-t+1),x,
multiplicity[u-1]-1).subs({x:test[u-1]})/fact(multiplicity[u-1]-1)

↪→

↪→

power_l[i-1][j-1]= additionner
return power_l
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#taille 3*3
#l=doubly_lefkovitch([2,24,20],[0.6,0.8],[9],[1,3])
l=doubly_lefkovitch([3,50,10],[0.75,0.25],[150],[2,5])
#taille 4*4
#l=doubly_lefkovitch([4,14,10,11],[0.6,0.8,0.2],[5,10],[1,3,4])
#taille 5*5
#l=doubly_lefkovitch([2,24,20,4,5],[0.6,0.8,0.2,0.1],[9,5,3],[1,3,4,6])
#taille 6*6
#l=doubly_lefkovitch([2,24,20,4,5,7],[0.6,0.8,0.2,0.1,0.11],[9,5,3,4],[1,3,4,6,8])
#taille 7*7
#l=doubly_lefkovitch([2,24,20,30,50,75,88],[0.6,0.2,0.8,0.75,0.25,0.11],[9,7,11,5,7],[1,3,5,12,44,89])
print('doubly lefkovitch=',l)
p=matrices_p(l)
print('p=',p)
m=inv_mat_p(p)
print('m=',m)
dl=doubly_leslie(l,p,m)
print('doubly leslie=',dl)
gamma=mat_p(dl)
print('gamma=',gamma)
mu=inv_mat_p(gamma)
b=matrix_compan(dl,gamma,mu)

gam = gamma_function(b)
test , multiplicity=mul_valpropre ( dl )

t1_start = process_time()
power_lr=power_matrix_doublyLefkovitch_recursive(l,6,p,m,dl,gamma,mu,b)
t1_stop = process_time()
print('power_lr=',power_lr)

t2_start = process_time()
print('matrix_power=',matrix_power(l,6))
t2_stop = process_time()

t3_start = process_time()
power_ld=power_matrix_derivative_method(l,6,m,p,gamma,mu,dl,b)
t3_stop = process_time()
print('power_ld=',power_ld)

t4_start= process_time()
power_la=power_matrix_analytic_doublyL(l,6,p,m,dl,b,gamma,mu)
t4_stop=process_time()
print('power_la',power_la)

print("Elapsed time 1:", t1_stop, t1_start)

print("Elapsed time during the whole program in seconds:", t1_stop-t1_start)

print("Elapsed time 2:", t2_stop, t2_start)

print("Elapsed time during the whole program in seconds:", t2_stop-t2_start)
print("Elapsed time 3:", t3_stop, t3_start)

print("Elapsed time during the whole program in seconds:", t3_stop-t3_start)
print("Elapsed time 4:", t4_stop, t4_start)

print("Elapsed time during the whole program in seconds:", t4_stop-t4_start)



A. Aloui, M. Rachidi, J. Math. Computer Sci., 31 (2023), 287–304 304

Acknowledgment

The authors express their sincere gratitude to the reviewers. The second author is supported by
PPGEdumat and the Profmat programs of the INMA-UFMS. He expresses his sincere thanks to the INMA
and the UFMS for their valuable support and encouragements.

References

[1] A. Aloui, M. Rachidi, B. El Wahbi , On a numerical approach for the powers of the doubly Leslie and doubly companion
matrices with applications, Int. J. Math. Comput. Sci., 16 (2021), 613–638. 1, 2.1, 2.1, 2.2
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