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Abstract

In this paper, we revisit the LP-spaces, p > 1, associated with a general quantum difference operator and prove some
convergence theorems in the quantum setting. Furthermore, two inequalities of Hardy’s type are established. Finally, many
illustrative examples concerning with g-difference operator, Hahn difference operator and power quantum difference operator

are given.
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1. Introduction

Quantum difference operators allows us to deal with nondifferentiable functions in the usual sense.
They have an essential role due to their applications in several mathematical areas such as orthogonal
polynomials, basic hypergeometric function, combinatorics, the calculus of variations and the theory of
relativity. New results in quantum calculus can be found in [8] and the references cited therein. In this
paper, we consider the quantum difference operator Dg which is defined by

f(B(t) — ( )
B(t)—
(t

for every t with 3(t) # t and Dgf(t) = f'(t) when B(t) = t provided that f'(t) exists in the usual
sense. Here, {3 is a continuous function on an interval I for which 3(t) € I for any t € I, and f is an
arbitrary function from I to a Banach space X. If 3(t) = qt,q € (0,1), then Dg = Dy, the Jackson g-
difference operator and if 3(t) = qt+w, q € (0,1), w > 0, then Dg = D4, the Hahn difference operator.
Theory of quantum difference equations helps us to avoid proving results twice, once for Jackson g-
difference equations and once for Hahn difference equations (see [8]). For related results and applications
to quantum difference operators, see [7]. We denote by

B¥(t):=PoPoPo---0B(t),

k times

Dﬁf(t)
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k € Ny = IN U {0}, where N is the set of all natural numbers. For convenience p°(t) =t forall t € L.

It is well known that a continuous function  : [a, b] — [a, b] has at least a fixed point. This is due to
Brouwer, see [15].

Throughout the paper, we assume {3 is a continuous function on I that has a unique fixed point sg € I
and satisfies the following inequality:

(t—sp)(Pp(t)—t) <0 foralltel.
Moreover, X denotes a Banach space endowed with a norm ||||. Also, the p-interval is defined to be
[a,b]g = {p*(a);k € No}U{B"(b);k € No}U{so}.
Finally, [a, b]”(}, is defined by
[a, bl = [a, blp\{so}-
For d € [a, b]g, the following facts are commonly known to be true.

(1) For d > sy, we have p¥(d) is decreasing to sg as k — oo.
(2) For d < sg, we have p¥(d) is increasing to sg as k — oo.

Accordingly, it is convenient to set 3*°(t) = so,t € [a,blg. For more details about quantum difference
calclus, we refer the reader to [8]. We only mention some fundamental definitions and theorems that will
be useful in our investigations.

Theorem 1.1. Assume that f:1 — Xand g : 1 — R are B-differentiable functions at t € 1. Then
(i) the product fg : 1 — X is B-differentiable at t and
Dp(fg)(t) = (Dpf(t))g(t) + f(B(t))Dpg(t) = (Dpf(t))g(B(t)) + f(t)Dpg(t);
(ii) f/g is B-differentiable at t and

_ (Dgf(t)) g(t) —f(t)Dpg(t)
Dg(f/g)(t) = 090 , 9(t)g(B(t) #0.

Definition 1.2. Let f: I — X and a,b € L. The B-integral of f from a to b is defined by

Jb f(t)dpt = Jb f(t)dpt — r f(t)dpt,

where
h 00
| st =3 g5 — Bt owpe(B ), mel,
S0 k=0

provided that the series converges at h = a and h = b. f is called 3-integrable on I if the series converges
at a,b for all a,b € L. Clearly, if f is continuous at s € I, then f is 3-integrable on I.

Theorem 1.3. Let f be continuous at sg. Define the function

t
F(t) :J f(s)dgs, tel

S0

Then F is continuous at so, DgF(t) exists for all t € I, and DgF(t) = f(t).

Corollary 1.4. If f : | — X is continuous at sg, then

B(t)
J f(t)dgT = (B(t) —t)f(t), tel

t
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Theorem 1.5. If f : I — X is 3- differentiable on 1, then

b
J Dgf(t)dgt = f(b) —f(a) forall a,b e L

a
Theorem 1.6. Assume f, g are B-differentiable functions on I and Dgf, Dgg both continuous at so. Then

b b
J f(t)DBg(t)dBt=f(b)g(b)—f(a)g(a)—j (Daf(t)g(B(0)dpt, abel

a a

Here, at least one of the functions of f and g is a real-valued function.

In 1970, Leindler, in [13], proved his inequality, which is stated as follows: if A(n),h(n) > 0,n € INy
and p > 1, then

i?\(n) (i h(k)> <pP le P( (Z Ak ) hP(n (1.1)

n=1

Also, in 1928, Copson [5] demonstrated that

00 P
An) [ ¢ pc(
> (Z a(k)?\(k)> <() Z ARAP< (n)aP (n), (12
n=1 k=1
where A(n Z Alk (n) are positive sequences and p > ¢ > 1. The corresponding inequalities
in the Contmuous case are
00 o] P 00
(] swray) ax<or [“ixgiorr ex 13
0 x 0
and
XA P pr’ At)
< p .
[ m@ (t)at < (C_ )] A e (14)
where A(t fo s)ds and O(t fo s) ds. Here, A and g are continuous nonnegative functions.

See [10] and [6].

Our paper is organized as follows. Section 2 is devoted to the quantum LP- spaces, p > 1, which were
considered in [4]. In this section, we follow a different approach in the proofs. In Section 3, we answer
the following question: assuming f, is a sequence of -integrable functions on [sg, b]g, that converges
to an integrable function f, under what conditions, do the B-integrals of f,, converge to the B-integral
of f? Moreover, two inequalities of Hardy type are proved in quantum setting, which correspond to the
classical inequalities (1.3) and (1.4). Finally, in Section 5, many illustrative examples are given.

2. Quantum LP-spaces

Let p > 1 be a fixed real number, a,b € R and a < b. Assume that sy € [a, b) is the fixed point of (3.
We denote by L ([a, b]g, X) the family of all functions f : [a, blg — X such that

b
[ It agt < oo.
a
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We define the equivalence relation ~ on the family L, [a, b]g by

f~ge f=gon [a,b]’[g.

We denote by LP([a,blg,X) = { [f]: f € Lp(la, b]B,X)}, the family of all equivalence classes induced by
~. For f € L,([a, b]g,X), we define the functional || [f] ||, by

b

I ] p = (J Hf(t)updﬁt) "

a

b b
This definition is well defined, because f ~ g, implies [ ||f(t)||Pdgt = [||g(t)||[Pdpt, and consequently,
a a
| [f1{p = || lg] ||p- Note that using the inequality

(a+b)? <2P(aP +bP), a,b >0,
we obtain f 4 g € L, ([a, blg, X) for any f,g € L, ([a, blg, X). This is true since

b b b
J [f(t) +g(t)[[Pdpt < 2P (J If(DPdpt+ J ||9(t)||pdrst>-

We define the two operations

1) 1+ gl =[f+gl;
(2) ou[fl = [af], x € R.

One can see that LP([a, b]g, X) is a linear space under the two operations. As known, the zero element is
[0] and the inverse of [f] is [—f]. As usual, we write f instead of [f]. By making use of Young’s inequality,

[14], namely,
aP  bd
ab< —+—, a,b>0,
p q

1 one can show Hoélder inequality which is stated as follows.

wherep>1andq:p]i

Lemma 2.1 ([4, 9]). If feLP([a, blg,R) and g€ L9([a, blg, X), wherep >1,q = I%, then fg € (L'[a, blg,X)

and
Ifgllr < [Ifllp Igllq,

that is, ) ) )
[rtvtviase < ([ rorase)”([1switast) .

In the following Lemma, we state Minkowski’s inequality. We refer the reader to [4, 9].
Lemma 2.2. Let p > 1 and f,g € LP([a, blg, X). Then f + g € LP([a, blg, X) and
1T+ gllp < [fllp +[lgllp,

that is,

b b 1 b 1
([ 1+ gtwirase)” < ([irwirage)” + ([ Igwirage)”
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Another proof of the following Theorem can be found in [4].
Theorem 2.3. LP([a, blg, X) is a normed space.
Proof. Let f € LP([a, blg,X). We check that || f ||P > 0. Indeed, we have

b o0 o0
115 = J If()[Pdgt =Y (B*(b) — X1 (b)) [P (B*(b)) = D (B*(a) — ¥ (a)) [IfIP(B*(a)) > O.
a k=0 k=0

b
Assume now f € LP([a, blg,X) such that || f ||, = 0. Then [ ||f(t)||Pdgt = 0. Thus
a

> (B*D) =B (o) [fIP(B*() =0 and > (B*(a)—B*"(a)) IfIP(B*(a)) =0,
k=0 k=0

which in turn implies that f = 0 on [a, b]’é, i.e., [f] = [0]. Finally, for f € LP([a, b]g,X) and « € R, we can
see easily || af|p, = |«| || f||p. By the previous discussions and Lemma 2.2, we get the required result. [

In the following Theorem we prove the completeness of LP-spaces. Another proof is found also in [4].
Theorem 2.4. LP([a, blg, X) is a Banach space.

Proof. Assume that {f,} is a Cauchy sequence in LP[a, b]g, i.e.,
b
J [[fn(t) — fm(t)]|Pdgt — 0 as n,m — oo.
a

Setting gn,m (t) = ||fn(t) — fm (t)]|P, it follows that

(Z(Bk(b)—ﬁk“(b)) gn,m(sk(b))—z(Bk(a)—Bk“(a))gn,m(ﬁk(an> — 0as n,m — oo,

k=0 k=0

which in turn implies that,

> (B*(b) = B** (D)) gnm(B*(b)) = 0 as n,m — oo,
k=0

and o
> (B*(a)— B () gn,m(B*(a)) = 0 as n,m — co.
k=0

So,

[fn(y) —fm(y)l| =0 as n,m — oo, y € [a, bl;.
Then fr (y) is a Cauchy sequence in R,y € [a, b]j;. Hence, i, (y) is pointwise convergent to some function
f(y) defined on [a, b]’[g. Let f* be any extension of f to [a, b]g. Fix € > 0. There exists ng € IN, such that

[e¢]

> ((Bk(b) — B (b)) gn,m(B*(b)) — (B*(a) = B () gn,m(ﬁk(a))> <€, m,m2=ny.

k=0
This implies

1

> [(Bk(b) —B*HD)) fn — Fm IP(BX () — (B (a) = B*!(a)) [Ifn — fm||Pus“(a))] <€eP, m,m>ny,

k=0
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for each 1. Taking m — oo, we get

L

> [(ﬁk(b)—ﬁkﬂ(b)) Ifr = FIP (B¥(b)) — (B*(a) — B (a)) an—fllp(ﬁk(a))] <eP, n=mnyg,

k=0
for each 1. Taking 1 — oo, we conclude that

(e ¢]

Yy [(Bk(b) — B¥B)) [[fn — I[P (B¥(D)) — (B¥(D) — B (b)) [[fn — fupusk(a))] <€, n >

k=0
We deduce that

b
Jan(t) —f*(t)[[Pdpt < €P, n = ny. (2.1)
a

This implies that f, — f* € (LP[a, blg,X), n > ny, and consequently f* € LP[a, blg. Also from (2.1), we
get [[fn, — ¥, < e,mn > ny. O

Theorem 2.5. If h : [so,blg — R is continuous at so and f € LP([so, blg,X), for some p > 1, then hf €
Lp([soib}ﬁrx)'

Proof. There is M > 0 such that [h(t)[P < M, t € [s, b]g. We have

b 00
T IR0 agt = 3 (85(6) — B+110)) [R(B o) (o)) P
S0 k=0

<M ) (B¥(b) = B** (b)) [IF(B*(0))||P < oo.
k=0

3. Convergence theorems
Our objective in this section is to establish some convergence theorems.

Theorem 3.1. Let f,,, f € L!([sg, blg,X). Assume limp o0 fn(B*(b)) = f(B*(b)) uniformly with respect to
k € Ng. Then
B*(b) B*(b)
lim J fn(s)dps :J f(s)dgs
n—oo S0

S0

uniformly with respect to k € INp.
Proof. Let € > 0. There exists ng € IN such that, for every k € INj, the inequality

€

k k
[ (B (b)) —F(B (D) < 5=,

holds whenever n > ng. It follows that

B*(b) B*(b)
J fn(s)dBS_J f(S)dBS

S0 S0

B*(b)
<7 s~ o) s

S0

= (B () = BT (B) [ fn (B * (b)) — F(BT (b))

0
<en>=ng, ke Ny O
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Definition 3.2. We say that a sequence fy, : [sp, b]g — X is equicontinuous at sq if for every e > 0, there
exists kg € IN such that
[ (B (0)) — fr(so)| < e k > ko, €N.

Theorem 3.3. Let f, be an equicontinuous sequence at sy and f be any function on [so,blg such that
limp, o0 fn (B*(b)) = f(B¥ (b)) uniformly with respect to k € Ng U{oo}. Then f is continuous at sg.

Proof. Let € > 0. There exist kg, ng € IN such that

€

[y (BE(0)) = F(BX(0))]| < 5, k € NoU{oo} and |[fng(BX(6)) = fimg(s0)| < 5

, k= k.
This implies

IF(B*(6)) — F(s0)ll < IF(BX(0)) — Fuy (B (D)) + [y (B*(1)) — Frg (50| + [y (50) — F(s0)| < €, k = ko.
O

Theorem 3.4. Assume fy, : [sg, blg — R is a monotone sequence of continuous functions at so. If f,, is convergent
to a continuous function f at sg, then
lim fn(B*(b)) = f(B (b))

n—oo

uniformly with respect to k.

Proof. Assume that f,,(B*(b)) > fn11(B*(b)),n € N, k € Ny U{oo}. Without loss of generality, we suppose
that f = 0. For the sake of a contradiction, assume there exists €y > 0 and an increasing sequence 1,, € N
such that 1,, > n and fo (B (b)) > €p. So, fm (B (b)) = €, m < n,n € N. Fix m and take n to tend to
0o, we get fin(sg) > €o, m € IN. Again taking m — oo, we deduce f(sg) > €p which is a contradiction. [J

We combine Theorems 3.1 and 3.4, to conclude the monotone convergent theorem.

Theorem 3.5. Assume fy, : [sg, blg — R is a monotone sequence of continuous functions at so. If f,, is convergent
to a continuous function f at sg, then

B*(b) B*(b)
lim J fn(s)dps :J f(s)dgs
n—oo Jo S0

uniformly with respect to k € INo.

4. Quantum inequalities of Hardy type
This section includes two quantum inequalities of Hardy type.

Theorem 4.1. Let p > 1and g € LP([sq, blg, (0, 00)). Then

b b P b
J (Jﬁ( )9(9)%9) dﬁxéppj (x —s0)P(g(x))P dpx.

S0 S0

b P b
g(y) dgg) and I = J F(x) dgx. Then, for x = Bi(b) € [so, blg, i€ Np,

S0

Proof. Set F(x) = (J

B (x)

00 00 P
F(B(b)) = (Z(Bk(b) — B (b)) g(B (b)) — D (B (b) — Bk“”(bJ)g(Bk““(b))>

k=0 k=0

i P
_ (Z(Bk(b) — B“l(b))g(ﬁk(b))) :



A. E. Hamza, M. A. Alghamdi, S. A. Alasmi, J]. Math. Computer Sci., 31 (2023), 274-286 281

This implies that

I=) (B"(b)—B™"(b))F(B" (b))

n=0

o0 n P
=) (B™(b)—p™*'(b) <Z(rs‘<(b) Bk“(b))g(ﬁk(b))>

- :
=) (B )—B“(b))< (B*(b) B”l(b))g(ﬁk(b)))

n=1 k=0

00 n P
=) (B™'(b)—B"(b) (Z(Bk—l(b) Bk(b))g(ﬁk‘l(b))>

=1 k=

1
Apply inequality (1.1) with A(n) = (B™1(b) — B™(b)) and h(k) = (B*(b) — B*(b))g(B* (b)) to con-
clude that

I

N

0 P
PPy (BM(b) — B (b)) T (Z (B*'(b) - rs%n) ((B™'(b) —B™(b))g(B™ ' (b)))"

n=1

%) %) P
=pP Y _(B™'(b)—B"(b)) (Z (B*'(b) - Bk(b))> (9(B™"(b)))"
n=1 k=n
=pP Y (B™'(b) =B (B))(B™ " (b) —s0)P (9(B™1(b)))"
le:1
P | sPgP () dgx m

Theorem 4.2. Let p > 1and g € LP([so, blg, (0, 00)). Then

’ 1 ° ’ p \"[* )
LO (b_[s(x)L(x)g(y)dﬁU) dpx < <p_1) Lo(g(x)) dpx.

b p b
Proof. Take H(x) = (b—lﬁ(x) Jﬁ( ) g(y) d[_z,lJ) and | :J H(x) dgx. Let x € [sg, blp, that is x = Bi(b)

for some i € INy. We have as before,

1

i P
(b—BTI(b))P (Z(ﬁk(b) - Bk“(b))g(sk(b)))

k=0

H(B'(b)) =

and
J=D) (B™(b)—p™*(b)JH(B" (b))
n=0

=Y (B™(b) - BnH(b))(b—[slnH)P (Z

n=0

_ n—1 _an 1

_;(ﬁ (0) = B™(0)) g —gmpey <k_0
_ - n—1 _an 1

=2 (B"'(b)—p (b))(b_ﬁn(b))p<

n=1
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Apply (1.2), with A(k) = B*1(b) — B*(b), a(k) = g(B*"!(b)), and ¢ = p to conclude that

p o0
J < (pﬁl) S (8™ (b) — B (b))gP (B (b)),

n=1

from which the desired inequality follows. O

5. Illustrative examples

Example 5.1. Let q € (0,1), p > 1, b > 0 and g € LP([0,blg, (0,00)) with respect to the quantum
g-difference operator, 3(t) = qt. Here, 0 is the unique fixed point of 3. Applying Theorem 4.1, the
following inequality holds

b /b p b
J J g(y)dqy dgx < pP J xP(g(x))P dgx. (5.1)
0 qx 0
See [2, 11, 12]. It is well known that

B (t) = q*t, k=0,1,...

and
B (1) — B () = q* 11— qlt k=1,....
Inequality (5.1) yields the following inequality

n—1 k— 1 k 1 < 1% (n—1)(p+1) ,p(,m—1
24 <Zq b) < <1_q> > 9 (q" D). (52)

If we substitute g(x) = sin x

in (5.2), it yields the inequality

o1 v p sin(q*'b) ne1)(p+1) SINP (g™ D)
24 (Zk k1b)> ( )Zq A T

n=1

We conclude that

00 n P 00
! (Z sin(qk—lb)> < (1 P q>p > a"sin”(q"b).

Example 5.2. Let q € (0,1),p > 1, w > 0,and b > sg = and g € LP([sg, b]g, (0, 00)) with respect to

1—
the quantum Hahn difference operator, 3(t) = qt + w. Here the fixed point of (3 is so. Then, applying
Theorem 4.1, the following inequality holds

b b P b
| (] ot dawy) dawx<p? | (e so)P(g00)P dgan 53)
qx+w )
' i 3 K 1—q*
It is readily seen that, 3°(t) = q“t + wlk|q, where k|4 = 1—q" k=0,1,.... One can see that

B¥(t) = q"(t—so) +s0 and B 1(t) = BX(t) = q" (t—s0)(1—q).
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See [1, 3]. Inequality (5.3) yields

0] n

D (@ —So)(l—q))<Z(qk "o —s0)(1— ))g(a* (b —s0) +50)

<pP Y (qVH(b—s0)(1—q))(q™ ' (b—s0))PgP(q™ ' (b—s0) + 50),

n=1

P

which in turn implies that,

(o0] n p o0
n-1 k—1,.( k-1 p p (m—1)(p+1) n—1
2 q (Zq g(q (b—so)+50)) < <1—q> nz_lq PHIGP(q" (b —s0) +s0).  (5.4)

=1 k=1

3

If we substitute g(x) = sinx in (5.4), it yields the inequality

o0 n p [oe]
n-1 k=1 (k-1 p P (n—1)(p+1) : n-1
g q ( E q sin(q*~ (b —sp) +so)> < <1_> E_lq P+ sinP (™ (b — so) + o).

3

Example 53. Letq € (0,1),p>1,a€2IN+1,0<b < qﬁ, and g € LP([0, b, (0,00)), where B(t) = qt*
is defined on I = [0, b]. See [1]. Then, applying Theorem 4.1, the following inequality holds

b b P b
J (J g9(y) da,qy) dg,qx < pP L xP(g(x))P dg,qx. (5.5)

0 qx@

It is well known that
B¥(t) = g™tk =0,1,.

and
k—1

B () — BR() = Vet (1 —qe" e e k=1,
See [1, 2]. Then inequality (5.5) becomes

0 P
Z q [n—1] aba” 1 1 . q (Z q [k—1] aba q - bakl(al))g(q[kl]abakl)>
n=1

00
<pP Y g Hepe (1 — g e e (g epe P gP (gt lep ™,
n=1

If we substitute g(x) = sinx in (5.5), it yields the inequality

0 P
Z q [n—1] aba 1 . qa“* a™~ (Z q [k—1] aba 1 . q bakfl(a 1)) Sln(q[k—l]abak1)>
n=1

<pP Y g (1 - g e ) (g Hep ™ )P sinP (g Hepe ™,
n=1

Example 5.4. Let g € (0,1), p > 1, b > 0, and g € LP([sg, blg, (0,00)) with respect to the quantum
g-difference operator, 3(t) = qt. Then, applying Theorem 4.2, the following inequality holds

b 1 b P p—1 b
Jso (b_qx qug(y)dqy> dqx S <pIil> Jso(g(X))p qu- (56)
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Inequality (5.6) yields the following inequality

©  n—1(1_ n P -~
ZW(qu—l(l_q)b g(qk_lb)> ( _1) Z_ g™ (1—q)b gP (g™ 'b).

00 n—1 n P 00
ZM(qu—l(l—q)g(qk—le ( ) Z q" 'b). (5.7)

If we substitute g(x) = * in (5.7), it yields the inequality

- q! = k1 sin(q* ') - g 1sin® (@™ 'b).
nZ_l(l—q“)P<k;q R ) < ) Z: (qnTb)P

Thus, we obtain

0] _ n p P n—1

k—1 p sin®(q™'b)
2 T 1_ (Z (1-q)sin(q b)> S (p_1> > g1
n*l k=1 n=1

from which we deduce that

£ (120 (S ) < () £ 2

It follows that

oo n P - i
w1 . p_\"y sin(q"Tb)
3 4 1W<Zsm(qk 1b)> < <p_1> P

(
n=1 q n=1 q

Example 5.5. Let q € (0,1),p > 1, w > 0,and b > sp = 1i) and g € LP([sg, b]g, (0, 00)) with respect to

the quantum Hahn difference operator, 3(t) = qt + w. Here the fixed point of 3 is so. Then, applying
Theorem 4.2, the following inequality holds

b 1 b P P p—1 /b
N () dewy | dgwx < () J (9(x))P dgwx. (5.8)
Lo (b_qx_quX+wgy d y) a p—l Sog d

Inequality (5.8), yields

o0
n:1

q
(b—
P
<<pﬁl) S (@™ (b o) (1~ @))g” (" (b —s0) + 50,
n=1

n— 1

P
_SO (qul —s0)(1—q)g(q*™ (b—80)+30)>

q"(b—so) —so)P

which in turn implies that

n 1 _ o n P
Z b—So SO 1 (Z _SO Q)g(qk_l(b—50)+so)>

n=1 k=1

‘p oo
S <pp_1> D (g™ M (b—s0)(1—q))gP(q™ (b —s0) + s0)-
n=1
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It follows that

n P p o0
Zq“‘lav(qu‘lg(qk‘l(bSOHSO)) <<1c>31> Y (@ b —so) 50 (59)
n n=1

If we substitute g(x) = sinx in (5.9), it yields the inequality
00 1 n P P p 00
n—1 k—1 o3 k=11 < n—1g prAn—1H __ ]
nZ_l S (kz_l g sin(q" (b —50) +So)> <p - 1) nZ_l q" ' sin? (q" (b —s0) + 50)

Example 5.6. Let q € (0,1),p>1,a€2N+1,0<b < qﬁ, and g € LP([0, b]g, (0,00)), when B(t) = qt¢
is defined on I = [0, b]. Then, applying Theorem 4.2, the following inequality holds

b b p P b
| (b—qu ag(”)da'q”> e (1) [ o0 e 10

Then inequality (5.10) becomes
1

o0 q[n_l]ﬂban71(1 . qanf
(b—qieba™)p

< P P i q[nfl]abanfl(l . qanflbanfl(afl))gp(q[nfl]aba“*l)‘
h p_l n=1

ba“fl(a—l))

n P
(Z q[kfl}abakfl (1 . qakflbakfl(afl) )g(q[kl]abak1)>
k=1

n=1

If we substitute g(x) = %, it yields the inequality

n— n— n— _ . _ — P
= gl lepa” (1 go" "pat Ma ) 3 gl tlepet ! (1 — qot pat a1 SR Hepa™
(b— qMlaba™)p Z g g qik—Tapas?

n=1

P X NP [nfl]a an71
P Mm—1]q an-1! . an—1y gqn-1 (a—1) Sin q b
< (p_1> nZ_lq b (1—q*" b T T

From which, we deduce

00 Mm—1lq n—1 . n—1 n-1l(q_1 n P
n=1 k=1
P inP gm—Uapa™!
P _anlgn-l(a—1), SiNY g b
< (p_1> Z(l CI b )(q[n_uabanfl)pil.

n=1
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