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Abstract

In this paper, we discuss skew circulant matrices involving the product of Pell and Pell-Lucas numbers. The invertibility of
the skew circulant matrices is investigated, while the fundamental theorems on the determinants and inverses of such matrices
are derived by simple construction matrices. Specifically, the determinant and inverse of n x n skew circulant matrices can be
expressed by the (n —1)th, nth, (n+1)th, (n 4 2)th product of Pell and Pell-Lucas numbers. Some norms and bounds for spread
of these matrices are given, respectively. In addition, we generalized these results to skew left circulant matrix involving the
product of Pell and Pell-Lucas numbers. Finally, several numerical examples are illustrated to show the effectiveness of our
theoretical results.
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1. Introduction

It is worth mentioning that circulant and skew circulant matrices play a crucial role in chemistry
[15, 18] and PDEs [5, 22, 26, 27, 33]. Circulant matrix not only was originally designed for fractional
Brownian motion but also the sampling algorithm for the random fluctuating force [19]. Circulant matrix
also had an application on the quantum optics effects in quasi-one-dimensional and two-dimensional
carbon materials [35]. Besides, Houteghem et al. [7] put forward circulant matrix as a model for the
Hessian of ring molecular structures and visualized of the physical breathing modes when projecting
atomic velocities on eigenvectors of the circulant matrix. Furthermore, Hadamard circulant matrices have
taken up in Hadamard transform spectroscopy, the construction of optimal chemical designs as well as
block designs [1]. Especially, Hadamard transform spectroscopy is derived from Hadamard matrices,
which employs spectroscopic multiplexing techniques and is a good analysis of complex spectra.

On the other hand, the importance of determinants, inverses, norms and spread in special matrix
analysis, several authors [4, 6, 10, 11, 13, 17, 20, 23, 28-32] have done some research on these special
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matrices. Recently, Jiang and Hong [12] studied the explicit form of determinants and inverses of Tri-
bonacci r-circulant type matrices, while Zheng and Shon [36] gave the exact determinants and inverses
of generalized Lucas skew circulant type matrices. Besides, Shen et al. [24] did some work on the ex-
plicit determinants and inverses of circulant matrices with Fibonacci and Lucas numbers. What’s more,
Ahmetfpek [8] investigated an improved estimation for spectral norms of circulant matrices with classi-
cal Fibonacci and Lucas number entries. Bose et al. [3] discussed the convergence in probability and in
distribution of the spectral norm of scaled Toeplitz, circulant, skew circulant, symmetric circulant, and a
class of k-circulant matrices.

The well-known Pell and Pell-Lucas numbers form a unifying thread intertwining analysis, geome-
try, trigonometry, number theory, graph theory, linear algebra, combinatorics and physics [2, 16]. For
example, as shown in [25], number theoretical transforms have contributed to reducing the number of
multiplications for discrete Fourier transforms computations. Number theoretical transforms related to
the famous numbers, which are often used to deal with problems of digital filtering and convolution of
discrete signals in [21].

Motivated by the universal existence and extremely importance of Pell and Pell-Lucas numbers and
skew circulant matrices, we present, therefore, some results on them. More specifically, we study the
determinants, inverses, multiple norms, lower and upper bounds for the spread of such matrices, which
are going to have potential to be useful for realistic applications. More work continuing the present paper
is forthcoming.

Now we introduce the main objects we study in the paper. Pell numbers P, and Pell-Lucas numbers
Qn are often defined recursively [16]:

PT].+1 = ZPTL + Pnfl, Where Pl = 1, Pz = 2,
QTI+1 - an + anl, Where Ql = 1/ QZ =3.

Accordingly, the product IP;, of Pell and Pell-Lucas numbers satisfies the following recurrence relations:

1Pn+1 = 61[)11 —IPnfl, where ]Pl = 1, IPZ = 6. (11)
The Binet formula of the sequence {IP,, } is given by
ol — Bn
P,=—,
n B

where o and f are the roots of the characteristic equation x> —6x +1 = 0. The first few values of the
sequences are given in the following table:

n|[1 2 3 4 5 6 7
Pn,|1 6 35 204 1189 6930 40391

We define a skew circulant matrix involving the product of Pell and Pell-Lucas numbers as follows:

lPl ]P2 oo ]Pn
. _]Pn . ' .
SCirc(IPy,IPy, ..., IPy) =
. - P,
—P, —P, P

nxn

We also define a skew left circulant matrix involving the product of Pell and Pell-Lucas numbers as
follows:

]Pl N :[].—)nfl ]PTL
SLCirc(Py, Py, ..., Py) = _I-Pl
]Pn—l -
]Pn —1131 _IPnfl

nxn
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2. Preliminaries

In this section, we list some lemmas which will be used in the latter proofs of main theorems.

Lemma 2.1. Let {IP,,} be the product of Pell and Pell-Lucas numbers. Then

i][)i _ (IPnJrl _IPn _1),
4
i=1

iﬂl’i _ Prii— iH 1)1Pn/
=1

1
i]ﬂ:ﬂﬁ“—nﬁ—zn—l
T 32 /

n

. P n+2_]P n+1
Y Pt =18 nd1d a2 310v2).
im1

a2—6a+1

Proof. From (1.1), we obtain that

n
Y Py =P +Py+ -+ Py

i=1

n
=Py + (6P; —Pg) + -+ (6Pn_1 —Pp_2) =5 Py —5Py +Pn_; + P — P,

i=1

n
Zi]Pi:]Pl—i-Z]Pz—l—--~—|—n]Pn

i=1
:]Pl +2(6IP1 — ]P()) + -+ Tl(6]Pn_1 — ]Pnfz)
n
=Y Bi+4Pi+ n+1)Py 1 — (5n+4)Py +P; — 2P
i=1
n n
=5 iPi+4) Pi+n+1)Py 1—(5n+4)Py + Py —2P.
i=1 i=1
Therefore,
= 1 e 1
Z Py = 4 (Pryy —Pn—1), Z iP; = 1[nIPnH — (n+1DP,].
i=1 i=1
]Pi—l ]Pi . .
Let X; = . By Lemma 1 in [34], for i > 1, we get
Py Piyq
Xi| = Pi_1Piyq — P = —1.
In view of
Pi1 =6P; —P;_4,
we obtain

Pii1+P;i g

P; = ,
' 6

2.1)

(2.2)

(2.3)

(2.4)
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SO,
lez i i+1 +1P171)2 _ i IP%+1 +2 i 11132 1 +23 L PigPiy
= 6 36
_ S P4+ P 42 PE-2n
36
_4Y (L, Pi4+PY, —PL PR PG —
36
Hence,
n 2
Z]Pg _ n+l — P, —2n _1‘
. * 32
i=1
Let
n
Sn :ZIPial =Pia+Pya®+---+Pra™ (2.5)
i=1

From (2.5) and the above recurrence relations, we get
(a®—6a+1)Sy =Pna™"? —Pu1a™! +Paq,

thus,

(a #3+£2V2).

Lemma 2.2. Let the matrix H = [h U]” %, be of the form

P1+Pny, 1=,
hi)' =< Py, i=j+1,
0, otherwise.

Then H 1 = [h] Fikes 2 is given by

i . .

= T P2
1 . .
) 0, 1<j.

n—2
Proof. Let eij = 3 hixhy;. Apparently, eij = 0 for i < j. For i = j, we obtain
k=1

1
eii =hiih{; = (P1 +Pn4q)- m =1

Fori>j+1, we get

n-2 i—j—1 i—j
P, - PL) (Py + Py, 1) - P

=Y hohl =his 1M d+hihlie o ntll ",
e = 2 oy =Rty il = 15 S S R P

Hence, we get HH ! = I,,_p, where I,_5 is (n—2) x (n—2) identity matrix. Similarly, we can verify
H1H = I,_,. Thus, the proof is completed. O
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Lemma 2.3 ([14]). Let A=SLCirc(ay, a, ..., an) be a skew left circulant matrix and n be odd. Then,

n
Y apwlihie
k=1

A=+

7

n
C =120, 502), Ae =) |ak (1)
k=1

where \j(j =1,2,..., “T_l “TH) are the eigenvalues of A.
Lemma 2.4 ([6]). Let the orthogonal skew left circulant matrix A = SLCirc(1,0,0,...,0). Then

SCirc(ay, ay,...,an) = ASLCirc(ay, an, ..., an).

3. Main results

In this section, we obtain an explicit formula for the determinant of skew circulant matrix involving
the product of Pell and Pell-Lucas numbers. We prove that the matrix is invertible for every positive
interger n. Then we compute its inverse, maximum column sum matrix norm, maximum row sum matrix
norm, spectral norm, Euclidean (or Frobenius) norm as well as lower and upper bounds for spread. Based
on the relationship between skew circulant and skew left circulant matrices, we generalize these results
to skew left circulant matrix involving the product of Pell and Pell-Lucas numbers.

3.1. Determinant and inverse of skew circulant matrix involving the product of Pell and Pell-Lucas numbers

Suppose that A, = SCirc(IPy,...,IPy,) is a skew circulant matrix. On the one hand, we obtain an
explicit formula for the determinant of A,,. On the other hand, we prove that A,, is invertible for every
positive integer n, and then we compute the inverse of A,.

Theorem 3.1. Let A, = SCirc(IPy,...,IP) be a skew circulant matrix for a positive integer n. Then

_ IPR + (1 +I[)n+1)n
2—Pn "‘]Pn+1 '

det A, (3.1)

where P, is the n'™ product of Pell and Pell-Lucas numbers.

Proof. For n < 3, it is easy to check that detA; =1, det A, = 37, and det A3 = 43290. Therefore, (3.1) is
satisfied. Now we consider the case n > 3, let

1 0 0
6 R |
—1 =6
=10 1
0
0
0 1 —6 1 0 0
nxn
and
1 0 0 0
Py -2 ot
0 (]1’1+11°n+1)n : ’ 1
: 0
Ql: P 2
(]Plﬂf;nﬂ)
Py 1
P1+Pr i1
0 0 0

nxn
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Multiplying A,, by L from the left and Q; from the right, we obtain

P, 1, P, Py oo oo e P,
0 1, Pn s Ppg - - P,
0 P+ Py 0 0
TALQ = ¢ — P, : ,
0
: : : . - . 0
0 0 0 0 —Pn P1+Pn1 /.,
where
n—1 P n—2 P
- P . -n yn—k-1 l. =P P Po(— " k-1
L k; erlpp )" n=P1+6 n+kz_1 e P )

By (2.4), we can further simplify the above results as follows:

Pr(Pq+Ppyg)" 24 (1P q)PR ! Ph + (P +Prgq)™

U = , ln = . 3.2
n T2 P+ Pa) (P P2 T 2P+ Py )Pyt P O
We conclude that
_ Pr+(1+P)™
t(ZAR Q1) = Pyl (P + Ppyq) 2= =2 ntl’
de ( n 1) 1 n( 1+ n+1) 2—P, +]Pn+1
From the definition of * and Q;, we get
(n—1)(n—-2)
detX =detQ =(—1) 2
Therefore, we have
PR+ (1+Pnq)"
detA,, = -1 .
A R
O

Theorem 3.2. Let A, = SCirc(IPy,...,IPy) be a skew circulant matrix for every positive integer n. Then Ay, is
invertible.

Proof. Taking n=1 in Theorem 3.1, detA; = 1 # 0. For this reason, A; is invertible. In the case n > 1,
according to [13], we have the eigenvalues of A,,,

n

flwn) =) Pjlwn)~", (k=12...,n-1),
j=1

a"—pB

) 1= exp(%i). Since P,, = ?ﬁn, where a3 =1, x + 3 = —6, we have

where w = exp(=7*

n

i _ g .
flwkn) =) a“_g (wkn) L

j=1
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Since |w*n| =1, and |a| # 1, |B| # 1, we have w*n # « and w*n # B, and hence

flokn) = Y Skt = 2 5 2oty - £ 5 2Bty
-

j=
OC—[3+O£TL+1—[3TL+1 aﬁwkn(“n_ﬁn)

T (0= B)(1—aw*n)(1—pwkn)  (a— B)(1 — ocw*n)(1— pawkn)
_ 1+ Phy—Pra*n

 1—6wkn+ w?kn?’

(k=1,2,...,n—1).

Assume that there exists w'n(l =1,2,...,n — 1) such that f(w'n) = 0. We obtain 1 +P,,,; — Prw'n =0.
Hence, w'n = 1+]l]f7:“ is a real number. That is to say, the imaginary part of w'n is sin% = 0.
Therefore, w'n = +1, and 1+ P,, ;1 — Prw'n # 0 (n > 0). Consequently, we obtain f(w*n) # 0 for any
wkn (k=1,2,...,n—1). O]

Theorem 3.3. Let A, = SCirc(IPy,...,IPy) be a skew circulant matrix for a positive integer n > 1. Then

A;Ll - SCirC(UlrUZn . -/Un)/ (33)
where
P, 1—1)P*24+(1+P n-1
PR+ (1+Ppi1)
Yo =— ]Pgil + (6+1Pn+2)(1 +]Pn+1)n72 (3 5)
’ PR+ (14 P )" / '
(2 - an—l + ]Pn—o—l)lpbl_s(l + Pn—i—l)n_k
= , (k=3,4,...,n). 3.6
v PR+ (14 Py | " &0
Proof. Let
1 —p w3 Wy Wn
P, P, P
0 1 T T B
T L
0
0 0 1
nxn
where

1 /U .
W ~p, (ﬁ][)nJrlfj _]Pn+27j)r (G=34,..mn),

1/, and 1,, are given in (3.2). Multiplying ZA,,Q by Q, in Theorem 3.1 from the left, we have

P, 0 0
0 1n ’ :
0 Py+Pny
AN = | 1t p, : ,
0
- : R " 0
0 0 0 e 0 =Py Py +Pry

nxn
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where I and Q; are the same as Theorem 3.1. The matrix ZA, 010, admits a block partition of the form
A0, =D K,

where D = diag(2,1,,) is a diagonal matrix, J{ is as defined in Lemma 2.2, and D & { is the direct sum of
D and H. If we write Q = Q1Q,, then we obtain A;l =Q(D 1eH .
Since the last row elements of the matrix Q are (0, 1, —P{:z, —P{Ij L, —]%, —%), the last row elements

of the matrix Q(D 1@ H 1) are (0, -, T3, Ty, ..., Tn ), where

/l‘T‘\,/

n+l—k i—1
Prio xilPy

T: - 37
N ; tn(Py +Pr)t

(k=3,4,...,n).

Using (2.4), we have

1 = [PuraoidPn = Prgioc(Pr 4 Po)] (P4 Prt)™ 2 PR 4 Pra)
k I[;)LL+(IP1+IPn+1)TL IPR+(]I:)1+IP71+1)TL 7 7 y ey .

The last row of A;l = SCirc(y1,Y2,-..,Yn) is ( —Y2,—Y3,...,—Yn, Y1), which is given by the following
equations:

6
—_— = — — T
Y2 L. 3/
_U3 = T‘I’l./

—Yq = Tnfl - 6an
—Ys5 = Tan - 6Tn—1 + Tn/

Yk = Thx43 —6Tn_xpa + Tnxys,

—Yn = T3 —6T4 + 15,
1
Yy = r—6T3—|—T4.

n
Hence, we have
(P —DPR 24 (14Pp )™ !
o P+ (1+ Ppyy)"
_]Pg_l + (6 + ]Pn+2) (1 + ]I)n+1)n_2

7

Y2 = P2+ (14 Ppq)" '
L@ Pu P PR P )Y
Yk ]PR+(1+IPTL+1)TL ’ , A, 00, L)L

3.2. Norms and spread of skew circulant matrix involving the product of Pell and Pell-Lucas numbers
Theorem 3.4. Let A, = SCirc(IPy,...,IPy) be a skew circulant matrix. Then three kinds of norms of Ay, are given

by

1
41 (Pri —Pn—1), (37)

n(P?2 . —P2 —2n—1
”AHHF:\/ Prss =P ) (3.8)

[Anll = [[Anlleo =

32
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Proof. By Definition 4 in [17], (2.1), and (2.2), we have

n n 5 N
A y 1 n(P,, —P2 —2n—1)
|| n”l = ||An||oo = P; = Z(]Pn+1 —P,—1), || An ||F = \ln E ]P% = \/ n+1 32“ )
=1 i=1

O

Theorem 3.5. Let A;l = SCirc(IPy, =Py, ..., —IP,,_1,P) be an odd-order alternative skew circulant matrix. Then
= 1
[Anll =3 Pi = (Ppig—Pn—1).
i=1

Proof. By Lemma 1 in [9] , we get

n
AAL) =) (DI (whn) Y,
i=1
therefore,
n . ) n
NADIS ) DT (i) =) Py,
i=1 i=1
n
forj=0,1,...,n—1. Since nis odd, )} IP; is an eigenvalue of A;i, that is
i=1
P, -P, P; --- P, 1 1
P, . . . —1 N —1
1 1
P s Ps 1 =) Pi|
. i=1
. —IP,

P, Pny —Pn Py /) 1) 1

To sum up, we have
n
Jmax | A(AL)| = g P;. (3.9)

Since all skew circulant matrices are normal, by Lemma 7 in [17], (2.1), and (3.9), we have
= 1
HAnHZ = Z]Pi = E(Pn—i—l —Py—1),
i=1

which completes the proof. O

Theorem 3.6. Let A, = SCirc(IPy,...,IPy) be a skew circulant matrix. Then lower and upper bounds (denoted as
s(An)) for spread of Ay, are given as follows

11)2

2,,—P2 —2n—1)

16

n
nlP, 4+ (2—m)P,1—4n| < s(An) < \/ ( —2n. (3.10)

4n—1)
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Proof. Note that the trace of A,, is trA, = nlP; = n. Denote the sum of the off-diagonal elements of A,
as X(ATL)/

n n

XAn) =Y =k +1DP—Y (k—DPr=(n+2)Y Py—2) kPy.

k=2 k=2 k=2 k=2

By (2.1) and (2.3),

- Py +(2-—1)Pyy—4n

X(An) 4

Since Ay, is a normal and real matrix, by Definition 5 and Lemma 6 in [17], and (3.8), we get

n(P2 ,—P2 —2n—1
nlP, + (2—n)P, 1 —4n <S(An)<\/ (P 16“ )—211.

4n—1)
O

3.3. Determinant and inverse of skew left circulant matrix involving the product of Pell and Pell-Lucas numbers

In this subsection, let A}l = SLCirc(IPy,...,Py,) be a skew left circulant matrix. Using the obtained
conclusions in Section 2, we get a determinant explicit formula for the matrix A;]. And then, we prove
that A/ is an invertible matrix for any positive interger n. The inverse of the matrix A}, is also presented.

Theorem 3.7. Let A = SLCirc(IP,...,IPy) be a skew left circulant matrix for a positive integer n. Then

n(nzfl) ]P?L + (1 + ]Pn_H)n
2—Pn 1 +Prp

detA! =(—1) (3.11)

where P, is the n'™ product of Pell and Pell-Lucas numbers.

Theorem 3.8. Let A} = SLCirc(IPy,...,IPy) be a skew left circulant matrix for every positive interger n. Then
Al is invertible.

Theorem 3.9. Let Al = SLCirc(IPy,...,IPy) be a skew left circulant matrix for positive integer n > 1. Then
(A",)"t =SLCirc(y{,ys,...,y"), (3.12)

where

y// _ (]Pn—l - 1)11)2_2 + (1 + ]Pn—b—l)n_l
' P7 + (14 Ppya)"

y "n_ (2 - ]Pn,1 + IljnJrl)]I)IlLilik(l + ]Pn+1)k72
¢ PR+ (14 Pr)"
" _ 1[)271 + (6 + IPn+2)(1 + anJrl)niz
" PR+ (1+Pp )" '

, (3.13)

, (k=2,3,...,n—1), (3.14)

(3.15)

3.4. Norms and spread of skew left circulant matrix involving the product of Pell and Pell-Lucas numbers

Theorem 3.10. Let A, = SLCirc(IPy,...,IP) be a skew left circulant matrix. Then three kinds of norms of A
are given by

1
4 (Pri1—Pn —1), (3.16)

n(P2 ,—P2 —-2n—1
HAKHF:\/ Pris — P ) (3.17)

1AL = IAR ]l =

32
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Proof. Using the similar method as in Theorem 3.4, the conclusion is obtained. O

Theorem 3.11. Let A;/L' = SLCirc(IPy,—IPy, ..., —IPn_1,Py) be an odd-order alternative skew left circulant ma-
trix. Then

n
" 1
HAnHZ = E P; = E(Pnntl —Pn— 1)~
i=1

Proof. According to Lemma 2.3,

n

" s i1 _ . n—1 "
ANAD) =% ()Pl D 5= (1,2, ) Anp(Ay) = > P (3.18)
i=1 i=1
So
= , : = n—1
NADIS D IEDTP(DT =) P (=120, 75, (319)
i=1 i=1
By (3.18) and (3.19), we have
n
o X MAL)| = ;1&. (3.20)

Since all skew left circulant matrices are symmetrical, by Lemma 7 in [17], (2.1), and (3.20), we obtain

" 1
||An||2 = E(H)nﬂ —Pn — 1)-
O

Theorem 3.12. Let A]] = SLCirc(IPy,...,Py) be a skew left circulant matrix. Then the bounds for the spread of
Al are,

n(]P%LH—lP%—Zn—l) (Pry1+Pr—1)? : :
2P, < S(A”) < \/ 16 o 32n ’ lfTL is odd,
nes n/s= n(P2,,—P2—2n—1) o
T , if 1 is even.

Proof. Since A} is a symmetric matrix, by Definition 5 and Lemma 6 in [17],

2
2max {1 < s(AY) < | [2IALIE - ZrALP.

For skew left circulant matrix A/,
2max|A{'| = 2IP,.

According to Theorem 3.10,

o n(P?, , —P% —2n—1)
AL = o

n-1 n—1
If nis odd, consider A =} ;?;Py; 1 and B =} .2, Py, we have
n—1 n—1

2 2
tr(Af) =P1—P2+Ps—+Pn =) Poiy1—) Pu=A-B.
i=0 i=1

According to
P.,1 =6P,—P, 1, where P; =1,P, =6,
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we have

A—B=5B—A+DP; +P,,
B=6A—6P; —6P, —B+P,+P,_1.

For this reason, we have
tr(A)=A—B= é(l[’nﬂ +P,—1).
If n is even, then
tr(A)) =Py —Py+P3—P3+---—P,, 1 =0.

So the result is as follows:

P2, —P2 —2n—1 —12 L.
. \/“( ntl o n-1) (]Pn+1-211’n 1) . ifnis odd,
2P, <s(Al) < 6 32mn
nes nss n(P2,,—P2—2n—1) e
T3 , if n is even.

4. Algorithms and numerical computations

In this section, we give two algorithms for computing inverses of skew circulant and skew left circulant
matrices involving the product of Pell and Pell-Lucas numbers. Meanwhile, we list several examples to
calculate their determinants, inverses, three kinds of norms and lower and upper bounds for spread.

Firstly, based on Theorem 3.3, the inverse of skew circulant matrix involving the product of Pell and
Pell-Lucas numbers A,, = SCirc(IPy,...,IPy) is calculated by the following algorithm.

Algorithm 4.1.

Step 1: Input n and generate the product of Pell and Pell-Lucas numbers by (1.1).
Step 2: Computey; (i=1,2,...,n) via (3.4)-(3.6).

Step 2: Output A;l = SCirc(y1,Y2,...,Yn) by (3.3).

Example 4.2. Consider a 4 x 4 skew circulant matrix involving the product of Pell and Pell-Lucas numbers:

1 6 35 204
—204 1 6 35
=35 204 1 6
-6 =35 =204 1

Ay =

From (3.1), we get det Ay = 1736220676. In particular, by (3.7) and (3.8), the three kinds of norms of A4
are given by
IA4]]1 = ||A4llco = 246, ||A4llr =2V42878.

By (3.10), the bounds for the spread of A4 are

2
—% < s(Ayg) < 2V85754.

As for A4_1, according to Algorithm 4.1, we have

4911 125058 35 3
Y= 51065314" Y27 255326577 Y2 T 510653147 P* T 25532657
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From (3.4), we obtain

- 42911 125058 35 3 -
51065314 25532657 51065314 25532657
3 42911 125058 35
. 25532657 51065314 25532657 51065314
Ay =
35 3 42911 125058
51065314 25532657 51065314 25532657
125058 35 3 42911
L 25532657 51065314 25532657 51065314 -

Secondly, based on Theorem 3.9, the inverse of skew left circulant matrix involving the product of Pell
and Pell-Lucas numbers A, = SLCirc(IPy,...,Py) is calculated by the following algorithm.

Algorithm 4.3.

Step 1: Input n and generate the product of Pell and Pell-Lucas numbers by (1.1).

Step 2: Compute y{’ (i=1,2,...,n) via (3.13)-(3.15).

Step 2: Output A//~! = SLCirc(yq, vy, ..., yy) by (3.12).

Example 4.4. Consider a 4 x 4 skew left circulant matrix involving the product of Pell and Pell-Lucas

numbers A}

1 6 35 204
6 35 204 -1
35 204 -1 -6

204 -1 —6 =35

" __
Ay =

From (3.11), we get det A} = 1736220676. In particular, by (3.16) and (3.17), the three kinds of norms of

A/ are given by
IAY ]l = |AY |0 =246, |AY||F = 2V/42878.

By Theorem 3.12, the bounds for the spread of A}’ are
408 < s(A}) < 4V/21439.

According to Algorithm 4.3, we have

. 42911 ; 3 ; 35 , 125058

YT = 51065314" Y2 = " 25532657" Y% T 51065314° Y% T 25532657
From (3.12), we obtain
- 42911 o 3 o 35 125058 9
51065314 25532657 51065314 25532657
o 3 o 35 125058 42911
-1 25532657 51065314 25532657 102130628
Al =
o 35 125058 42911 3
51065314 25532657 102130628 25532657
125058 42911 3 35
L 25532657 102130628 25532657 51065314 -

5. Conclusions

In this paper, we discuss the invertibility of the skew circulant and skew left circulant matrices involv-

ing the product of Pell and Pell-Lucas numbers and compute determinant and inverse by constructing the
transformation matrices. The four kinds of norms, lower and upper bounds for spread of these matrices
are given, respectively. Besides, we design two algorithms (Algorithms 4.1 and 4.3) and two examples to
verify our algorithm’s effectiveness.
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