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Abstract
Using Hyers’ direct method, we introduced and proved generalized Ulam-Hyers stability of n-dimensional mixed-type

quadratic and cubic functional equation of the form

n∑
i=1

f

 n∑
j=1

xij

 =

(
n− 6

2

)( n∑
i=1

f(xi) +

n∑
i=1

f(−xi)

)
+
(n

2

) ∑
16i<j6n

f(xi + xj)

+

(
n− 8

2

) ∑
16i<j6n

f
(
−xi − xj

)
+

(
−n2 + 4n

8

) n∑
i=1

f(2xi) +
(
−n2 + 8n− 8

8

) n∑
i=1

f(−2xi),

where

xij =

{
−xj, if i = j,
xj, if i 6= j,

in Banach space.
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1. Introduction

A classic question in functional equation theory is ”Is a function that approximately satisfies the
functional equation ε necessarily close to the exact solution ε? If the problem accepts a solution, one
can say the equation ε is stable. The concept of stability of a functional equation arises when we replace
the functional equation with an inequality which acts as a perturbation of the equation. The question
of stability is as follows: how does the solution of the inequality differ from the solution of the given
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the functional equation? In the fall of 1940, Ulam [50] gave a major talk at the University of Wisconsin
Mathematics Symposium in which he discussed many important open problems. These include the
following questions about homomorphic stability.

Let (G1, ∗) be a group and let (G2, �,d) be a metric group with the metric d(., .). Given ε > 0, does
there exists δ(ε) > 0 such that if h : G1 → G2 satisfies the inequality

d (h(x ∗ y),h(x) � h(y)) < δ, ∀ x,y ∈ G1,

then there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1.
If the answer is yes, the homomorphic functional equation is said to be stable. The following year,

Hyers [13] answered this question for additive groups in the affirmative, assuming the group is a Banach
space. He did a great job answering Ulam’s question about the circumstances under which G1 and G2 are
assumed to be Banach spaces. Hyers’ results are expressed as follows.

Theorem 1.1. Let f : E1 → E2 be a function between Banach spaces such that

‖f(x+ y) − f(x) − f(y)‖ 6 ε (1.1)

for all x,y ∈ E1 and ε > 0 is a constant. Then the limit

A(x) = lim
n→∞ 2−nf(2nx) (1.2)

exists for each x ∈ E1 and A : E1 → E2 is unique additive mapping satisfying

‖f(x) −A(x)‖ 6 ε

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then the function A is linear.

Given this well-known result, the additive equation of the Cauchy function f(x+ y) = f(x) + f(y) is
said to be Hyers-Ulam stable on (E1,E2) if a certain every function f : E1 → E2 of a particular ε > 0 and
of all the inequalities (1.1) of x,y ∈ E1 has an additive function A : E1 → E2 makes f−A bounded by
E1. The method in (1.2) provided by Hyers which produces the additive function A will be called the
direct method. This method is the most important and powerful tool for studying the stability of various
functional equations. Stability results for Hyers functions similar to unlimited Cauchy differences can be
displayed. Aoki (1950) [4] first generalized Hyers’ theorem for unlimited Cauchy differences with sums of
norms ‖x‖p + ‖y‖p. Rassias found the results [35] in 1978 and proved a generalization of Hyers’ theorem
for additive maps. This stability result is called Hyers-Ulam-Rassias stability or Hyers-Ulam-Aoki-Rassias
stability of the functional equation.

In 1982, Rassias [36] developed an innovative approach following Rassias’ theorem [35], where he
substitutes the factor ‖x‖p + ‖y‖p by ‖x‖p ‖y‖q with p + q 6= 1. Later this stability result was called
Ulam-Gavruta-Rassias stability of functional equation. This stability result was later called stability of
the equation of the Ulam-Gavruta-Rassias function. At the 27th International symposium on functional
equations in 1990, Rassias raised the question whether such theorem in [38] can also prove that the value
of p is greater than or equal to 1 . In 1991, Gajda [11] provided an affirmative solution to Rassias’
question for p strictly greater than one. In 1994, Rassias’ Theorem [35] was further generalized by P.
Găvruţa [12], substituted the bound ε (‖x‖p + ‖y‖p) via the general control function φ(x,y). This stability
result is called the generalized Hyers-Ulam-Rassias stability of the functional equation. In the sprit of
Rassias approach, Ravi et al. [46] considered the sum of the sum and the product of two p-norms, called
the Rassias Stability. The problem of the stability of various functional and differential equations has
been studied in detail by many authors, and there are many interesting results on this problem (see
[1, 2, 8, 9, 21–25, 29–31, 33, 34, 37, 46, 49, 51]) and references therein quoted.

The functional equation
f (x+ y) + f (x− y) = 2f (x) + 2f (y) (1.3)
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is said to be quadratic functional equation because the quadratic function f(x) = ax2 is a solution of the
functional equation (1.3).

Rassias [41] introduced a cubic functional equation

c(x+ 2y) + 3c(x) = 3c(x+ y) + c(x− y) + 6c(y)

and investigated its Ulam stability problem. Also Jun and Kim [16] discussed the generalized Hyers-
Ulam-Rassias stability of a cubic functional equation of the form

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (1.4)

More recently, Karthikeyan et al., introduced and established the general Ulam-Hyers stability of
mixed-type functional equations in various spaces [5, 26, 27] and cited references therein.

In this paper, the authors established generalized Ulam-Hyers stability of n-dimensional mixed type
quadratic and cubic functional equation of the form

n∑
i=1

f

 n∑
j=1

xij

 =

(
n− 6

2

)( n∑
i=1

f(xi) +

n∑
i=1

f(−xi)

)
+
(n

2

) ∑
16i<j6n

f(xi + xj)

+

(
n− 8

2

) ∑
16i<j6n

f
(
−xi − xj

)
+

(
−n2 + 4n

8

) n∑
i=1

f(2xi)

+

(
−n2 + 8n− 8

8

) n∑
i=1

f(−2xi),

(1.5)

where

xij =

{
−xj, if i = j,
xj, if i 6= j,

in Banach space using Hyers’ direct method.
In Section 2, the authors discussed the general solution of the functional equation (1.5). The general-

ized Ulam-Hyers stability of the functional equation (1.5) is presented in Section 3.

2. General solution of the functional equation (1.5)

In this section, the authors investigate the general solution of the mixed type functional equation (1.5).
Through out this section let us consider X and Y be real vector spaces.

Theorem 2.1. Let f : X→ Y be an odd function, it satisfies the functional equation (1.5) for all x1, x2, . . . , xn ∈ X
if and only if f : X→ Y satisfies the functional equation (1.4) for all x,y ∈ X.

Proof. Since f is an odd function, one can deduce from (1.5) that

n∑
i=1

f

 n∑
j=1

xij

 = (n− 6)f

(
n∑
i=1

xi

)
+ 4

∑
16i<j6n

f(xi + xj) −
(n− 2)

2

n∑
i=1

f(2xi)

for all x1, x2, . . . , xn ∈ X. The rest of the proof for this theorem can be derived from Theorem 2.1 in [7].

Theorem 2.2. Let f : X→ Y be an even function, it satisfies the functional equation (1.5) for all x1, x2, . . . , xn ∈ X
if and only if f : X→ Y satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x,y ∈ X.
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Proof. Since f is an even function, one can deduce from (1.5) that

n∑
i=1

f

 n∑
j=1

xij

 = (−n2 + 6n− 4)
n∑
i=1

f(xi) + (n− 4)
∑

16i<j6n

f
(
xi + xj

)
for all x1, x2, . . . , xn ∈ X. The rest of the proof for this theorem can be derived from Theorem 2.1 in [6].

3. Stability results: Hyers’ direct method

In this section, we presented the generalized Ulam-Hyers stability of the functional equation (1.5)
using Hyers’ direct method.

Through out this section, let X be a normed space and Y be a Banach space. Define a mapping
Df : X→ Y by

D f(x1, x2, . . . , xn) =
n∑
i=1

f

 n∑
j=1

xij

−

(
n− 6

2

)( n∑
i=1

f(xi) +

n∑
i=1

f(−xi)

)

−
(n

2

) ∑
16i<j6n

f(xi + xj) −

(
n− 8

2

) ∑
16i<j6n

f
(
−xi − xj

)
−

(
−n2 + 4n

8

) n∑
i=1

f(2xi) −
(
−n2 + 8n− 8

8

) n∑
i=1

f(−2xi)

for all x1, x2, . . . , xn ∈ X. Hereafter throughout this paper let us take Λ = n− 2.

3.1. Stability results: even case
In this subsection, the authors discuss the Ulam-Hyers stability results of a quadratic functional equa-

tion (1.5) using Hyers’ direct method in Banach spaces.

Theorem 3.1. Let j ∈ {−1, 1}. Let ϑ : Xn → [0,∞) be a function such that
∞∑
k=0

ϑ(Λkjx1,Λkjx2,...,Λkjxn)
Λ2kj converges

to R and

lim
k→∞

ϑ
(
Λkjx1,Λkjx2, . . . ,Λkjxn

)
Λ2kj <∞ (3.1)

for all x1, x2, x3, . . . , xn ∈ X and let fq : X→ Y be an even function that satisfies the inequality

‖D fq(x1, x2, . . . , xn)‖ 6 ϑ (x1, x2, . . . , xn) (3.2)

for all x1, x2, x3, . . . , xn ∈ X. Then there exists a unique quadratic function Q : X→ Y such that

‖fq(x) −Q(x)‖ 6
∞∑

i= 1−j
2

β(Λijx)

Λ2ij , (3.3)

where
β(Λijx) =

1
nΛ2ϑ(Λ

ijx,Λijx, . . . ,Λijx)

for all x ∈ X. The mapping Q(x) is defined by

Q(x) = lim
k→∞

fq(Λ
kjx)

Λ2kj (3.4)

for all x ∈ X.
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Proof. Assume j = 1. Since f is an even function, replacing (x1, x2, . . . , xn) by (x, x, . . . , x) and dividing by
Λ2, we get ∥∥∥∥fq(Λx)Λ2 − fq(x)

∥∥∥∥ 6
1
nΛ2ϑ(x, x, . . . , x) (3.5)

for all x ∈ X. Letting β(x) = 1
nΛ2ϑ(x, x, . . . , x) in (3.5), we arrive at∥∥∥∥fq(Λx)Λ2 − fq(x)

∥∥∥∥ 6 β(x) (3.6)

for all x ∈ X. Replacing x by Λx in (3.6) and dividing by Λ2, we get∥∥∥∥fq(Λ2x)

Λ4 −
fq(Λx)

Λ2

∥∥∥∥ 6
β(Λx)

Λ2 (3.7)

for all x ∈ X. Combining (3.6) and (3.7), we obtain∥∥∥∥fq(Λ2x)

Λ4 − fq(x)

∥∥∥∥ 6

[
β (x) +

β (Λx)

Λ2

]
for all x ∈ X . Using induction on a positive integer k, we obtain that∥∥∥∥fq(Λkx)Λ2k − fq(x)

∥∥∥∥ 6
k−1∑
i=0

β
(
Λix

)
Λ2i 6

∞∑
i=0

β
(
Λix

)
Λ2i (3.8)

for all x ∈ X. In order to prove the convergence of the sequence
{
fq(Λ

kx)

Λ2k

}
, replacing x by Λmx and

dividing by Λ2m in (3.8), for any m,k > 0, we arrive at∥∥∥∥fq(ΛkΛmx)Λ2k+2m −
fq(Λ

mx)

Λ2m

∥∥∥∥ =

∥∥∥∥fq(ΛkΛmx)Λ2k − fq(Λ
mx)

∥∥∥∥ 6
k−1∑
i=0

β
(
ΛiΛmx

)
Λ2i+2m 6

∞∑
i=0

β
(
Λ2+mx

)
Λ2i+2m (3.9)

for all x ∈ X. Since the right hand side of the inequality (3.9) tends to 0 as m → ∞, the sequence{
fq(Λ

kx)

Λ2k

}
is a Cauchy sequence. Since Y is complete, there exists a mapping Q : X→ Y such that

Q(x) = lim
k→∞

fq(Λ
kx)

Λ2k , ∀ x ∈ X.

Letting k → ∞ in (3.8), we see that (3.3) holds for all x ∈ X. Now we need to prove Q satisfies (1.5),
replacing (x1, x2, . . . , xn) by (Λkx1,Λkx2, . . . ,Λkxn) and dividing by Λ2k in (3.2), we arrive at

1
Λ2k

∥∥Dfq (Λkx1,Λkx2, . . . ,Λkxn
)∥∥ 6

ϑ
(
Λkx1,Λkx2, . . . ,Λkxn

)
Λ2k

for all x1, x2, . . . , xn ∈ X. Hence we get∥∥DQ (Λkx1,Λkx2, . . . ,Λkxn
)∥∥ = 0.

Hence Q satisfies (1.5) for all x1, x2, . . . , xn ∈ X. In order to prove Q is unique, let Q ′(x) be another
quadratic mapping satisfying (3.3) and (1.5). Then∥∥Q(x) −Q ′(x)

∥∥ =
1
Λ2k

∥∥Q(Λkx) −Q ′(Λkx)
∥∥

6
1
Λ2k

{∥∥Q(Λkx) − fq(Λ
kx)
∥∥+ ∥∥fq(Λkx) −Q ′(Λkx)∥∥} 6 2

∞∑
i=0

β(Λk+ix)

Λ2(k+i) → 0 as n→∞
for all x ∈ X. Hence Q is unique.

For j = −1, we can prove the similar stability result. Hence completes the proof.
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The following corollary is an immediate consequence of Theorem 3.1 concerning the stability of (1.5).

Corollary 3.2. Let λ and s be nonnegative real numbers. If an even function f : X→ Y satisfies the inequality

‖Dfq(x1, x2, . . . , xn)‖ 6



λ,

λ
n∑
i=1

||xi||
s, s 6= 2,

λ

{
n∏
i=1

||xi||
s

}
, s 6= 2

n ,

λ

{
n∏
i=1

||xi||
s +

n∑
i=1

||xi||
ns

}
, s 6= 2

n ,

for all x1, x2, . . . , xn ∈ X, then there exists a unique quadratic function Q : X→ Y such that

‖fq(x) −Q(x)‖ 6



λ

n (Λ2 − 1)
,

λ||x||s

|Λ2 −Λs|
,

λ||x||ns

n|Λ2 −Λns|
,

λ(n+ 1)||x||ns

n|Λ2 −Λns|
,

for all x ∈ X.

3.2. Stability results: odd case

In this subsection, the authors discuss the Ulam-Hyers stability results of a cubic functional equation
(1.5) using Hyers’ direct method in Banach spaces.

Theorem 3.3. Let j ∈ {−1, 1}. Let ϑ : Xn → [0,∞) be a function such that
∞∑
k=0

ϑ(nkjx,nkjx2,...,nkjxn)
nnj

converges to

R and

lim
k→∞

ϑ
(
nkjx,nkjx2, . . . ,nkjxn

)
nkj

= 0 (3.10)

for all x1, x2, x3, . . . , xn ∈ X and let fc : X→ Y be an odd function that satisfies the inequality

‖D fc(x1, x2, x3, . . . , xn)‖ 6 ϑ (x1, x2, . . . , xn)

for all x1, x2, x3, . . . , xn ∈ X. Then there exists a unique cubic function C : X→ Y such that

‖fc(x) −C(x)‖ 6
∞∑

i= 1−j
2

ϕ(nijx)

n3ij (3.11)

for all x ∈ X. The mapping C(x) is defined by

C(x) = lim
k→∞ fc(k

ijx)

k3ij (3.12)

for all x ∈ X.
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Proof. Assume j = 1. Since f is an odd function, replacing (x1, x2, . . . , xn) by (x, x, . . . , x) and dividing by
(n− 6)n3, we get ∥∥∥∥fc(nx)n3 − fc(x)

∥∥∥∥ 6
1

(n− 6)n3ϑ(x, x, . . . , x). (3.13)

Letting ϕ(x) = 1
(n−6)n3ϑ(x, x, . . . , x) in (3.13) we get∥∥∥∥fc(nx)n3 − fc(x)

∥∥∥∥ 6 ϕ(x) (3.14)

for all x ∈ X. Setting x by nx in (3.14) and dividing by n3, we get∥∥∥∥fc(n2x)

n6 −
fc(nx)

n3

∥∥∥∥ 6
ϕ (nx)

n3 (3.15)

for all x ∈ X. Combining (3.14) and (3.15), we obtain∥∥∥∥fc(n2x)

n6 − fc(x)

∥∥∥∥ 6

[
ϕ (x) +

ϕ (nx)

n3

]
(3.16)

for all x ∈ X . Using induction on a positive integer k, we obtain that∥∥∥∥fc(nkx)n3k − fc(x)

∥∥∥∥ 6
k−1∑
i=0

ϕ
(
nix
)

n3i 6
∞∑
i=0

ϕ
(
nix
)

n3i (3.17)

for all x ∈ X. In order to prove the convergence of the sequence
{
fc(n

kx)

n3k

}
, replacing x by nmx and

dividing by n3m in (3.16), for any m,k > 0, we arrive at∥∥∥∥fc(nknmv)n3(k+m)
−
fc(n

mx)

n3m

∥∥∥∥ =
1
n3m

∥∥∥∥fc(nknmx)n3m − fc(n
mx)

∥∥∥∥ 6
k−1∑
i=0

ϕ
(
ninmx

)
n3(i+m)

6
∞∑
i=0

ϕ
(
ni+mx

)
n3(i+m)

(3.18)

for all x ∈ X. Since the right hand side of the inequality (3.18) tends to 0 as m → ∞, the sequence{
fc(n

kx)

n3k

}
is a Cauchy sequence. Since Y is complete, there exists a mapping C : X→ Y such that

C(x) = lim
k→∞ fc(n

kx)

n3k , ∀ x ∈ X.

Letting k → ∞ in (3.17), we see that (3.11) holds for all x ∈ X. In order to prove C satisfies (1.5) and it is
unique the proof is similar to that of Theorem 3.1.

The following corollary is an immediate consequence of Theorem 3.3 concerning the stability of (1.5).

Corollary 3.4. Let n and s be nonnegative real numbers. If an odd function f : X→ Y satisfies the inequality

‖Dfc(x1, x2, . . . , xn)‖ 6



λ,

λ
n∑
i=1

||xi||
s, s 6= 3,

λ
n∏
i=1

||xi||
s, s 6= 3

n ,

λ

{
n∏
i=1

||xi||
s +

n∑
i=1

||xi||
ns

}
, s 6= 3

n ,
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for all x1, x2, . . . , xn in X, then there exists a unique cubic function C : X→ Y such that

‖fc(x) −C(x)‖ 6



λ

(n− 6)|n3 − 1|
,

nλ||x||s

(n− 6)|n3 −ns|
,

λ||x||ns

(n− 6)|n3 −nns|
,

(n+ 1)λ||x||ns

(n− 6)|n3 −nns|
,

for all x ∈ X.

3.3. Stability results: mixed case

This subsection deals with the Ulam-Hyers stability results of quadratic-cubic mixed type functional
equation (1.5) using Hyers’ direct method in Banach spaces.

Theorem 3.5. Let j ∈ {−1, 1} and ϑ : Xn→ [0,∞) be a function that satisfies (3.1) and (3.10) for all x1, x2, . . . , xn ∈
X. Let f : X→ Y be a function satisfies the inequality

‖D f(x1, x2, . . . , xn)‖ 6 ϑ (x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ X. Then there exists a unique quadratic function Q : X → Y and a unique cubic function
C : X→ Y such that

‖f(x) −C(x) −Q(x)‖ 6 1
2

{ ∞∑
i=0

(
β(Λijx)

Λ2ij +
β(−Λijx)

Λ2ij

)
+

∞∑
i=0

(
ϕ(nijx)

n3ij +
ϕ(−nijx)

n3ij

)}

for all x ∈ X. The mappings C(x) and Q(x) are respectively defined in (3.12) and (3.4) for all x ∈ X.

Proof. Let fq(x) = 1
2 {f (x) + f (−x)} for all x ∈ X. Then fq (0) = 0, fq (x) = fq (−x). Hence

‖Dfq (x1, x2, . . . , xn)‖ =
1
2
{‖Df (x1, x2, . . . , xn) +Df (−x1,−x2, . . . ,−xn)‖}

6
1
2
{‖Df (x1, x2, . . . , xn)‖+ ‖Df (−x1,−x2, . . . ,−xn)‖}

6
1
2
{ϑ (x1, x2, . . . , xn) + ϑ (−x1,−x2, . . . ,−xn)}

for all x ∈ X. Hence from Theorem 3.1, there exits a unique quadratic function Q : X→ Y such that

‖fq(x) −Q(x)‖ 6 1
2

{ ∞∑
i=0

(
β(Λijx)

Λ2ij +
β(−Λijx)

Λ2ij

)}
(3.19)

for all x ∈ X. Again fc(x) = 1
2 {f (x) − f (−x)} for all x ∈ X. Then fc (0) = 0, fc (x) = −fc (−x). Hence

‖Dfc (x1, x2, . . . , xn)‖ =
1
2
{‖Df (x1, x2, . . . , xn) +Df (−x1,−x2, . . . ,−xn)‖}

6
1
2
{‖Df (x1, x2, . . . , xn)‖+ ‖Df (−x1,−x2, . . . ,−xn)‖}

6
1
2
{ϑ (x1, x2, . . . , xn) + ϑ (−x1,−x2, . . . ,−xn)}
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for all x ∈ X. Hence from Theorem 3.3, there exits a unique cubic function C : X→ Y such that

‖fc(x) −C(x)‖ 6
1
2

{ ∞∑
i=0

(
ϕ(nijx)

n3ij +
ϕ(−nijx)

n3ij

)}
(3.20)

for all x ∈ X. Since f (x) = fq (x) + fc (x), then it follows from (3.19) and (3.20) that

‖f(x) −C(x) −Q(x)‖ = ‖fq(x) + fc(x) −C(x) −Q(x)‖
6 ‖fq(x) −Q(x)‖+ ‖fc(x) −C(x)‖

6
1
2

{ ∞∑
i=0

(
β(Λijx)

Λ2ij +
β(−Λijx)

Λ2ij

)
+

∞∑
i=0

(
ϕ(nijx)

n3ij +
ϕ(−nijx)

n3ij

)}

for all x ∈ X. Hence it completes the proof.

The following corollary is an immediate consequence of Theorem 3.5 concerning the stability of (1.5).

Corollary 3.6. Let λ and s be nonnegative real numbers. If a function f : X→ Y satisfies the inequality

‖Df(x1, x2, . . . , xn)‖ 6



λ,

λ
n∑
i=1

||xi||
s, s 6= 1 and s 6= 3,

λ
n∏
i=1

||xi||
s, s 6= 1

n and s 6= 3
n ,

λ

{
n∏
i=1

||xi||
s +

n∑
i=1

||xi||
ns

}
, s 6= 1

n and s 6= 3
n ,

for all x1, x2, . . . , xn in X, then there exists a unique quadratic function Q : X → Y and a unique cubic function
C : X→ Y such that

‖f(x) −C(x) −Q(x)‖ 6



λ

(
1

(n− 6)|n3 − 1|
+

1
n (Λ2 − 1)

)
,

λ

(
n

(n− 6)|n3 −ns|
+

1
|Λ2 −Λs|

)
||x||s,

λ

(
1

|(n− 6)|n3 −nns|
+

1
n|Λ2 −Λs|

)
||x||ns,

(n+ 1)λ
(

1
(n− 6)|n3 −nns|

+
1

n|Λ2 −Λns|

)
||x||ns,

for all x ∈ X.

4. Conclusion

This article has proved the Hyers-Ulam, Hyers-Ulam-Rassias, generalized Hyers-Ulam-Rassias, and
Rassias stability results of the quadratic functional equation, the cubic functional equation, and the
quadratic-cubic mixed type functional equation in Banach space.
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