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Abstract 
Given a graph𝐺 = (𝑉, 𝐸), a coloring function 𝐶 assigns an integer value 𝐶(𝑖) to each 
node 𝑖𝜖𝑉 in such a way that the extremes of any edge {𝑖, 𝑗}𝜖𝐸 cannot share the same 
color, i.e., 𝐶(𝑖)  ≠  𝐶(𝑗). The classical concept of the (crisp) chromatic number of a 
graph 𝐺 is generalized to fuzzy concept 𝐺  in this paper. Main approach is based on the 
successive coloring functions 𝐶𝛼  of the crisp graphs 𝐺𝛼 =  (𝑉; 𝐸𝛼), the 𝛼 −cuts of 𝐺 ; 
the traffic lights problem is analyzed following this approach. 
 
Keywords: Fuzzy graph, Coloring, Traffic Light Problem. 
 
 

1. Introduction 
Graph coloring is one of the most studied problems of combinatorial optimization. Many problems of 

practical interest can be modeled as coloring problems. The general form of this application involves 
forming a graph with nodes representing items of interest. The basic graph coloring problem is to group 
items in as few groups as possible, subject to the constraint that no incompatible items end up in the same 

group. Formally, given a graph 𝐺 = (𝑉, 𝐸), a coloring function is a mapping 𝐶 ∶  𝑉 →  𝑁 identifying 𝐶(𝑖) 

as the color of node 𝑖𝜖𝑉, in such a way that two adjacent nodes cannot share the same color, i.e., 

𝐶(𝑖)  ≠  𝐶(𝑗) if {𝑖, 𝑗}𝜖𝐸. These nodes 𝑖 and 𝑗 will be denoted as incompatible and, in this context, graph 𝐺 
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will be denoted the incompatibility graph. A 𝑘 −coloring 𝐶𝑘  is a coloring function with no more than 𝑘 
different colors 𝐶𝑘 : 𝑉 →  1, … , 𝑘 . A graph is 𝑘 −colored if it admits a 𝑘 −coloring. The minimum value 𝑘 
such that 𝐺 is 𝑘-colored is the chromatic number of 𝐺 and it is denoted as 𝜒(𝐺). The graph coloring 
problem (for short, the coloring problem) consists of determining the chromatic number of a graph and 
an associated coloring function. This problem is known to be NP-hard.  

An important area of application of the coloring problem is management science. Classical 
applications include wiring of printed circuits , loading problems , resource allocation , frequency 
assignment problem , a wide variety of scheduling problems and computer register allocation. In these 
problems, the objective is to minimize the number of colors assigned to the nodes, where the nodes 
represent certain items and adjacent nodes must have different colors. In some circumstances, however, 
this scheme seems to be very restrictive in the sense that the problems which can be modeled as coloring 
problems cannot be very complex. 
 
This paper is focused on the conceptual framework of the applications of the fuzzy-set theory on those 
problems that can be stated as coloring problems. Fuzzy-set theory, introduced by Zadeh [2], is a 
mathematical tool to handle uncertainties like vagueness, ambiguity, and imprecision in linguistic 
variables. The first definition of fuzzy graph was proposed by Kaufmann, from the fuzzy relations 
introduced by Zadeh[2]. Although Rosenfeld[3] introduced another elaborated definition, including fuzzy 
nodes and fuzzy edges.  

In this paper we deal with graphs with crisp nodes and fuzzy edges. We will use the classical 
definition of fuzzy set A defined on a non empty set X as the family 𝐴 =  {(𝑥; 𝜇𝐴(𝑥)) 𝑥 ∈  𝑋  } , where 
𝜇𝐴: 𝑋 →  𝐼 is the membership function and 𝜇𝐴(𝑥) reflects the ambiguity of the assertion 𝑥 belongs to 𝐴. A 
fuzzy number is a fuzzy set defined on X ⊆ R. In classical fuzzy-set theory the set 𝐼 is usually defined as the 
interval [0;  1], in such a way that 𝜇𝐴(𝑥) = 0 indicates that 𝑥 does not belong to 𝐴      , 𝜇𝐴(𝑥)  =  1 indicates 
that 𝑥 strictly belongs to 𝐴, and any intermediate value represents the degree in which 𝑥 could belong to 
𝐴. However, the set 𝐼 could be a discrete set of the form 𝐼 =  {0, 1, … , 𝑘}, where 𝜇𝐴(𝑥) ≤ 𝜇𝐴(𝑥 )  indicates 
that the degree of membership of 𝑥 to 𝐴 is lower than the degree of membership of 𝑥 . In general, the set 
𝐼 can be any ordered set, not necessarily numerical; for instance, 𝐼 =  {𝑛𝑢𝑙𝑙;  𝑙𝑜𝑤;  𝑚𝑒𝑑𝑖𝑢𝑚;  𝑕𝑖𝑔𝑕;  𝑡𝑜𝑡𝑎𝑙}. 

Let G  =  (V, E ) be a fuzzy graph, where 𝑉 is the node set, the fuzzy edge set 𝐸  is characterized by the 

matrix  𝜇 =  𝜇𝑖𝑗  𝑖,𝑗𝜖𝑉
: 𝜇𝑖𝑗 = 𝜇𝐸   𝑖, 𝑗    ∀𝑖, 𝑗𝜖𝑉  such that 𝑖 ≠ 𝑗  and 𝜇𝐸 ∶  𝑉 ×  𝑉 →  𝐼 is the membership 

function.  
Each element 𝜇𝑖𝑗  ∈  𝐼 represents the intensity level of the edge {𝑖, 𝑗} for any 𝑖;  𝑗 ∈  𝑉 with 𝑖 ≠ 𝑗  . In 

this sense, a fuzzy graph can also be denoted as 𝐺  =  (𝑉, 𝜇 ). The set 𝐼 is linearly ordered in such a way 
that the expression 𝜇𝑖𝑗 ≺ 𝜇𝑖 𝑗   stands for “the intensity level of edge {𝑖, 𝑗} is lower than the intensity level of 

edge {𝑖 , 𝑗 }”.  
The fuzzy graph 𝐺  can be considered as a generalization of the incompatibility graph 𝐺, since, taking 

𝐼 =  {0;  1}, 𝐺  becomes a crisp graph if matrix 𝜇 is defined as: 

𝜇𝑖𝑗 =  
1           𝑖𝑓  𝑖, 𝑗 𝜖𝐸
0         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

       ∀𝑖, 𝑗𝜖𝑉  

In this paper Main approach  to the coloring problem of fuzzy graphs be introduces in section 2   
which is the natural extension of the coloring problem to fuzzy graphs; the traffic lights problem will be 
used to motivate and illustrate this problem in Section 2.1, and the extended coloring function and 
chromatic number of a fuzzy graph will be defined in Section 2.2. 
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2. The fuzzy coloring problem 
 

In order to introduce the concepts of the coloring function of a fuzzy graph and its associated 
chromatic number, a scheduling problem is presented. 

 

2.1. The traffic lights problem 

 
The traffic lights problem consists of controlling a traffic lights system in such a way that certain level 

of security will be attained. This problem has been studied as an intersection graph in [4]. Other authors, 
see [1],[5],[6] have modeled it as an assignment set problem. The traffic lights problem can also be 
modeled as a graph coloring problem. The following example illustrates this approach. 
Example 2.1. The traffic Now at the corner of two streets is depicted in Fig1. Certain lanes are compatible 
with one  another, such as AD and CB, while others are incompatible, such as AB and CD. In order to avoid 
collisions, we wish to install a traffic light system to control the Now of vehicles. This problem can be 
modeled by means of an incompatibility graph 𝐺 = (𝑉, 𝐸) whose nodes are given by the lanes, and a pair 
of lanes defines an edge if they are incompatible, i.e., they can cause a collision. In this case, 
𝑉 =  {𝐴𝐵;  𝐴𝐷;  𝐶𝐵;  𝐶𝐷;  𝐷𝐵}; 
𝐸 =  {{𝐴𝐵;  𝐶𝐷}; {𝐴𝐷;  𝐷𝐵}; {𝐶𝐷;  𝐷𝐵}}: 

The incompatibility graph 𝐺 is depicted in Fig2. Any 𝑘-coloring C𝑘  of the graph 𝐺 identifies a control 
policy of the lights system. The entire cycle of the lights system is divided into 𝑘 time periods or slots 
(with any time-length). For any slot 𝑐 ∈ {1, … , 𝑘} circulation movements 𝑖 such that C𝑘   (𝑖)  =  𝑐 are the 
only ones allowed. Therefore, the chromatic number 𝜒(𝐺) gives the minimum number of time periods 
required to control the system. The chromatic number of 𝐺 is 𝜒 𝐺 = 2 and a 2-coloring is: 
𝐶2(𝐴𝐵)  =  1; 𝐶2(𝐴𝐷)  =  2; 𝐶2(𝐶𝐵)  =  1; 
𝐶2(𝐶𝐷)  =  2; 𝐶2(𝐷𝐵)  =  1: 

Obviously, the control policy of the lights depends on the incompatibility of the lanes. The concept of 
incompatibility could be fuzzy and it could be graduated. This graduation, which does not need to be 
numerical, is associated to the desired security level for the traffic Now at the corner. The maximum 
security level is attained when all lanes are considered incompatible and the graph is complete; in this 
case, the chromatic number is the number of lanes and the control policy of the lights assure that only one 
movement is allowed in any slot of the cycle. On the other hand, the minimum security level is attained 
when the incompatibility edge set is empty; in this case, the chromatic number is 1 and all movements are 
allowed at any instant. 

In Example 2.1, for instance, lanes CD and DB are more incompatible than lanes AB and DB. Let I = {n, 
l, m, h, t}, where 𝑛, 𝑙, 𝑚, 𝑕 and 𝑡 denote the incompatibility degrees 𝑛𝑢𝑙𝑙, 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑕𝑖𝑔𝑕 𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙, 
respectively. The problem stated in Example 2.1 could be modeled by means of the fuzzy graph 
𝐺  =  (𝑉, 𝜇), where:  

V = {AB; AD; CB; CD; DB};       𝜇 =

 

 
 

− 𝑛 𝑙 𝑕 𝑙
𝑛 − 𝑛 𝑚 𝑕
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𝑕
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𝑛
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This fuzzy graph is depicted in Fig3. One way to consider these fuzzy incompatibilities is to define a 
coloring function for fuzzy graphs. This concept is introduced in the next subsection. 

 

2.2. The coloring function of a fuzzy graph 
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Given a fuzzy graph 𝐺  =  (𝑉, 𝜇), a natural approach in order to obtain some knowledge about it, is to 
analyze the sequence of the so called 𝛼-cuts. A fuzzy set A defined on 𝑋 can be characterized from its 𝛼-
cuts family 𝐴𝛼 =   𝑥 ∈  𝑋 𝜇𝐴 𝑥 ≥ 𝛼        𝛼 ∈  𝐼. 

This family of sets is monotone, i.e., it vertices 𝐴𝛼  ⊆  𝐴𝛽       ∀𝛼, 𝛽 ∈  𝐼 such that 𝛼 ≤ 𝛽.  On the other 

hand, given a finite monotone family {𝐴𝛼𝑝  𝑝 ∈ {1, … , 𝑚} }, a fuzzy set 𝐴 can be defined from the 
membership function 𝜇𝐴(𝑥)  =  𝑠𝑢𝑝{𝛼𝑝  𝑥 ∈  𝐴𝛼𝑝  }      ∀𝑥 ∈  𝑋 . Let {𝐺𝛼  =  (𝑉; 𝐸𝛼) 𝛼 ∈  𝐼 } be the family of 

𝛼-cuts sets of 𝐺 , where the 𝛼-cut of a fuzzy graph is the crisp graph 𝐺𝛼 =  (𝑉; 𝐸𝛼) with 𝐸𝛼  =  {{𝑖, 𝑗} 𝑖, 𝑗 ∈

 𝑉, 𝜇𝑖𝑗  ≥ 𝛼 }. 

Hence, any (crisp) 𝑘-coloring 𝐶𝛼
𝑘  can be defined on 𝐺𝛼 . The 𝑘-coloring function of 𝐺 ,  is defined 

through this sequence. For each  𝛼 ∈  𝐼 , let 𝜒𝛼  denote the chromatic number of 𝐺𝛼The chromatic number 
of 𝐺  is defined through a monotone family of sets.  
Definition 2.1. Given a fuzzy graph G  =  (V;  μ), its chromatic number is the fuzzy number 𝜒( 𝐺 )  =
 {(𝑥;  𝜈(𝑥)) 𝑥 ∈  𝑋  }; where 𝑋 =   1, … ,  𝑉  ,    𝜈 𝑥 =  𝑠𝑢𝑝 𝛼 ∈  𝐼  𝑥 ∈  𝐴𝛼

       ∀𝑥 ∈  𝑋     𝑎𝑛𝑑     𝐴𝛼  =
 {1, … , 𝜒𝛼 }      ∀𝛼 ∈  𝐼 .  

The chromatic number of a fuzzy graph is a normalized fuzzy number whose modal value is 
associated with the empty edge-set graph. Its meaning depends on the sense of index 𝛼, and it can be 
interpreted in the following way: for lower values of 𝛼 there are many incompatible links between nodes 
and, consequently, more colors are needed in order to consider these incompatibilities; on the other hand, 
for higher values of 𝛼 there are fewer incompatible links between nodes and less colors are needed. The 
chromatic number sums up all this information in order to manage the fuzzy problem.  

The fuzzy coloring problem consists of determining the chromatic number of a fuzzy graph and an 
associated coloring function. In this approach, for any level 𝛼, the minimum number of colors needed to 
color the crisp graph 𝐺𝛼  will be computed. In this way, the fuzzy chromatic number will be defined as a 
fuzzy number through its 𝛼-cuts.  

In Example 2.1, five crisp graphs 𝐺 𝛼 =  (𝑉; 𝐸𝛼) are obtained by considering the values 𝛼∈ I . For 
each 𝛼∈ I , Table 1 contains the edge set 𝐸𝛼  , the chromatic number 𝜒𝛼  and a 𝜒𝛼 -coloring 𝐶𝛼

𝜒𝛼. 
It can be shown that the chromatic number of 𝐺  is 𝜒( 𝐺 ) = { 1, 𝑡 ,  2, 𝑕 ,  3, 𝑚 ,  4, 𝑛 , (5, 𝑛)}. The interpretation 

of 𝜒  𝐺    is the following: lower values of 𝛼 are associated to lower driver aptitude levels and, consequently, 
the traffic lights must be controlled conservatively and the chromatic number is high; on the other hand, 
for higher values of 𝛼, the driver aptitude levels increase and the chromatic number is lower, allowing a 
less conservative control of the traffic lights and a more fluid traffic flow.  

In order to solve the fuzzy coloring problem, any algorithm which computes the chromatic number of 
every (crisp) graph 𝐺 𝛼 can be used. For fuzzy graphs of small to medium size an exact algorithm can be 
used. Nevertheless, due to the NP-hardness of the coloring problem, for fuzzy graphs of medium to large 
size some heuristics may be needed. 

 

3. Tables and Figures 
 

Table 1. , 𝑪𝜶
𝝌𝜶 for Example 2.1: 

𝜶 𝑬𝜶 𝝌𝜶 𝑪𝜶
𝝌𝜶(𝑨𝑩) 𝑪𝜶

𝝌𝜶(𝑨𝑫) 𝑪𝜶
𝝌𝜶(𝑪𝑩) 𝑪𝜶

𝝌𝜶(𝑪𝑫) 𝑪𝜶
𝝌𝜶(𝑫𝑩) 

𝑛 
 

  𝐴𝐵, 𝐴𝐷 ;   𝐴𝐵, 𝐶𝐵 ;   𝐴𝐵, 𝐶𝐷 ;   𝐴𝐵, 𝐷𝐵  
5 1 2 3 4 5   𝐴𝐷, 𝐶𝐵 ;   𝐴𝐷, 𝐶𝐷 ;   𝐴𝐷, 𝐷𝐵 ;   𝐶𝐵, 𝐶𝐷  

  𝐶𝐵, 𝐷𝐵 ;   𝐶𝐷, 𝐷𝐵  

𝑙 
  𝐴𝐵, 𝐶𝐵 ;   𝐴𝐵, 𝐶𝐷 ;   𝐴𝐵, 𝐷𝐵 ;   𝐴𝐷, 𝐶𝐷  

3 1 1 2 2 3 
  𝐴𝐷, 𝐷𝐵 ;   𝐶𝐷, 𝐷𝐵  

𝑚   𝐴𝐵, 𝐶𝐷 ;   𝐴𝐷, 𝐶𝐷 ;   𝐴𝐷, 𝐷𝐵 ;   𝐶𝐷, 𝐷𝐵  3 1 3 1 2 1 
𝑕   𝐴𝐵, 𝐶𝐷 ;   𝐴𝐷, 𝐷𝐵 ;   𝐶𝐷, 𝐷𝐵  2 1 2 1 2 1 
𝑡 ∅ 1 1 1 1 1 1 
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Figure 1. Traffic Flow for Example 2.1 

                  
             Figure 2  Incompatibility Graph 𝑮 for Example 2.1                 Figure 2  Fuzzy Graph 𝑮  for Example 2.1       
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