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Abstract
In this work, some types of nonlinear parabolic partial differential equations have been studied by means of the collocation

method with cubic B-splines, without transformation or linearization. Here, the convergence analysis of the current scheme is
also theoretically investigated. A few numerical examples are given to illustrate the viability and effectiveness of the proposed
technique. The error norms l2 and l∞ are used to assess the accuracy of the current method. In this respect, the proposed
method, keeping the real features of such problems, is able to save the behavior of nonlinear terms without facing any conven-
tional drawbacks. Furthermore, it is mathematically shown and numerically seen that there is a good agreement between the
approximation and the exact solutions. The current approach reduces the cost of calculation as well as the need for storage space
at various parameters.
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1. Introduction

Many problems in physics and engineering are often described via nonlinear partial differential equa-
tions. These equations appear in many scientific fields, such as optics, plasma physics, fluid mechanics,
condensed matter physics, and the heat diffusion equation [15, 16, 19, 26, 29, 39]. Unfortunately, solving
these equations explicitly in analytical form is only possible for special simple cases. As a result, numer-
ical methods play an important role in solving these problems. Many numerical techniques have been
introduced in the literature to obtain an approximate solution to these equations. These methods include
variational iteration method [34], variational iteration algorithm-I with an auxiliary parameter [3], the
differential transform method [11], A fourth-order finite difference scheme [12], the discrete Adomian de-
composition method [7], the residual power series[42], the finite difference method [23], non-polynomial
cubic spline method [4], extended cubic B-spline approximation [6], finite-difference MacCormack method
[17], C1 Cubic quasi-interpolation splines [10], differential transform method and Padé approximant [43],
double Laplace transform and double Laplace decomposition methods [31]. Many mathematicians have
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solved such problems to date, for more details, see[1, 5, 8, 9, 13, 24, 25, 27, 35]. Few authors have studied
the spline method to solve partial differential equations, for instance, in [2, 21, 22, 30, 32, 36, 37, 40]. In this
article, the cubic B-spline technique is used to solve a parabolic partial differential equation as follows:

∂w

∂t
+αwδ

∂w

∂x
− µ

∂2w

∂x2 = βw
(
1 −wδ

) (
wδ − γ

)
,L1 6 x 6 L2, t > 0, (1.1)

with initial condition
w(x, t0) = w0(x),

and the Dirichlet boundary conditions are given by{
w (L1, t) = g1(t),
w (L2, t) = g2(t),

(1.2)

where w(x, t) the unknown function of the space x and the time t with α,β, δ, and γ are parameters that
β > 0, δ > 0, 0 < γ < 1. By rewriting equation (1.1), we can determine the linear and nonlinear parts as
follows:

L(wxx,w, x, t) = µwxx(x, t) −βγw(x, t),

N(wxx,w, x, t) = −αws(x, t)wx(x, t) +βw(x, t)ws(x, t) −βw(x, t)w2s(x, t) +βγw(x, t)ws(x, t).

Some of the terms in equation (1.1) are nonlinear term. We studied it without using transformation or
linearization, and also the proposed method was directly derived from Space X by using the natural spline
conditions. By testing three problems and comparing them with exact solutions, the effectiveness of the
method is demonstrated, showing that the cubic B-spline is appropriate and in good agreement with
previous studies available in the literature. The remainder of the article is arranged as follows. In Section
2 the cubic B-spline method is presented. In Section 3, the convergence of the method is investigated.
Section 4 contains numerical results to demonstrate the reliability and relevance of the technique and
finally, the conclusions and discussions are reported in Section 5.

2. Description of the methods

To approximate w(x, t) by cubic B-spline collocation method, let’s consider equally dividing the do-
main into knots such that a mesh a = x0 < x1, . . . , xm−1 < xm = b, xi = a+ ih, and h = xi+1 − xi =
b−a
m , i = 0, 1, 2, . . . ,m is the length of each interval. The exact solution w(x, t) in the cubic B-spline collo-

cation method is approximated by Wm(x, t) in the following form:

Wm(x, t) =
m+1∑
i=−1

αi(t)ηi(x), (2.1)

where αj(t) are unknown time-dependent quantities to be determined from the boundary conditions and
collocation from the differential equation. The cubic B-spline functions ηi(x) at these knots are given as
follows:

ηi(x) =
1
h3



(x− xi−2)
3 , x ∈ [xi−2, xi−1] ,

h3 + 3h2 (x− xi−1) + 3h (x− xi−1)
2 − 3 (x− xi−1)

3 , x ∈ [xi−1, xi] ,
h3 + 3h2 (xi+1 − x) + 3h (xi+1 − x)

2 − 3 (xi+1 − x)
3 , x ∈ [xi, xi+1] ,

(xi+2 − x)
3 , x ∈ [xi+1, xi+2] ,

0, otherwise,

(2.2)

where, {η−1,η0,η1, . . . ,ηm−1,ηm,ηm+1} forms a basis over the interval a 6 x 6 b. The values of ηj(x) and
its derivative may be tabulated as in Table 1.
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Table 1: coefficient of the cubic B-splines and its derivatives at nodes xj.

x xj−2 xj−1 xj xj+1 xj+1
ηj(x) 0 1/6 4/6 1/6 0
η′j(x) 0 1/2h 0 −1/2h 0
η′′j (x) 0 1/h2 −2/h2 1/h2 0

Let w be a function with a [a,b] range definition. The cubic spline Wm interpolating the function w
at points x0, . . . , xm is the unique function in C2[a,b] satisfying the following conditions{

Wm (xi, t) = w (xi, t) for i = 0, . . . ,m,
W′′m(a, t) =W′′m(b, t). (2.3)

The cubic spline Wm that interpolates and satisfies condition (2.3), we have

Wm (xk) =

m+1∑
i=−1

αi(t)ηi (xk) = w (xk, t) , 0 6 k 6 m, (2.4)

with

W′′m(a, t) =
1
h2α−1(t) −

2
h2α0(t) +

1
h2α1(t) and W′′m(b, t) =

1
h2αm−1(t) −

2
h2αm(t) +

1
h2αm+1(t).

Now, by using natural cubic splines at boundary conditions in the given interval, which require that the
second derivative is zero, W′′m(a, t) =W′′m(b, t) = 0, we obtain:

α−1(t) = 2α0(t) −α1(t) and αm+1(t) = 2αm(t) −αm−1(t) (2.5)

also from (2.4) and by interpolating conditions at boundary points x0 = a and xm = b, we get

Wm (x0, t) =
1
6

(
α−1(t) + 4α0(t) +α1(t)

)
= w (x0, t) ,

Wm (xm, t) =
1
6

(
αm−1(t) + 4αm(t) +αm+1(t)

)
= w (xm, t) .

In addition to relations (2.5), we get to

α0(t) = w (x0, t) = g1(t), αm(t) = w (xm, t) = g2(t).

Using (2.1) and (2.2), the approximate values of Wm(x) and their derivatives at the nodes are determined
as follows:

Wt(x, t) =
m+1∑
i=−1

α′i(t)ηi(x), Wx(x, t) =
m+1∑
i=−1

αi(t)η
′
i(x), Wxx(x, t) =

m+1∑
i=−1

αi(t)η
′′
i (x). (2.6)

Here, α′i(t) is the derivative of αi(t) with respect to time t, the present scheme consists of substituting
W(x, t) and its derivatives in (1.1) by the expression of Wm(x, t) and its derivatives given by (2.1) and
(2.6), Then, by the equation at points xi for i = 0, 1, 2, . . . ,m, we get:

Wt(x0, t) = µWxx(x0, t) +βγW(x0, t) +N
(
ϕ(t), x0, t

)
, (2.7)

Wt(xm, t) = µWxx(xm, t) +βγW(xm, t) +N
(
ϕ(t), xm, t

)
, (2.8)

where the function N represents the nonlinear part. Using (2.5), (2.7), and (2.8), we get:{
α′0(t) = −βγg1(t) +N

(
ϕ(t), x0, t

)
,

α′m(t) = −βγg2(t) +N
(
ϕ(t), xm, t

)
, (2.9)
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where

N
(
ϕ(t), x0, t

)
= βg1(t)

(
g1(t)

)s (1 −
(
g1(t

)s
+ γ
)
−
α

h

(
g1(t)

)s(
g1(t) −α1(t)

)
,

N
(
ϕ(t
)
, xm, t) = βg2(t)

(
g2(t)

)s (1 −
(
g2(t

)s
+ γ
)
−
α

h

(
g2(t)

)s(
αm−1(t) − g2(t)

)
.

Now, by (2.6) and (2.9), by evaluating these equations at points x1 and xm−1, we get:

4
6
α′1(t) +

1
6
α′2(t) =

(
−2βγ

3
−

2µ
h2

)
α1(t) +

(
−βγ

6
+
µ

h2

)
α2(t) +

(
µ

h2 −
−βγ

6

)
g1(t)

+N(ϕ(t), x1, t) −
1
6
N(ϕ(t), x0, t),

1
6
α′m−2(t) +

4
6
α′m−1(t) =

(
−βγ

6
+
µ

h2

)
αm−2(t) +

(
−2βγ

3
−

2µ
h2

)
αm−1(t) +

(
µ

h2 −
−βγ

6

)
g2(t)

+N(ϕ(t), xm−1, t) −
1
6
N(ϕ(t), xm, t),

(2.10)

and at points xi, i = 2, 3, . . . ,m− 2, one obtains

1
6
α′i−i(t) +

4
6
α′i(t) +

1
6
α′i+1(t) =

(
−βγ

6
+
µ

h2

)
αi−1(t) +

(
−2βγ

3
−

2µ
h2

)
αi(t)

+

(
−βγ

6
+
µ

h2

)
αi+1 +N(ϕ(t), xi, t),

(2.11)

where

N
(
ϕ(t), x1, t

)
=

(
−β

(
g1(t) +α1(t) +α2(t)

)(1
6
g1(t) +

4
6
α1(t) +

1
6
α2(t)

)s)

×

((1
6
g1(t) +

4
6
α1(t) +

1
6
α2(t)

)s
− γ

)
−
α

2h

(1
6
g1(t) +

4
6
α1(t) +

1
6
α2(t)

)s(
g1(t) −α2(t)

)
,

N
(
ϕ(t), xm, t

)
=

(
−β

(
αm−2(t) + 4αm−1(t) + g2(t)

)(
1 −

(1
6
αm−2(t) +

4
6
αm−1(t) +

1
6
g1(t)

)s))

×

((1
6
αm−2(t) +

4
6
αm−1(t) +

1
6
g2(t)

)s
− γ

)

−
α

2h

(1
6
αm−2(t) +

4
6
αm−1(t) +

1
6
g2(t)

)s(
αm−2(t) − g2(t)

)
,

N
(
ϕ(t), xi, t

)
=

(
−β

(
αi−1(t) + 4αi(t) +αi+1(t)

)(
1 −

(1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

)s))

−
α

2h

(1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

)s(
αi−1(t) −αi+1(t)

)
,

Simplifying the equations (2.10)-(2.11) leads to the following system of ordinary differential equations:{
Aϕ′(t) = Dϕ(t) +φ(ϕ(t)),
Aϕ (t0) = ϕ0, (2.12)
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where the matrices A and D are of size (m− 1)× (m− 1) and given by:

A =
1
6



4 1 0 · · · 0

1 4 1
...

0
. . . . . . . . . 0

... 1 4 1
0 · · · 0 1 4


, D =



D0 D1 0 · · · 0

D2 D0 D1
...

0 −
. . . . . . 0

... D2 D0 D1
0 · · · 0 D2 D0


,

where D0 = −2βγ
3 − 2µ

h2 , D1 = −βγ
6 + µ

h2 , and D2 = −βγ
6 + µ

h2 and the vector valued function Φ is given
by

φ(ϕ(t)) = [φ1(ϕ(t)),φ2(ϕ(t)), . . . ,φm−2(ϕ(t)),φm−1(ϕ(t))]
T ,

φ1(ϕ(t)) =

(
µ

h2 −
−βγ

6

)
g1(t) +N

(
ϕ(t), x1, t

)
−

1
6
N
(
ϕ(t), x0, t

)
,

Φm−1(φ(t)) =

(
µ

h2 −
−βγ

6

)
g2(t) +N

(
ϕ(t), xm−1, t

)
−

1
6
N
(
ϕ(t), xm, t

)
.

Finally, we have to solve the resultant system (2.12) by using the well-known SSP-RK 54 algorithm [37],
and as a result, the solution w(x, t) is obtained at the necessary time level after the initial vector ϕ0
determined for a given time. The initial vector ϕ0 can be computed using the following initial and
boundary conditions at t = 0:

Wm (x0, t0) = w0 (x0) , for i = 0,
Wm (xi, t0) = w0 (xi) , for i = 1, . . . ,m− 1,
Wm (xm, t0) = w0 (xm) , for i = m.

This gives a (m− 1)× (m− 1) system of equations of the following form:

Aϕ (t0) = ϕ0, (2.13)

where ϕ0 is the vector given by

ϕ0 =

[
w0 (x1) −

1
6
w0 (x0) ,w0 (x2) , . . . ,w0 (xm − 2) ,w0 (xm− 1) −

1
6
w0 (xm)

]T
.

Here, we use the Thomas algorithm to find a solution to the system (2.13).

3. Convergence of the method

To study the convergence conditions of the present scheme by presenting an error analysis of the
current scheme and proving its convergence, let’s start with a few lemmas and theorems that give the
properties of B-spline functions and interpolation polynomials of spline type, which are very important
for the proof of convergence of the numerical method.

Theorem 3.1. Let Wm ∈ Sk,∆ be a unique splice interpolating the solution w(x, t) of initial -boundary value
problem (1.1)-(1.2), then

‖Di
(
w(x, t) −Wm(x, t)‖∞ 6 mih

4−i, i = 0, 1, 2 ,

where, w(., .) ∈ C2[0, 1],mi is constant, and Di = ∂
∂xi

.

Proof. See [22].
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Lemma 3.2. The B-spline set {B−1,B0,Bm+1} defined in Eq. (2.2), satisfies following inequality:
m+1∑
n=−1

|Bm(x)| 6 10 a 6 x 6 b.

Proof. See [22].

Theorem 3.3. LetWt(x, t) be the collocation approximate from the space S3,∆ to the solutionw(x, t) of the problem
(1.1)-(1.2) exists, then

‖w(x, t) −Wt(x, t)‖∞ 6 Ch2, (3.1)

where C is content and h is the piecewise uniform spacing and sufficiently small.

Proof. To prove this theorem, we use the approximation of w in Sk,∆ defined as WM(x, t) and write

‖w(x, t) −Wt(x, t)‖∞ 6 ‖w(x, t) −WM(x, t)‖∞ + ‖WM(x, t) −Wt(x, t)‖∞ 6 0,

by Theorem 3.1 for t > 0 we have the following bound as bellow:

‖W(x, t) −WM(x, t)‖∞ 6 m0h
4,

corresponding to Lemma (3.2) the function Wm(x, t) can be written in terms of B-spline basis as given
in (2.3). Therefore with a constant c independent of h, we have e 6 Ch2, where e is the error by using
mathematical induction, we can obtain the estimates for ek+1

m 6 Ch2 at m = −1, 0, . . . ,N+ 1. From (3.1)
we obtain:

Wt(x, t) −Wm(x, t) =
N+1∑
m=−1

(αt(t) −αm(t)) ·Bm(x)

and thus
‖Wt(x, t) −Wm(x, t)‖∞ 6 10Ch2,

where C is a constant independent of h.

4. Numerical examples and results

In this part, we solve a few problems using the suggested method, and we’ll demonstrate that it yields
accurate approximations. The efficiency of our suggested scheme is evaluated by determining the l2 error
norm, maximum absolute error l∞, and absolute errors by using the following formulae:

l2 =

√√√√√h
 m∑
j=0

∣∣∣wexact
j −Wnum

j

∣∣∣2
 , l∞ = max

j

∣∣wexact
j − vnum

j

∣∣ .
Example 4.1. Consider the following Burgers-Huxley equation:

∂w

∂t
+w2∂w

∂x
−
∂2w

∂x2 =
2
3
w3 (1 −w2) ,

with the initial condition

w(x, t = 0) =
[

1
2
+

1
2

tanh
(

1
3
x

)]1/2

,

and the Dirichlet boundary conditions

w (x = xl, t) =
[

1
2
+

1
2

tanh
(

1
9
(3xl + t)

)]1/2

, w (x = xu, t) =
[

1
2
+

1
2

tanh
(

1
9
(3xw + t)

)]1/2

,

with xl = −14, xw = 6. The analytical solution [28, 41] is

wα(x, t) =
[

1
2
+

1
2

tanh
(

1
9
(3x+ t)

)]1/2

.
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Figure 1: Approximate and exact solutions of Ex-
ample 4.1, when h = 0.05 and ∆t = 0.001.

Figure 2: Approximate and exact solution of Exam-
ple 4.1, when h = 0.05 and ∆t = 0.001.

Figure 3: Approximate and exact solutions of Ex-
ample 4.1, when h = 0.05 and ∆t = 0.001.

Figure 4: Approximate and exact solutions of Ex-
ample 4.1, when h = 0.05 and ∆t = 0.001.

Table 2: Shows the comparison of absolute errors for Example 4.1.
x = −12 x = −5

t proposed method [38] proposed method [38]
0 0 0 0 0
1 1.77E-07 2.10E-07 4.75E-06 3.20E-06
2 1.92E-07 4.80E-07 5.28E-06 5.07E-06
3 2.68E-07 1.90E-07 5.86E-06 7.50E-06
4 2.25E-07 8.50E-07 6.50E-06 1.28E-05
5 2.44E-07 1.24E-06 7.19E-06 1.59E-05
6 2.64E-07 1.32E-06 7.94E-06 2.02E-05
7 2.85E-07 7.30E-07 8.75E-06 2.09E-05
8 3.07E-07 1.28E-06 9.60E-06 3.08E-05
9 3.31E-07 4.80E-07 1.05E-05 3.42E-05
10 3.56E-07 1.08E-06 1.15E-05 3.77E-05

Table 2 presents various values of errors with different parameters. Clearly, we can see that the error
results are in good agreement. Figures 1-4 show the shape of relative error between the numerical and
exact solutions. Here, we observe from comparing the results in these figures that the numerical and
theoretical results are in good agreement as given in Theorem 3.3.
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Example 4.2. Consider the following Burgers-Huxley equation in the domain [0, 1],

∂w

∂t
+αw

∂w

∂x
−
∂2w

∂x2 = βw(1 −w)(w− γ),

with the initial condition
w(x, 0) =

{γ
2
+
γ

2
tanh (ω1x)

}
,

and the boundary conditions

w(0, t) =
{γ

2
+
γ

2
tanh (−ω1ω2x)

}
, w(1, t) =

{γ
2
+
γ

2
tanh (ω1 (1 −ω2t)} .

The exact solution is provided in [28, 41] by

w(x, t) =
{γ

2
+
γ

2
tanh {ω1 (x−ω2t)}

}
,

that

ω1 =
−α+

√
α2 + 8β

8
γ, ω2 =

γα

2
−

(2 − γ)
(
−α+

√
α2 + 8β

8
,

α = 1,β = 1,γ = 0.001.

Figure 5: Approximate and exact solutions of Ex-
ample 4.2, when h = 0.05 and ∆t = 0.001.

Figure 6: Approximate and exact solutions of Ex-
ample 4.2, when h = 0.05 and ∆t = 0.001.

Figure 7: Approximate and exact solutions of Ex-
ample 4.2, when h = 0.05 and ∆t = 0.001.

Figure 8: Approximate and exact solutions of Ex-
ample 4.2, when h = 0.05 and ∆t = 0.001.
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Example 4.3. In this example, let us consider the Fitzhugh-Nagumo in the domain [0, 1] as

∂w

∂t
= µ

∂2w

∂x2 + f(w); f(w) = w(1 −w)(w− c),

with arbitrary constants c,µ. An exact solution is available in [20] as

w(x, t) =
1

1 + exp
[

−x√
2µ −

(1
2 − c

)
t
] .

The analytic solution can be used to describe the initial condition

w(x, t = 0) = g1(x) =
1

1 + exp
[

−x√
2µ

]
and boundary conditions

w(0, t) =
1

1 + exp
[
−
(1

2 − c
)
t
] , w(1, t) =

1

1 + exp
[

1√
2µ −

(1
2 − c

)
t
] .

Figure 9: Approximate and exact solution of Exam-
ple 4.3, when h = 0.01 and ∆t = 0.0001.

Figure 10: Approximate and exact solution of Ex-
ample 4.3, when h = 0.01 and ∆t = 0.0001.

Figure 11: Approximate and exact solution of Ex-
ample 4.3, when h = 0.01 and ∆t = 0.0001.

Figure 12: Approximate and exact solution of Ex-
ample 4.3, when h = 0.01 and ∆t = 0.0001.
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Table 3: The absolute errors for various values of x and t for Example 4.2.
x t Proposed method ADM [18]

0.1
0.05 1.87E-08 1.94E-07
0.1 3.74E-08 3.87E-07
1 3.75E-07 3.88E-06

0.5
0.05 1.87E-08 1.94E-07
0.1 3.74E-08 3.87E-07
1 3.75E-07 3.88E-06

0.9
0.05 1.87E-08 1.94E-07
0.1 3.74E-08 3.87E-07
1 3.75E-07 3.88E-06

Table 3 shows results using the present scheme at different grid sizes with various parameters. It is
concluded from the errors are quite small. We have also seen from the corresponding Figures 5-8 the
numerical and exact solutions are very accurate and efficient.

Table 4: Evaluation of error norms when h = 0.01,∆t = 0.0001, µ = 1, and c = 0.75 for Example 4.3.
Errors Proposed method [20]

t = 0.01 t = 1 t = 0.01 t = 1
l2 2.4E− 07 1.6E− 07 1.0E− 06 3.0E− 06
l∞ 3.5E− 07 2.7E− 07 2.0E− 06 3.0E− 06

Thanks to Theorem 3.3, we also note in this example that the corresponding Figures 9-12 convergence
are presented by the proposed numerical scheme. They show that the numerical solutions are very good
in similarity to the exact solution, clearly, the error tends to be zero.

5. Conclusions and discussions

In this research, the collocation method with cubic B-splines scheme has been investigated for solving
the nonlinear parabolic partial differential equations without any transformation or linearization. Here,
the convergence analysis of the present scheme is also studied theoretically. Several numerical examples
are provided to demonstrate the viability and effectiveness of the proposed technique. The error norms
l2 and l∞ are used to evaluate the method’s accuracy. From the viewpoints of our results, the behavior
of such problems, without any linearization, and thus by preserving the nonlinear features of nature,
which could be understood by using the current method. Moreover, it can be seen that there is a good
agreement between the computational results and the exact solutions. The current method reduces the
computational cost and the need for storage space. One of the most outstanding aspects of the proposed
approach is that the use of various parameters produces more effective and accurate numerical results.
In further works, the proposed procedure can be effectively used for various nonlinear problems with the
Neumann boundary condition.
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