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Abstract

In this paper, we introduce the notion of second and higher-order granular differentiability for fuzzy number-valued
functions. A weighted granular metric is defined for continuously granular differentiable mappings and proves that it is a
complete metric space. Fuzzy initial value problems are investigated for second and higher-order fuzzy differential equations
under granular differentiability. Sufficient conditions are established for the existence and uniqueness of solutions for the fuzzy
initial value problems. An algorithm is developed to determine the solution to the fuzzy initial value problem under granular
differentiability. Moreover, examples are presented to verify our theoretical results and algorithm.
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1. Introduction

Fuzzy set theory is one of the most effective tools used in handling vagueness and uncertainty in
the data using mathematical models for many real-life applications. While modeling dynamical systems
with a lack of sufficient information about their behavior, fuzzy differential equations (FDEs) provide a
powerful tool. When the parameters or the states of the differential equations are uncertain, they can
be modeled with FDEs. But, most practical situations demand that FDEs with initial conditions, which
are called fuzzy initial value problems (FIVPs). Zadeh introduced the fuzzy set theory in 1965 [24] .
In 1972, Chang and Zadeh [10], presented the idea of a derivative of a fuzzy function (FF). Different
versions of derivatives for FFs have been presented by many researchers. Dubois and Prade in 1982 [12]
presented a definition using the extension principle, Puri-Ralescu [20] presented the Hukuhara derivative
(H-derivative) in 1983, and Seikkala et al. [21] presented the Seikkala derivative in 1987. Applying these
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definitions to solve FDEs results that, a solution exists only for the non-decreasing length of support,
which limits these concepts unable to address many of the real-world problems.

The generalized Hukuhara difference (gH-difference) of two interval numbers is the generalization
of H-difference, the gH-derivative for interval-valued functions using gH-difference was introduced by
Stefanini and Bede [23] and also applied for solving interval differential equations. The concept of strongly
generalized differentiability was introduced by Bede and Gal [6, 7] for fuzzy number valued functions and
applied them to solve the FDEs. Bede and Stefanini [8], introduced and studied properties of generalized
Hukuhara derivative for fuzzy valued functions using gH-difference. With this new definition based on
gH-difference, we could address some of the problems associated with prior definitions of uncertainty
support closure length, such as their non-decreasing nature. However, this approach has some flaws. It
is necessary for monotonic uncertainty to have a monotonous support closure length for the solution.
Additionally, there is a wide array of solutions generated from this method. It is possible to have two
solutions for a first-order FDE: one for the first kind of differentiability and another for the second kind.
The doubling property is used to solve each first-order FDE. Even though, we cannot guarantee that the
gH-difference of two fuzzy numbers (FN) exists. The two approaches (i) gH-differentiability and (ii) SGH-
differentiability have suffered from unnatural behavior in modeling. Recently, the granular derivative (gr-
derivative) concept was introduced by Mazandarani et al. [16] using the horizontal membership function
(HMF) [19]. It was successfully applied to solve first-order FDEs and resolved all the above-mentioned
issues.

The initial value problem is permitted as a FIVP if the variables, parameters, and initial conditions are
fuzzy sets. Research into FIVPs is relatively scarce, yet it has many applications in the formation of civil
engineering, physics, control theory, economics, population models. Buckley and Feuring [9] presented
solutions of first-order FIVPs under various derivatives. Georgiou et al. [13] established the existence and
uniqueness of solutions of Cauchy problems for FDEs of second order and FIVPs of higher order in [14]
under H-differentiability. Further, Murty and Suresh Kumar [17] obtained the existence and uniqueness
criteria for fuzzy initial and boundary value problems. Furthermore, Allahviranloo et al. [3] studied the
existence and uniqueness of solutions of second-order FDEs under SGH-differentiability. Jmeel and Altaie
[15] presented finite difference method for numerical solution of fuzzy boundary value problems. Son
et al. [22] presented conditions for the existence and uniqueness of solutions of fuzzy delay differential
equations under granular differentiability.

The purpose of this work is to (i) investigate FIVPs associated with second and higher-order FDEs
under granular differentiability; (ii) establish existence and uniqueness criteria; (iii) develop an algorithm
to determine their solutions. The rest of this paper is as follows. Section 2, presents basic definitions
and results related to HMFs, granular metric, gr-differentiability, and gr-integration. The existence and
uniqueness theorems for second and higher-order non-linear FIVPs under gr-differentiability are estab-
lished in Section 3. Section 4 presents an algorithm to solve FIVPs under gr-differentiability and high-
lighted the proposed results and algorithm with suitable examples. Concluding remarks and future work
are discussed in Section 5.

2. Preliminaries

This section present some useful definitions, notations and results to establish the main results.

Definition 2.1 ([18]). A non-empty fuzzy subset of R, with membership function p : R→ [0, 1], is said to
be a fuzzy number, if it satisfies the following conditions.

(i) p(y0) = 1 for at least one y0 ∈ R.
(ii) p(βy+ (1 −β)z) > min{p(y),p(z)}, ∀β ∈ [0, 1], y, z ∈ R.

(iii) p is upper semi continuous on R.
(iv) cl{y ∈ R : p(y) > 0} is compact.



S. Nagalakshmi, et al., J. Math. Computer Sci., 31 (2023), 197–213 199

Here, p(y) is the membership degree of y, for every y ∈ R. Let RF denotes the space of FNs in R. The
β-level sets of p are defined by [p]β = {y ∈ R : p(y) > β} = [pβl ,pβr ], for 0 < β 6 1 and [p]0 = cl{y ∈ R :
p(y) > 0}.

Definition 2.2 ([16]). Suppose that q : [a,b] → [0, 1], where [a,b] ⊆ R be a fuzzy number. Then the HMF
qgr : [0, 1]× [0, 1] → [a,b], is a representation of q(y) as qgr(β,αq) = y in which ”gr” stands for granule
of information include in y ∈ [a,b], β ∈ [0, 1] is the membership degree of y in q(y), where αq ∈ [0, 1] is
said to be RDM variable, and qgr(β,αq) = q

β
l + (qβr − qβl )αq.

Proposition 2.1 ([16]). The HMF of q(y) ∈ RF is also denoted by H(q) , qgr(β,αq). Moreover, the β-level sets
of the VMF of q(y) can be obtained from

H−1(qgr(β,αq)) = [q]β =

[
inf

β6α61
min
αq

qgr(α,αq), sup
β6α61

max
αq

qgr(α,αq)

]
,

which is the span of the information granule.

Note 2.1 ([19]). The HMF of triangular and trapezoidal FNs, p = (p1,p2,p3) and q = (p1,p2,p3,p4) are as
H(p) = [p1 + (p2 − p1)β] + [(1 −β)(p3 − p1)]αp and H(q) = [p1 + (p2 − p1)β] + [(p4 − p1) + (p4 − p3 + p2 −
p1)β]αq, for all β,αp,αq ∈ [0, 1], respectively.

Definition 2.3 ([16]). Let p and q be two FNs. Then H(p) = H(q) for all αp = αq ∈ [0, 1] if and only if p
and q are said to be equal.

Definition 2.4 ([22]). For two fuzzy numbers p,q ∈ RF, whose HMFs are H(p) and H(q), we define
H(p� q) , H(p) ∗H(q), where �, ∗ used to present arithmetic operations in RF and R such as addition,
multiplication, subtraction or division, respectively. Moreover, 0 /∈ qgr(β,αq) if � denotes the division
operator.

Proposition 2.2 ([16]). Let r = p� q. Then [r]β = H−1(pgr(α,αp) ∗ qgr(α,αq)) always present β-level sets of
r.

Note 2.2. In the Definition 2.4 the addition and difference are called granular addition (gr-addition) and
granular difference (gr- difference), respectively, and are denoted by “⊕gr ”, “	gr ” and r = p	gr q ⇐⇒
p = r⊕gr q

Example 2.1. Let p = (1, 2, 3), q = (2, 3, 4, 5) be two FNs, then the HMFs of p and q are pgr(β,αp) = 1 +
β+ 2(1 − β)αp, and qgr(β,αq) = 2 + β+ (3 − 2β)αq, for β, αp, αq ∈ [0, 1], respectively. Let r = p	gr q,
then H(r) = H(p	gr q) = pgr(β,αp) − qgr(β,αq) = −1 + 2(1 − β)αp − (3 − 2β)αq = rgr(β,αr), where
αr = (αp,αq) and

H−1(rgr(β,αr)) = [r]β =

[
inf

β6α61
min
αr

rgr(α,αr), sup
β6α61

max
αr

rgr(α,αr)

]
,

[p	gr q]β =

[
inf

β6α61
min
αp,αq

rgr(α,αp,αq), sup
β6α61

max
αp,αq

rgr(α,αp,αq)

]

=

[
inf

β6α61
min
αp,αq

(−1 + 2(1 −β)αp − (3 − 2β)αq) , sup
β6α61

max
αp,αq

(−1 + 2(1 −β)αp − (3 − 2β)αq)

]
= [−4 + 2β, 1 − 2β].

Definition 2.5 ([16]). If g : [a,b] ⊆ R → RF include n ∈ N distinct FNs p1,p2, . . . ,pn, then the HMF of g
is indicated by H(g(x)) , ggr(x,β,αg), and interpreted as ggr : [a,b]× [0, 1]× [0, 1]× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸

n times

→

[c,d] ⊆ R, in which αg , (αp1 ,αp2 , . . . ,αpn), where αp1 ,αp2 , . . . ,αpn , are the RDM variables related to p1,
p2, . . ., pn, respectively.
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Definition 2.6 ([16]). Let p,q ∈ RF. The function Dgr : RF ×RF → R+ ∪ {0}, defined by

Dgr(p,q) = sup
β

max
αp,αq

|pgr(β,αp) − qgr(β,αq)|,

is the granular distance (gr-distance) between two FNs p and q.

Proposition 2.3 ([16]). (RF,Dgr) is a metric space. The metric Dgr is called granular metric on RF.

Theorem 2.1 ([16]). (RF,Dgr) is a complete metric space (CMS).

Lemma 2.1 ([16]). Suppose that p,q, r ∈ RF and µ ∈ R, then the below results hold:

(i) Dgr(p⊕gr r,q⊕gr r) = Dgr(p,q);
(ii) Dgr(µ� p,µ� q) = |µ|Dgr(p,q).

Lemma 2.2. Suppose that p,q, r, s ∈ RF, then

Dgr(p⊕gr q, r⊕gr s) 6 Dgr(p, r) +Dgr(q, s).

Proof. From Definition 2.6, we have

Dgr(p⊕gr q, r⊕gr s) = sup
β

max
αp,αq,αr,αs

|(pgr(β,αp) + qgr(β,αq)) − (rgr(β,αr) + sgr(β,αs))|

= sup
β

max
αp,αq,αr,αs

|(pgr(β,αp) − rgr(β,αr)) + (qgr(β,αq) − sgr(β,αs))|

6 sup
β

max
αp,αr

|pgr(β,αp) − rgr(β,αr)|+ sup
β

max
αq,αs

|(qgr(β,αq) − sgr(β,αs))|

= Dgr(p, r) +Dgr(q, s).

Definition 2.7 ([16]). Let g : [b, c] → RF be a FF. The function g(t) is said to be continuous at t = t0 if
g(t0) ∈ RF, which is subject to have following conditions.

(i) If t0 ∈ (b, c), for all ε1 > 0, there exits δ1 > 0 such that |t− t0| < δ1 =⇒ Dgr(g(t),g(t0)) < ε1, and
write it as lim

t→t0
g(t) = g(t0).

(ii) If t0 = b, for all ε1 > 0, there exits δ1 > 0 such that 0 < t− b < δ1 =⇒ Dgr(g(t),g(b)) < ε1, and
write it as lim

t→b+
g(t) = g(b).

(iii) If t0 = c, for all ε1 > 0, there exits δ1 > 0 such that 0 < c− t < δ1 =⇒ Dgr(g(t),g(c)) < ε1, and
write it as lim

t→c−
g(t) = g(c).

Definition 2.8 ([16]). Let g : [b, c]→ RF, where [b, c] ⊂ R be the FF. If there exists dgrg(t0)
dt ∈ RF, such that

lim
h→0

g(t0 + h)	gr g(t0)

h
=
dgrg(t0)

dt
= g ′gr(t0),

this limit is taken in the metric space (RF,Dgr). Then g is said to be granular differentiable (gr- differen-
tiable) at a point t0 ∈ [b, c]. In particular, dgrg(t0)

dt is said to be the gr-derivative of g at the point t0. If the
gr-derivative exists for every point t0 ∈ [b, c], then g is gr-differentiable on [b, c].

Theorem 2.2 ([16]). Let g : [b, c] → RF. Then g is gr-differentiable if and only if its HMF is differentiable with
respect to t ∈ [b, c]. Moreover,

H(
dgrg(t)
dt

) =
∂ggr(t,β,αg)

∂t
.
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Now, we define second and higher order gr-derivatives for FF.

Definition 2.9. Let g : [b, c]→ RF, be the FF. If there exists d
2
grg(t0)

dt2 ∈ RF, such that

lim
h→0

g ′(t0 + h)	gr g ′(t0)

h
=
d2
grg(t0)

dt2 = g ′′gr(t0),

then g is said to be second order gr-differentiable at a point t0 ∈ [b, c].

Theorem 2.3. Let g : [b, c] → RF. Then g is twice gr-differentiable if and only if its HMF is twice differentiable
with respect to t ∈ [b, c]. Moreover,

H

(
d2
grg(t)
dt2

)
=
∂2ggr(t,β,αg)

∂t2
.

Proof. From the Definitions 2.9, and Theorem 2.2, we have

H

(
d2
grg(t)
dt2

)
= H

(
lim
h→0

g ′(t+ h)	gr g ′(t)
h

)
= lim
h→0

H

(
g ′(t+ h)	gr g ′(t)

h

)
= lim
h→0

H (g ′(t+ h)) −H (g ′(t))
h

= lim
h→0

(
∂ggr(t+h,β,αg)

∂t

)
−
(
∂ggr(t,β,αg)

∂t

)
h

=
∂2ggr(t,β,αg)

∂t2
.

Example 2.2. Suppose g(t) = et � 3̃⊕gr t� 2̃, in which 3̃ = (2, 3, 4), 2̃ = (1, 2, 3). Then the HMF of g(t) is

ggr(t,β,αg) = [2 +β+ 2(1 −β)α3]e
t + [1 +β+ 2(1 −β)α2]t, where αg = (α2,α3) ∈ [0, 1],

and
∂ggr(t,β,αg)

∂t
= [2 +β+ 2(1 −β)α3]e

t + [1 +β+ 2(1 −β)α2].

Again
∂2ggr(t,β,αg)

∂t2
= [2 +β+ 2(1 −β)α3]e

t.

Therefore, the granular function ggr(t,β,αg) is twice differentiable with respect to t. Thus, from Theo-
rem 2.3 the function g(t) is also twice differentiable. Taking the inverse HMF, we get[

∂2ggr(t,β,αg)
∂t2

]β
= [2 +β, 4 −β]et.

Using the β-level sets representation, we have

d2
grg(t)
dt2 =

⋃
β

{
[2 +β, 4 −β]et

}
= et � (2, 3, 4) = et � 3̃.

Definition 2.10. Let g : [b, c]→ RF, be the FF. If there exists d
m
grg(t0)

dtm ∈ RF, such that

lim
h→0

g(m−1)(t0 + h)	gr g(m−1)(t0)

h
=
dmgrg(t0)

dtm
= g(m)

gr (t0),

then g is said to be mth order gr-differentiable at a point t0 ∈ [b, c].
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Theorem 2.4. Let g : [b, c]→ RF. Then g is m times gr-differentiable if and only if its HMF is m times differentiable
with respect to t ∈ [b, c]. Moreover,

H

(
dmgrg(t)
dtm

)
=
∂mggr(t,β,αg)

∂tm
.

Proof. The proof is similar to the proof of Theorem 2.3.

Definition 2.11 ([16]). Suppose that g : [b, c] → RF is continuous and the HMF H(g(t)) = ggr(t,β,αf) is
integrable on [b, c]. If there exists an FF n =

∫c
b g(t)dt such that H(n) =

∫c
bH(g(t))dt, then g(t) is called

gr-integrable on [b, c].

Proposition 2.4 ([16]). Assume that F : [b, c]→ RF is gr-differentiable and f(t) = dgrF(t)
dt is continuous on [b, c].

Then,
∫c
b f(t)dt = F(c)	gr F(b).

Example 2.3. Consider a function F : [−3, 3] → RF, defined by F(t) = et � p ⊕gr t
3

3 � q ⊕gr r, with
p = (1, 2, 3),q = (−3,−2,−1) and r = (−1, 0, 1) ∈ RF. Then,

H(F(t)) = [1 +β+ 2(1 −β)αp]e
t + [−3 +β+ 2(1 −β)αq]

t3

3
+ [−1 +β+ 2(1 −β)αr],

and
∂Fgr
∂t

= [1 +β+ 2(1 −β)αp]e
t + [−3 +β+ 2(1 −β)αq]t

2.

Let us take
dF(t)
dt

= g(t),

it is continuous on [-3, 3] and gr-integrable. From Proposition 2.4, we have∫ 3

−3
g(t)dt = F(3)	gr F(−3) = (e3 � p⊕gr 9� q⊕gr r)	gr (e−3 � p⊕gr (−9)� q⊕gr r)

= (e3 − e−3)� p⊕gr 18� q.

Theorem 2.5 ([22]). If g, h are mappings from [b, c]→ RF and are two gr-integrable FFs and l,m ∈ R, then

(i)
∫c
b[l� g(t)⊕grm� h(t)]dt = l�

∫c
b g(t)dt⊕grm�

∫c
b h(t)dt;

(ii) Dgr(g, h) is integrable;

(iii) Dgr

( ∫c
b g(t)dt,

∫c
b h(t)dt

)
6
∫c
bDgr(g(t), h(t))dt;

(iv)
∫c
b g(t)dt =

∫a
b g(t)dt⊕gr

∫c
a g(t)dt, for each a ∈ (b, c).

Note 2.3 ([22]). If g, h : [b, c]→ RF, then,

Dgr(g(x), h(x)) = sup
β

max
αg,αh

|ggr(x,β,αg) − hgr(x,β,αh)|,

where x ∈ [b, c] andβ,αg,αh ∈ [0, 1].

The set of all continuous mappings from [x0,b] to RF is denoted by C ([x0,b], RF), which is a CMS with
the distance,

D(y, z) = sup
x∈[x0,b]

{
Dgr(y(x), z(x))e−µx

}
, where [x0,b] ⊂ R,µ ∈ R is a fixed real number.

Denote C ′ ([x0,b], RF) be the set of all continuously gr-differentiable mappings from [x0,b] to RF. For
y, z ∈ C ′ ([x0,b], RF), we define the distance

D1(y, z) = D(y, z) +D(y ′gr, z
′
gr).
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Lemma 2.3. (C ′ ([x0,b], RF) ,D1) is a CMS.

Proof. Let {sn}n>1 ∈ C ′
(
[x0,b], RF

)
be a Cauchy sequence in

(
C ′
(
[x0,b], RF

)
,D1

)
, then for each ε > 0,

there exists nε ∈ N such that

D1(sm, sn) < ε, m,n > nε, and D(sm, sn) +D(s ′m, s ′n) < ε.

Since {sn}n>1 and {s ′n}n>1 are Cauchy sequences in CMS
(
C
(
[x0,b], RF

)
,D
)
, then there exist s, t ∈

C
(
[x0,b], RF

)
such that {sn}→ s and {s ′n}→ t as n→∞. That is

D(sn, s)→ 0 and D(s ′n, t)→ 0 as n→∞. (2.1)

Now, we will prove that s ∈
(
C ′
(
[x0,b], RF

)
and s ′ = t. For that we will verify that s(x) = s(x0)⊕gr∫x

x0
t(τ)dτ. Let us take sn(x) = sn(x0)⊕gr

∫x
x0
s ′n(τ)dτ. Suppose that φ(x) = s(x0)⊕gr

∫x
x0
t(τ)dτ, then

D(s,φ) = sup
x∈[x0,b]

{Dgr(s(x),φ(x))e−µx}

6 sup
x∈[x0,b]

{
Dgr(s(x), sn(x))e−µx +Dgr(sn(x),φ(x))e−µx

}
= sup
x∈[x0,b]

{
Dgr(s(x), sn(x))e−µx +Dgr

(
sn(x0)⊕gr

∫x
x0

s ′n(τ)dτ, s(x0)⊕gr
∫x
x0

t(τ)dτ
)
e−µx

}
6 D(s, sn) + sup

x∈[x0,b]

{
Dgr(sn(x0), s(x0)) +

∫x
x0

Dgr(s
′
n(τ), t(τ))dτ)e

−µx

}
6 D(s, sn) +D(sn, s)eµx0e−µx + sup

x∈[x0,b]

(∫x
x0

D(s ′n, t)eµτdτ
)
e−µx

= D(s, sn) +D(sn, s)e−µ(x−x0) +D(s ′n, t) sup
x∈[x0,b]

(
1 − e−µ(x−x0)

µ

)
.

From (2.1), D(s,φ)→ 0 as n→∞. Therefore,

s(x) = φ(x) = s(x0)⊕gr
∫x
x0

t(τ)dτ, ∀x ∈ [x0,b].

That is s ′ = t and s ∈
(
C ′
(
[x0,b], RF

)
. Hence

(
C ′
(
[x0,b], RF

)
,D1

)
is a CMS.

3. Second order FDEs under gr-differentiability

Consider a non-linear second order FIVP under gr-differentiability

z ′′gr(x) = g(x, z(x), z ′gr(x)), (3.1)

z(x0) = a1, z ′gr(x0) = a2, (3.2)

where g : [x0,b]×RF ×RF → RF is continuous and a1,a2 ∈ RF. Taking gr-integral on both sides of (3.1)
from x0 to x1, we have

z ′gr(x1) = a2 ⊕gr
∫x1

x0

g(τ, z(τ), z ′gr(τ))dτ. (3.3)

Again taking gr-integral on both sides of (3.3) from x0 to x, we get

z(x) = a1 ⊕gr a2 � (x− x0)⊕gr
∫x
x0

∫x1

x0

g(τ, z(τ), z ′gr(τ))dτdx1.
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The fixed point theory and their applications were presented in [1]. Now, we establish the following
existence and uniqueness theorem for the solutions of FIVP (3.1)-(3.2) using Banch contraction mapping
theorem.

Theorem 3.1. Let g ∈ C ([x0,b]×RF ×RF, RF) and Dgr(g(x,y,y ′gr),g(x, z, z ′gr)) 6 LDgr(y, z) +MDgr(y
′
gr,

z ′gr), for (x, z, z ′gr), (x,y,y ′gr) ∈ [x0,b]× RF × RF, where L,M > 0, then the FIVP (3.1)-(3.2) have a unique
solution.

Proof. Let S = C ′ ([x0,b], RF) with the metric

D1(y, z) = D(y, z) +D(y ′gr, z
′
gr).

Define the operator F : S→ S as

Fz(x) = a1 ⊕gr a2 � (x− x0)⊕gr
∫x
x0

∫x1

x0

g(τ, z(τ), z ′gr(τ))dτdx1.

Consider,

D (Fy, Fz) = sup
x∈[x0,b]

{
Dgr

(
a1 ⊕gr a2 � (x− x0)⊕gr

∫x
x0

∫x1

x0

g(τ,y(τ),y ′gr(τ))dτdx1,

a1 ⊕gr a2 � (x− x0)⊕gr
∫x
x0

∫x1

x0

g(τ, z(τ), z ′gr(τ))dτdx1

)
e−µx

}
= sup
x∈[x0,b]

{
Dgr

(∫x
x0

∫x1

x0

g(τ,y(τ),y ′gr(τ))dτdx1,
∫x
x0

∫x1

x0

g(τ, z(τ), z ′gr(τ))dτdx1

)
e−µx

}
6 sup
x∈[x0,b]

{∫x
x0

∫x1

x0

Dgr
(
g(τ,y,y ′gr),g(τ, z, z ′gr)

)
dτdx1e

−µx

}
6 sup
x∈[x0,b]

{∫x
x0

∫x1

x0

[
LDgr(y, z) +MDgr(y

′
gr, z

′
gr)
]

dτdx1e
−µx

}
6
[
LD(y, z) +MD(y ′gr, z

′
gr)
]

sup
x∈[x0,b]

{∫x
x0

∫x1

x0

eµτdτdx1e
−µx

}

6 max{L,M}

{
sup

x∈[x0,b]

(
1 − e−µ(x−x0) − µ(x− x0)e

−µ(x−x0)

µ2

)}
D1(y, z).

Therefore,

D (Fy, Fz) 6 max{L,M}

{
1
µ2 (1 − e−µ(b−x0)[1 + µ(b− x0)])

}
D1(y, z). (3.4)

Now, consider

D
(
(Fy) ′gr, (Fz)

′
gr

)
= sup
x∈[x0,b]

{
Dgr

(
a2 ⊕gr

∫x
x0

g(τ,y(τ),y ′gr(τ))dτ,a2 ⊕gr
∫x
x0

g(τ, z(τ), z ′gr(τ))dτ
)
e−µx

}
= sup
x∈[x0,b]

{
Dgr

(∫x
x0

g(τ,y(τ),y ′gr(τ))dτ,
∫x
x0

g(τ, z(τ), z ′gr(τ))dτ
)
e−µx

}
6 sup
x∈[x0,b]

{(∫x
x0

Dgr
(
g(τ,y(τ),y ′gr(τ)),g(τ, z(τ), z ′gr(τ))dτ

))
e−µx

}
6 sup
x∈[x0,b]

{(∫x
x0

Dgr
(
LDgr(y, z) +MDgr(y

′
gr, z

′
gr)
)

dτ
)
e−µx

}
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6 max{L,M}
[
D(y, z) +D(y ′gr, z

′
gr)
]

sup
x∈[x0,b]

{∫x
x0

eµτdτ e−µx
}

= max{L,M}D1(y, z) sup
x∈[x0,b]

{
(1 − e−µ(x−x0))

µ

}
.

Therefore,

D
(
(Fy) ′gr, (Fz)

′
gr

)
6 max{L,M}D1(y, z)

{
1
µ

(
1 − e−µ(b−x0)

)}
. (3.5)

From (3.4) and (3.5), we get
D1 (Fy, Fz) 6 kD1(y, z),

where k = max{L,M}
{

1
µ2 (1 − e−µ(b−x0)[1 + µ(b− x0)]) +

1
µ

(
1 − e−µ(b−x0)

)}
. Clearly, k → 0 as µ → ∞.

Therefore, k < 1 for a suitable choose of µ > 0. Thus, F is a contraction mapping. Hence, from the
contraction mapping theorem, there exists a unique fixed point z ∈ S such that Fz = z and it is the unique
solution of FIVP (3.1)-(3.2).

Example 3.1. Consider the linear second order FIVP under gr-differentiability,

z ′′gr(x) = p� z ′gr(x)⊕gr q� z(x)⊕gr r(x), (3.6)

z(x0) = µ1, z ′gr(x0) = µ2, (3.7)

where x ∈ [x0,b] and p,q ∈ R. Clearly, g(x, z, z ′gr) = p� z ′gr(x)⊕gr q� z(x)⊕gr r(x) is fuzzy continuous
on [x0,b]. Now consider,

Dgr(g(x,y,y ′gr),g(x, z, z ′gr)) = Dgr(p� y ′gr(x)⊕gr q� y(x)⊕gr r(x),p� z ′gr(x)⊕gr q� z(x)⊕gr r(x))
= Dgr(p� y ′gr(x)⊕gr q� y(x),p� z ′gr(x)⊕gr q� z(x))
6 Dgr(p� y ′gr(x),p� z ′gr(x)) +Dgr(q� y(x),q� z(x))
= |p|Dgr(y

′
gr(x), z

′
gr(x)) + |q|Dgr(y(x), z(x)),

for all x ∈ [x0,b],y,y ′gr, z, z ′gr ∈ RF. Therefore, from Theorem 3.1, the FIVP (3.6)-(3.7) has one and only
one solution.

4. Higher order FDEs under granular differentiability

In this section, we establish existence and uniqueness of solutions for the FIVP associated with mth

order FDE of the form

z
(m)
gr (x) = g(x, z(x), z ′gr(x), . . . , z(m−1)

gr (x)), x ∈ [x0,b], (4.1)

z(x0) = a1, z ′gr(x0) = a2, . . . , z(m−1)
gr (x0) = am, (4.2)

where g : [x0,b]×RF × · · · ×RF︸ ︷︷ ︸
m times

→ RF and a1,a2, . . . ,am ∈ RF.

Lemma 4.1. Suppose that the space Cm([x0,b], RF) = {z ∈ C([x0,b], RF) : z ′gr, z ′′gr, . . . , z(m)
gr ∈ C([x0,b], RF)},

with the distance

Dm(y, z) =
m∑
j=0

D(y
(j)
gr , z(j)gr ),

where y(0)
gr = y, z(0)

gr = z. Then, for every m ∈ N, m > 0,
(
Cm([x0,b], RF),Dm

)
is a CMS.
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Proof. For m > 2 and letting {sn}n>1 is a Cauchy sequence in
(
Cm([x0,b], RF),Dm

)
, then {sn}n>1,

{s ′n}n>1,. . ., {s(m)
n }n>1 are Cauchy sequences in the

(
C([x0,b], RF),D

)
. So that, there exists s, t1, t2, . . . , tm ∈(

C([x0,b], RF) such that {sn} → s, {s ′n} → t1, . . . , {s(m)
n } → tm as n → ∞. In a similar argument as

in Lemma 2.3, we get t ′m−1 = tm, t ′m−2 = tm−1, . . . , t ′1 = t2, s ′ = t1. It implies that s, t1, t2, . . . , tm ∈(
C([x0,b], RF) and s ′ = t1, s ′′ = t2, . . . , s(m) = tm. Therefore,

Dm(sn, s) = D(sn, s) +D(s ′n, t1) + · · ·+D(s
(m)
n , tm)→ 0 as n→∞.

Thus,
(
Cm([x0,b], RF),Dm

)
is a CMS.

Theorem 4.1. The fuzzy function z ∈
(
C(m−1)([x0,b], RF)), is a solution of FIVP (4.1)-(4.2) if and only if z

satisfies the integral equation

z(x) = a1 ⊕gr a2 � (x− x0)⊕gr a3 �
∫x
x0

(x1 − x0)dx1 ⊕gr a4 �
∫x
x0

∫x1

x0

(x2 − x0)dx2dx1 ⊕gr · · ·

⊕gr am �
∫x
x0

∫x1

x0

· · ·
∫xm−3

x0

(xm−2 − x0)dxm−2dxm−3 . . . dx2dx1

⊕gr
∫x
x0

∫x1

x0

· · ·
∫xm−1

x0

g(τ, z(τ), z ′gr(τ), . . . , z(m−1)
gr (τ))dτdxm−1 . . . dx1.

Proof. The proof follows as similar lines as discussed in Section 3. Hence, we omit the proof.

Theorem 4.2. Let g : [x0,b]× RF × · · · ×RF︸ ︷︷ ︸
mtimes

→ RF and a1,a2, . . . ,am ∈ RF be continuous and suppose that

there exist Nj > 0, j = 0, 1, 2, . . . ,m− 1 such that

Dgr(g(x,y,y1, . . . ,ym−1),g(x, z, z1, z2, . . . , zm−1)) 6
m−1∑
j=0

NjDgr(yj, zj),

for all x ∈ [x0,b], where y = y0, y1 = y ′gr, . . . , ym−1 = y
(m−1)
gr , z = z0, z1 = z ′gr, . . . , zm−1 = z

(m−1)
gr ∈ RF.

Then, the FIVP (4.1)-(4.2) has a unique solution on [x0,b].

Proof. Let S1 =
(
Cm−1

(
[x0,b], RF

)
,Dm−1

)
be a CMS with the metric

Dm−1(y, z) =
m−1∑
j=0

D(y
(j)
gr , z(j)gr ),

where y(0)
gr = y, z(0)

gr = z. Define the operator F : S1 → S1 as

(Fz)(x) = a1 ⊕gr a2 � (x− x0)⊕gr a3 �
∫x
x0

(x1 − x0)dx1 ⊕gr a4 �
∫x
x0

∫x1

x0

(x2 − x0)dx2dx1 ⊕gr · · ·

⊕gr am �
∫x
x0

∫x1

x0

· · ·
∫xm−3

x0

(xm−2 − x0)dxm−2dxm−3 . . . dx1

⊕gr
∫x
x0

∫x1

x0

· · ·
∫xm−1

x0

g(τ, z(τ), z ′gr(τ) . . . , z(m−1)
gr (τ))dτdxm−1 . . . dx1.

Consider,

D(Fy, Fz) = sup
x∈[x0,b]

{
Dgr

(
a1 ⊕gr a2 � (x− x0)⊕gr a3 �

∫x
x0

(x1 − x0)dx1
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⊕gr a4 �
∫x
x0

∫x1

x0

(x2 − x0)dx2dx1 ⊕gr . . .

⊕gr am �
∫x
x0

∫x1

x0

. . .
∫xm−3

x0

(xm−2 − x0)dxm−2dxm−3 . . . dx2dx1

⊕gr
∫x
x0

∫x1

x0

. . .
∫xm−1

x0

g(τ,y(τ), . . . ,y(m−1)
gr (τ))dτdxm−1 . . . dx1,

a1 ⊕gr a2 � (x− x0)⊕gr a3 �
∫x
x0

(x1 − x0)dx1

⊕gr a4 �
∫x
x0

∫x1

x0

(x2 − x0)dx2dx1 ⊕gr . . .

⊕gr am �
∫x
x0

∫x1

x0

. . .
∫xm−3

x0

(xm−2 − x0)dxm−2dxm−3 . . . dx1

⊕gr
∫x
x0

∫x1

x0

. . .
∫xm−1

x0

g(τ, z(τ), . . . , z(m−1)
gr (τ))dτdxm−1 . . . dx1

)
e−µx

}
= sup
x∈[x0,b]

{
Dgr

(∫x
x0

. . .
∫xm−1

x0

g(τ,y(τ), · · · ,y(m−1)
gr (τ))dτdxm−1 . . . dx1,∫x

x0

· · ·
∫xm−1

x0

g(τ, z(τ), · · · , z(m−1)
gr (τ))dτdxm−1 . . . dx2dx1

)
e−µx

}
6 sup
x∈[x0,b]

{
e−µx

∫x
x0

∫x1

x0

· · ·
∫xm−1

x0

Dgr(g(τ,y(τ), . . . ,y(m−1)
gr (τ)),

g(τ, z(τ), . . . , z(m−1)
gr (τ)))dτdxm−1 . . . dx2dx1

}
= sup
x∈[x0,b]

e−µx
∫x
x0

∫x1

x0

· · ·
∫xm−1

x0

m∑
j=1

NjDgr(y
(j−1)
gr , z(j−1)

gr )dτdxm−1 . . . dx2dx1


6
m−1∑
j=0

NjD(y
(j)
gr , z(j)gr ) sup

x∈[x0,b]

{
e−µx

∫x
x0

∫x1

x0

· · ·
∫xm−1

x0

eµτdτdxm−1 . . . dx1

}
.

Similarly, we get

D((Fy) ′gr, (Fz)
′
gr) 6

m−1∑
j=0

NjD(y
(j)
gr , z(j)gr ) sup

x∈[x0,b]

{
e−µx

∫x
x0

· · ·
∫xm−2

x0

eµτdτdxm−2 . . . dx1

}
,

...

D((Fy)(m−1)
gr , (Fz)(m−1)

gr ) 6
m−1∑
j=0

NjD(y
(j)
gr , z(j)gr ) sup

x∈[x0,b]

{
e−µx

∫x
x0

eµτdτ
}

.

Therefore,

Dm−1(Fy, Fz) =
m−1∑
j=0

D((Fy)(j)gr , (Fz)(j)gr )

6
m−1∑
j=0

NjD(y
(j)
gr , z(j)gr )

[
sup

x∈[x0,b]

{
e−µx

∫x
x0

· · ·
∫xm−1

x0

eµτdτdxm−1 . . . dx1

}

+ sup
x∈[x0,b]

{
e−µx

∫x
x0

∫x1

x0

· · ·
∫xm−2

x0

eµτdτdxm−2 . . . dx1

}
+ · · ·+ sup

x∈[x0,b]

{
e−µx

∫x
x0

eµτdτ
}]
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6 max{N0,N1, . . . ,Nm−1}Dm−1(y, z)
m∑
j=1

sup
x∈[x0,b]

{
e−µx

∫x
x0

· · ·
∫xm−j

x0

eµτdτdxm−j . . . dx1

}
.

Since

sup
x∈[x0,b]

{
e−µx

∫x
x0

eµτdτ
}

=
1
µ
(1 − e−µ(x−x0)) 6

1
µ
(1 − e−µ(b−x0)),

sup
x∈[x0,b]

{
e−µx

∫x
x0

∫x1

x0

eµτdτdx1

}
= sup
x∈[x0,b]

{
1
µ2 (1 − e−µ(x−x0)[1 + µ(x− x0)])

}
6

1
µ2 (1 − e−µ(b−x0)[1 + µ(b− x0)]),

...

sup
x∈[x0,b]

{
e−µx

∫x
x0

∫x1

x0

· · ·
∫xm−1

x0

eµτdτdxm−1 · · ·dx1

}
= sup
x∈[x0,b]

{
1
µm

(
1 − e−µ(x−x0)

[
1 +

µ(x− x0)

1!
+ . . . +

µm−1(x− x0)
m−1

(m− 1)!

])}
6

1
µm

(
1 − e−µ(b−x0)

[
1 +

µ(b− x0)

1!
+ . . . +

µm−1(b− x0)
m−1

(m− 1)!

])
=

1
µm

(
1 − e−µ(b−x0)

m−1∑
i=0

µi

i!
(b− x0)

i

)
,

then
Dm−1(Fy, Fz) 6 kDm−1(y, z),

where k = max{N0,N1, . . . ,Nm−1}
m∑
j=1

1
µj

[
1 − e−µ(b−x0)

j−1∑
i=0

µi

i! (b− x0)
i

]
. Clearly, k→ 0 as µ→∞. There-

fore, k < 1 for suitable choose of µ > 0. Thus, F is a contraction mapping. Hence, from the contraction
mapping theorem there exists a unique fixed point in Cm−1

(
[x0,b], RF

)
such that (Fz)(x) = z(x), which is

a unique solution of FIVP (4.1)-(4.2).

5. A working method for solving FIVPs under gr-differentiability

Consider the following mth order FIVP under gr-differentiability

z
(m)
gr (x) = g(x, z(x), . . . , z(m−1)

gr (x)), (5.1)

z(x0) = a1, . . . , z(m−1)
gr (x0) = am, (5.2)

where a1,a2, . . .am ∈ RF and g is a fuzzy continuous function. The following algorithm describes the
procedure to compute β-cut solution of FIVP (5.1)-(5.2), provided solution exists.

Step 1: Applying HMF on both sides of (5.1) and (5.2), we get

∂mzgr(x,β,αz)
∂xm

= ggr(x,β,αg), (5.3)

zgr(x0) = a1gr(β,α1), . . . ,
∂m−1z(x0)

∂xm−1 = amgr(β,αm), (5.4)
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where αz = (αg,α1,α2, . . . ,αm) and β, αg, α1, α2, . . ., αm ∈ [0, 1]. Here, (5.3) is an mth order partial
differential equation with single independent variable x. Therefore, (5.3) and (5.4) can be taken as an
initial value problem with ordinary derivatives.

Step 2: Solving (5.3) and (5.4), we get the solution granule

H(z(x)) = zgr(x,β,αz). (5.5)

Step 3: Applying inverse HMF on both sides of (5.5), we get

[z(x)]β = [ inf
β6α61

min
αz

zgr(x,α,αz), sup
β6α61

max
αz

zgr(x,α,αz)],

which is the required β-cut solution of FIVP (5.1)-(5.2).

Example 5.1. Consider the simple FIVP as in Example 4.1 of [2]

1̃z ′′(x) = 2̃, 0 6 x 6 2, (5.6)
z(0) = 0̃, z ′(0) = 1̃, (5.7)

where β-cut set of initial values are [0̃]β = [β− 1, 1 − β], [1̃]β = [β, 2 − β] and β-cut set of coefficients are
[1̃]β = [1, 2 − β], [2̃]β = [1 + β, 3 − β]. This problem doesn’t have a fuzzy solution using the algorithm
described in [2].

Now, we apply our proposed method to solve this problem using granular differentiability. The FIVP
(5.6)-(5.7) is taken as

1̃z ′′gr(x) = 2̃, (5.8)

z(0) = 0̃, z ′gr(0) = 1̃. (5.9)

Here, g(x, z(x), z ′gr(x)) =
2̃
1̃

is a fuzzy constant. Clearly, g is continuous and satisfies Lipschitz condition

with L = M = 0. From Theorem 3.1, the FIVP (5.6)-(5.7) has a unique solution. To find the solution we
use the proposed algorithm.

Taking HMF on both sides of (5.8) and (5.9), we have

[1̃]gr
∂2zgr(x,β,αz)

∂x2 − [2̃]gr = 0, where [1̃]gr = [1 + (1 −β)α2] and [2̃]gr = 1 +β+ 2(1 −β)α3, (5.10)

zgr(0) = β− 1 + 2(1 −β)α0, z ′gr(0) = β+ 2(1 −β)α1, (5.11)

where αz = (α0,α1,α2,α3), β,α0,α1,α2,α3 ∈ [0, 1].
The solution of initial value problem (IVP) (5.10)-(5.11) is

zgr(x,β,α0,α1,α2,α3) = β− 1 + 2(1 −β)α0 + (β+ 2(1 −β)α1)x+

[
(β+ 1 + 2(1 −β)α3)

1 + (1 −β)α2

]
x2

2
. (5.12)

Applying inverse HMF on both sides of (5.12), we get

[z(x)]β = [ inf
β6α61

min
α0,α1,α2,α3

zgr(x,α,α0,α1,α2,α3), sup
β6α61

max
α0,α1,α2,α3

zgr(x,α,α0,α1,α2,α3)]

=

[
β− 1 +βx+ (1 +β)

x2

2
, 1 −β+ (2 −β)x+

(
3 −β

2 −β

)
x2

2

]
.

The β-cut solution is computed using MATLAB and is depicted in Figure 1.
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Figure 1: The black curve represents z(x) at β = 1.

Example 5.2. Consider the non-linear FIVP as in Example 4 of [4],

z ′′(x) = −(z ′(x))2, 0 6 x 6 3, z(0) = 1̃, z ′(0) = 2̃. (5.13)

The β-cut set of initial values are [1̃]β = [β, 2 − β], [2̃]β = [1 + β, 3 − β]. In [4], the authors obtained
approximate β-cut solution using one-step hybrid block method. Now, we apply our proposed method
to solve this problem using granular differentiability. The FIVP (5.13) can be taken as

z ′′gr(x) = −(z ′gr(x))
2, z(0) = 1̃, z ′gr(0) = 2̃. (5.14)

Since z(x) is fuzzy continuous, then g(x, z(x), z ′gr(x)) = −(z ′gr(x))
2 is also fuzzy continuous and satisfies

Lipschitz condition with L = 0 and M = sup
x∈J,β

max
α1,α2

|z ′gr(x,β,α1) + y
′
gr(x,β,α2)| > 0, where J = [0,b] is a

compact interval, b is a finite real number and α1,α2 ∈ [0, 1]. From Theorem 3.1, the FIVP (5.14) has a
unique solution. Taking the HMF on both sides of (5.14), we have

∂2zgr(x,β,αz)
∂x2 = −

(
∂zgr(x,β,αz)

∂x

)2

, (5.15)

zgr(0) = β+ 2(1 −β)α1, z ′gr(0) = 1 +β+ 2(1 −β)α2, (5.16)

where αz = (α1,α2) and β,α1,α2 ∈ [0, 1]. The solution of IVP (5.15)-(5.16) is

zgr(x,β,α1,α2) = ln
[
e[β+2(1−β)α1](x[1 +β+ 2(1 −β)α2] + 1)

]
. (5.17)

By taking the inverse HMF on both sides of (5.17), we get

[z(x)]β =

[
inf

β6α61
min
α1,α2

zgr(x,α,α1,α2), sup
β6α61

max
α1,α2

zgr(x,α,α1,α2)

]
=
[
ln
(
eβ(x(1 +β) + 1)

)
, ln
(
e2−β(x(3 −β) + 1)

)]
,

is the β-cut solution and depicted in Figure 2 using MATLAB.
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Figure 2: The black curve represents z(x) at β = 1.

Example 5.3. Consider the fourth order linear FIVP as in Example 1 of [11],

z(4)(x) = z(x), 0 6 x 6 1, z(0) = z ′(0) = z ′′(0) = z ′′′(0) = z(4)(0) = 0̃. (5.18)

In [11], authors obtain multiple fuzzy solutions for FIVP (5.18) using Taylor series method under gH-
differentiability. Now, we use the concept of granular differentiability. The granular FIVP of (5.18) is

z
(4)
gr (x) = z(x), z(0) = z ′gr(0) = · · · = z

(4)
gr (0) = 0̃. (5.19)

Clearly, g(x, z(x), zgr(x), z ′gr(x), z ′′gr(x), z ′′′gr(x)) = z(x) is fuzzy continuous and satisfies Lipschitz condition
with N0 = 1 and Ni = 0, i = 1, 2, 3. Therefore, from Theorem 4.2, the FIVP (5.19) has a unique solution.
Taking HMF on both sides of (5.19), we have

∂4zgr(x,β,αz)
∂x4 = zgr(x,β,αz), (5.20)

zgr(0) = z ′gr(0) = z
′′
gr(0) = z

′′′
gr(0) = z

(4)
gr (0) = −1 +β+ 2(1 −β)α0, (5.21)

where β,αz = α0 ∈ [0, 1]. The solution of IVP (5.20)-(5.21) is

zgr(x,β,α0) = e
x [−1 +β+ 2(1 −β)α0] . (5.22)

By applying the inverse HMF on both sides of (5.22), we get

[z(x)]β =

[
inf

β6α61
min
α0
zgr(x,α,α0), sup

β6α61
max
α0

zgr(x,α,α0)

]
= [ex(β− 1), ex(1 −β)] ,

is the β-cut solution and depicted in Figure 3 using MATLAB.
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Figure 3: The black curve represents z(x) at β = 1.

6. Conclusions

The proposed results of this paper are useful for testing and determine solutions for FIVPs. The
granular differentiability for the fuzzy function is extended to second and higher-order derivatives. The
second and higher-order FIVPs are investigated using the granular differentiability. Sufficient conditions
are established for second and higher-order FIVPs. An algorithm is developed to solve the FIVPs. Some
examples are given to illustrate the applicability and effectiveness of our method. In the future, we extend
this work for fuzzy boundary value problems and fuzzy partial differential equations. Also, investigate
the modeling of these problems in real-life applications.
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