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Abstract
In this paper, we give many characterizations of ω-almost-regular topological spaces and show that ω-almost-regularity

lies strictly between regularity and almost-regularity. Also, we give several sufficient conditions for the equivalence between
”ω-almost-regularity” and ”regularity”, and between ”ω-almost-regularity” and ”almost-regularity.” Moreover, we show that
ω-almost-regularity is hereditary for certain classes of subspaces. Furthermore, we show that the product of two ω-almost-
regular topological spaces is ω-almost-regular. In addition to these, we define ω-semi-regularity as a new topological property.
With the help of examples, we study several relationships regarding ω-semi-regularity, in particular, we show that ω-semi-
regularity is strictly weaker than each of ω-regularity and semi-regularity and that ω-regular Hausdorff topological spaces are
ω-Urysohn.
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1. Introduction and preliminaries

Topology is one of the most active fields in mathematics today. It is traditionally regarded as one of
the three major branches of pure mathematics (together with algebra and analysis). Topology has recently
become an important component of applied mathematics, with many mathematicians and scientists using
topological notions to model and comprehend real-world structures and processes. General topology is
the field of topology that deals with the fundamental set-theoretic concepts and constructs of topology.
Most other fields of topology, such as differential topology, geometric topology, and algebraic topology,
are built on it.

Generalized open sets and closed sets serve a significant role in general topology and are presently
the focus of study for many topologists across the world. Indeed, a major subject in general topology and
real analysis is the use of extended open sets to provide widely modified forms of continuity, separation
axioms, compactness, connectedness, and so on. For example, Levine [18] introduced generalized closed
(g-closed) sets in a topological space to extend many of the fundamental features of closed sets to a larger
family. For example, it has been demonstrated that g-closed subsets inherit compactness, normalcy, and
completeness in a uniform space.
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As a generalizations of closed sets and open sets, Hdeib [16] defined ω-closed sets and ω-open sets in
which he proved that ω-closed sets inherits Lindelofness, and he characterized Lindelofness via ω-open
sets. The work of Hdeib is continued by several researchers [2–15, 17, 20–22, 28, 29].

The concept of ”ω-almost-regular” topological spaces was introduced in [9]. In this paper, we give
many characterizations of ω-almost-regular topological spaces and show that ω-almost-regularity lies
strictly between regularity and almost-regularity. Also, we give several sufficient conditions for the equiv-
alence between ”ω-almost-regularity” and ”regularity”, and between ”ω-almost-regularity” and ”almost-
regularity.” Moreover, we show that ω-almost-regularity is hereditary for certain classes of subspaces.
Furthermore, we show that the product of two ω-almost-regular topological spaces is ω-almost-regular.
In addition to these, we define ω-semi-regularity as a new topological property. With the help of ex-
amples, we study several relationships regarding ω-semi-regularity, in particular, we show that ω-semi-
regularity is strictly weaker than each of ω-regularity and semi-regularity and that ω-regular Hausdorff
topological spaces are ω-Urysohn.

Throughout this paper, TS will denote a topological space. Let (H,Θ) be a TS and let D ⊆ H. In this
paper, the closure of D in (H,Θ) and the interior of in (H,Θ) will be denoted by ClΘ (D) and IntΘ(D),
respectively. Also, the family of closed subsets of (H,Θ) will be denoted by Θc.

The arrangement of this article is as follows. In Section 2, we characterizeω-almost-regular topological
spaces in a variety of ways and demonstrate that ω-almost-regularity lies strictly between regularity and
almost-regularity. We also provide a number of necessary conditions for the equivalence between ”ω-
almost-regularity” and ”regularity,” as well as between ”ω-almost-regularity” and ”almost-regularity.”
Moreover, we demonstrate that for specific classes of subspaces, ω-almost-regularity is hereditary. In ad-
dition, we demonstrate that the product of two ω-almost-regular topological spaces is ω-almost-regular.
In Section 3, we introduce a new topological property calledω-semi-regularity. With the help of examples,
we study several relationships involving ω-semi-regularity. In particular, we demonstrate that ω-semi-
regularity is strictly weaker than each of ω-regularity and semi-regularity and that ω-regular Hausdorff
topological spaces are ω-Urysohn. In Section 4, we summarize the main contributions and suggest some
future work.

The following definitions will be used in the sequel.

Definition 1.1 ([16]). Let (H,Θ) be a TS and D ⊆ H. A point h ∈ H is a condensation point of D if for
each E ∈ Θ with h ∈ E, the set E ∩D is uncountable. D is called an ω-closed set in (H,Θ) if it contains
all its condensation points. Complements ω-closed sets in (H,Θ) are called ω-open sets in (H,Θ). The
family of all ω-open sets in (H,Θ) will be denoted by Θω.

Definition 1.2. Let (H,Θ) be a TS and D ⊆ H. Then

(a) [26] D is called a regular open set in (H,Θ) if IntΘ(ClΘ(D)) = D, complements of regular open sets
in (H,Θ) are called regular closed sets, the collection of all regular open sets in (H,Θ) (resp. regular
closed sets in (H,Θ)) will be denoted by RO(H,Θ) (resp. RC(H,Θ));

(b) [20] D is called an Rω-open set in (H,Θ) if IntΘ(ClΘω(D)) = D, complements of Rω-open sets in
(H,Θ) are called Rω-closed sets, the collection of all Rω-open sets in (H,Θ) (resp. Rω-closed sets in
(H,Θ)) will be denoted by RωO(H,Θ) (resp. RωC(H,Θ)).

Definition 1.3. Let (H,Θ) be a TS and D ⊆ H. Then

(a) [27] the set {h ∈ H : for each E ∈ Θ with h ∈ E, IntΘ(ClΘ(E))∩D 6= ∅} is called the δ-closure of D in
(H,Θ) is denoted by ClΘδ (D); D is called δ-closed in (H,Θ) if ClΘδ (D) = D; D is called δ-open in
(H,Θ) if H−D is δ-closed in (H,Θ), the collection of all δ-open sets in (H,Θ) is denoted by Θδ;

(b) [21] the set {h ∈ H : for each E ∈ Θ with h ∈ E, IntΘ(ClΘω(E))∩D 6= ∅} is called the δω-closure of D
in (H,Θ) is denoted by ClΘδω (D); D is called δω-open in (H,Θ) if H−D is δω-closed in (H,Θ), the
collection of all δω-open sets in (H,Θ) is denoted by Θδω .

It is known that Θδ and Θδω are topologies with Θδ ⊆ Θδω ⊆ Θ.
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Definition 1.4. A TS (H,Θ) is said to be

(a) [24] almost-regular if for each h ∈ H and each W ∈ RC(H,Θ) such that h /∈W, there are E, F ∈ Θ such
that h ∈ E, W ⊆ F, and E∩ F = ∅;

(b) [19] semi-regular if RO(H,Θ) forms a base for Θ;
(c) [1] ω-regular if for each h ∈ H and each W ∈ Θc such that h /∈ W, there are E ∈ Θ and F ∈ Θω such

that h ∈ E, W ⊆ F, and E∩ F = ∅;
(d) [21] ω-almost-regular if for each h ∈ H and each W ∈ RωC(H,Θ) such that h /∈ W, there are E ∈ Θ

and E, F ∈ Θ such that h ∈ E, W ⊆ F, and E∩ F = ∅;
(e) [21] ω-Urysohn if for any x,y ∈ H such that x 6= y, there are E, F ∈ Θ such that x ∈ E, y ∈ F, and

ClΘω (E)∩ClΘω (F) = ∅;
(f) [23] locally countable if for each h ∈ H, there is E ∈ Θ such that h ∈ E and E is countable;
(g) [14] anti-locally countable if each E ∈ Θ− {∅} is uncountable.

2. ω-almost-regularity

In this section, we characterize ω-almost-regular topological spaces in a variety of ways and demon-
strate that ω-almost-regularity lies strictly between regularity and almost-regularity. We also provide a
number of necessary conditions for the equivalence between ”ω-almost-regularity” and ”regularity,” as
well as between ”ω-almost-regularity” and ”almost-regularity.” Moreover, we demonstrate that for spe-
cific classes of subspaces, ω-almost-regularity is hereditary. In addition, we demonstrate that the product
of two ω-almost-regular topological spaces is ω-almost-regular.

Theorem 2.1. For any TS (H,Θ), the following are equivalent:

(a) (H,Θ) is ω-almost-regular;
(b) for each h ∈ H and each E ∈ RωO(H,Θ) such that h ∈ E, there is F ∈ Θ such that h ∈ F ⊆ ClΘ (F) ⊆ E;
(c) for each h ∈ H and each E ∈ RωO(H,Θ) such that h ∈ E, there is F ∈ RO(H,Θ) such that h ∈ F ⊆ ClΘ (F) ⊆

E;
(d) for each h ∈ H and each E ∈ RωO(H,Θ) such that h ∈ E, there is F ∈ RωO(H,Θ) such that h ∈ F ⊆

ClΘ (F) ⊆ E;
(e) for each h ∈ H and each E ∈ Θ such that h ∈ E, there is F ∈ RωO(H,Θ) such that h ∈ F ⊆ ClΘ (F) ⊆

IntΘ (ClΘω (E));
(f) for each h ∈ H and each E ∈ Θ such that h ∈ E, there is F ∈ Θ such that h ∈ F ⊆ ClΘ (F) ⊆ IntΘ (ClΘω (E));
(g) for each h ∈ H and each W ∈ RωC(H,Θ) such that h /∈ W, there are E, F ∈ Θ such that h ∈ E, W ⊆ F, and

ClΘ (E)∩ClΘ (F) = ∅;
(h) for each W ∈ RωC(H,Θ), W = ∩ {ClΘ (T) : T ∈ Θ and W ⊆ T };
(i) for each W ∈ RωC(H,Θ), W = ∩ {X : X ∈ Θc and W ⊆ IntΘ (X)};
(j) for each A ⊆ H and each B ∈ RωO(H,Θ) such that A ∩ B 6= ∅, there is E ∈ Θ such that A ∩ E 6= ∅ and

ClΘ(E) ⊆ B;
(k) for each non-empty subset A ⊆ H and each B ∈ RωC(H,Θ) such that A∩B = ∅, there are E, F ∈ Θ such that

A∩ E 6= ∅ and B ⊆ F.

Proof.

(a) −→ (b): Let h ∈ H and let E ∈ RωO(H,Θ) such that h ∈ E. Then h /∈ H− E ∈ RωC(H,Θ) and by
(a), there are F, T ∈ Θ such that h ∈ F, H− E ⊆ T , and F ∩ T = ∅. So, we have h ∈ F ⊆ H− T ⊆ E with
H− T ∈ Θc, and hence h ∈ F ⊆ ClΘ (F) ⊆ H− T ⊆ E. This ends the proof.

(b) −→ (c): Let h ∈ H and let E ∈ RωO(H,Θ) such that h ∈ E. Then by (b), there is S ∈ Θ such
that h ∈ S ⊆ ClΘ (S) ⊆ E. Put F = IntΘ (ClΘ(S)). Then F ∈ RO(H,Θ). Since F ⊆ ClΘ(S) ⊆ E, then
ClΘ (F) ⊆ ClΘ(S) ⊆ E. This ends the proof.
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(c) −→ (d): Let h ∈ H and let E ∈ RωO(H,Θ) such that h ∈ E. Then by (c), there is F ∈ RO(H,Θ) such
that h ∈ F ⊆ ClΘ (F) ⊆ E. Since F ∈ RO(H,Θ) and by Theorem 3.1 of [20], RO(H,Θ) ⊆ RωO(H,Θ), then
F ∈ RωO(H,Θ). This ends the proof.

(d) −→ (e): Let h ∈ H and let E ∈ Θ such that h ∈ E. Since by Theorem 3.1 of [20], IntΘ (ClΘω (E)) ∈
RωO(H,Θ), then by (d), there is F ∈ RωO(H,Θ) such that h ∈ F ⊆ ClΘ (F) ⊆ IntΘ (ClΘω (E)). This ends
the proof.

(e) −→ (f): Let h ∈ H and let E ∈ Θ such that h ∈ E. Then by (e), there is F ∈ RωO(H,Θ) such that
h ∈ F ⊆ ClΘ (F) ⊆ IntΘ (ClΘω (E)). Since RωO(H,Θ) ⊆ Θ, then F ∈ Θ. This ends the proof.

(f) −→ (g): Let h ∈ H and W ∈ RωC(H,Θ) such that h /∈ W. Then h ∈ H−W ∈ RωO(H,Θ) ⊆ Θ. Thus,
by (f), there is F ∈ Θ such that h ∈ F ⊆ ClΘ (F) ⊆ IntΘ (ClΘω (H−W)) = H−W. Again by (f), there is
S ∈ Θ such that h ∈ S ⊆ ClΘ (S) ⊆ IntΘ (ClΘω (F)) ⊆ ClΘ (F) ⊆ H−W. Let T = H−ClΘ (F). Then S, T ∈ Θ
and h ∈ S. Since ClΘ (F) ⊆ H−W, then W ⊆ H− ClΘ (F) = T .

Claim. ClΘ (S)∩ClΘ (T) = ∅.

Proof of Claim. Suppose to the contrary that there is r ∈ ClΘ (S) ∩ ClΘ (T) = ∅. Since r ∈ ClΘ (T) and
r ∈ ClΘ (S) ⊆ IntΘ (ClΘω (F)) ∈ Θ, then IntΘ (ClΘω (F)) ∩ T 6= ∅. Since IntΘ (ClΘω (F)) ⊆ ClΘ (F), then
ClΘ (F)∩ T = ClΘ (F)∩ (H− ClΘ (F)) 6= ∅, a contradiction. The Claim ends the proof.

(g) −→ (h): Let W ∈ RωC(H,Θ). Then for each r ∈ H−W, there are Sr, Tr ∈ Θ such that r ∈ Sr, W ⊆ Tr,
and ClΘ (Sr)∩ClΘ (Tr) = ∅. Thus, W ⊆ Tr and r /∈ ClΘ (Tr).

Claim. W = ∩ {ClΘ (Tr) : r ∈ H−W}.

Proof of Claim. For each r ∈ H−W, we have W ⊆ Tr ⊆ ClΘ (Tr) and thus, W ⊆ ∩ {ClΘ (Tr) : r ∈ H−W}.
To see that ∩ {ClΘ (Tr) : r ∈ H−W} ⊆W, let r ∈ H−W, then r /∈ ClΘ (Tr), so, r /∈ ∩{ClΘ (Tr) : r ∈ H−W}.

By the above Claim, we conclude thatW ⊆∩{ClΘ (T) : T ∈ Θ with W ⊆ T } ⊆ ∩ {ClΘ (Tr) : r ∈ H−W}=
W. This ends the proof.

(h) −→ (i): Obvious.

(i) −→ (j): Let A ⊆ H and B ∈ RωO(H,Θ) such that A ∩ B 6= ∅. Choose r ∈ A ∩ B. Since B ∈ RωO(H,Θ),
then H − B ∈ RωC(H,Θ) and by (i), H − B = ∩ {X : X ∈ Θc with H−B ⊆ IntΘ (X)}. Since r ∈ B, then
r /∈ ∩ {X : X ∈ Θc and H−B ⊆ IntΘ (X)} and so there is X ∈ Θc such that H− B ⊆ IntΘ (X) and r /∈ X.
Let E = H − X. Then E ∈ Θ, E ⊆ H − IntΘ (X) ⊆ B, and r ∈ E ∩ A. Since H − IntΘ (X) ∈ Θc and
E ⊆ H− IntΘ (X) ⊆ B, then ClΘ(E) ⊆ B. This ends the proof.

(j) −→ (k): Let A be a non-empty subset of H and B ∈ RωC(H,Θ) such that A ∩ B = ∅. Then H −
B ∈ RωO(H,Θ) such that A ∩ (H−B) = A 6= ∅. So, by (j), there is E ∈ Θ such that A ∩ E 6= ∅ and
ClΘ(E) ⊆ H−B. Let F = H− ClΘ(E). Then F ∈ Θ, B ⊆ F, and E∩ (H− ClΘ(E)) = ∅.

(k) −→ (a): Let h ∈ H and W ∈ RωC(H,Θ) such that h /∈ W. Then {h} ∩W = ∅ and by (k), there are
E, F ∈ Θ such that {h}∩E 6= ∅, W ⊆ F, and E∩ F = ∅. Since {h}∩E 6= ∅, then h ∈ E. This ends the proof.

Theorem 2.2. Every regular TS is ω-almost-regular.

Proof. Let (H,Θ) be regular. Let h ∈ H and E ∈ RωO(H,Θ) such that h ∈ E. Since RωO(H,Θ) ⊆ Θ, then
E ∈ Θ. Since (H,Θ) is regular, then there is F ∈ Θ such that h ∈ F ⊆ ClΘ (F) ⊆ E. Thus, by Theorem 2.1
(b), (H,Θ) is ω-almost-regular.

Theorem 2.3. Every ω-almost-regular TS is almost-regular.

Proof. Let (H,Θ) be ω-almost-regular. Let h ∈ H and E ∈ RO(H,Θ) such that h ∈ E. Since RO(H,Θ) ⊆
RωO(H,Θ), then E ∈ RωO(H,Θ). Since (H,Θ) is ω-almost-regular, then by Theorem 2.1 (b), there is F ∈ Θ
such that h ∈ F ⊆ ClΘ (F) ⊆ E. Thus, by Theorem 2.2 of [24], (H,Θ) is almost-regular.
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From the above theorems, we have following implications, however, Examples 2.7 and 2.8 given below
show that the converses of these implications are not true.

regularity −→ ω-almost-regularity −→ almost-regularity

Lemma 2.4.

(a) For any locally countable TS (H,Θ), RωO(H,Θ) = Θ.
(b) For any anti-locally countable TS (H,Θ), RO(H,Θ) = RωO(H,Θ).
(c) For any TS (H,Θ), RωO(H,Θω) = RO(H,Θω).

Proof.

(a) Let (H,Θ) be a locally countable TS. We will show that Θ ⊆ RωO(H,Θ). Let F ∈ Θ. Since (H,Θ) is
locally countable, then Θω is the discrete topology on H and so ClΘω(F) = F. Thus, IntΘ (ClΘω (F)) =
IntΘ (F) = F. Hence, F ∈ RωO(H,Θ).

(b) Let (H,Θ) be an anti-locally countable TS. We will show that RωO(H,Θ) ⊆ RO(H,Θ). Let F ∈
RωO(H,Θ). Then IntΘ (ClΘω (F)) = F. Since (H,Θ) is anti-locally countable, then as proved in [1],
ClΘω (F) = ClΘ (F). Thus, IntΘ (ClΘ (F)) = IntΘ (ClΘω (F)) = F. Hence, F ∈ RO(H,Θ).

(c) Let (H,Θ) be a TS. We will show that RωO(H,Θω) ⊆ RO(H,Θω). Let F ∈ RωO(H,Θω). Then
F = IntΘω

(
Cl(Θω)ω

(F)
)

. Since by Proposition 3.1 of [14], (Θω)ω = Θω, then F = IntΘω
(

Cl(Θω)ω
(F)

)
=

IntΘω (ClΘω (F)). Hence, F ∈ RωO(H,Θω).

Theorem 2.5. Every locally countable ω-almost-regular TS is regular.

Proof. Let (H,Θ) be locally countable and ω-almost-regular. Let h ∈ H and E ∈ Θ such that h ∈ E. Since
(H,Θ) is locally countable, then by Lemma 2.4 (a), E ∈ RωO(H,Θ). Since (H,Θ) is ω-almost-regular, then
by Theorem 2.1 (a), there is F ∈ Θ such that h ∈ F ⊆ ClΘ (F) ⊆ E. Therefore, (H,Θ) is regular.

Theorem 2.6. Every anti-locally countable almost-regular TS is ω-almost-regular.

Proof. Let (H,Θ) be anti-locally countable and almost-regular. Let h ∈ H and E ∈ RωO(H,Θ) such that
h ∈ E. Since (H,Θ) is anti-locally countable, then by Lemma 2.4 (b), E ∈ RO(H,Θ). Since (H,Θ) is almost-
regular, then by Theorem 2.2 of [24], there is F ∈ Θ such that h ∈ F ⊆ ClΘ (F) ⊆ E. Therefore, by Theorem
2.1 (a), (H,Θ) is ω-almost-regular.

The condition ’locally countable’ in Theorem 2.5 cannot be dropped:

Example 2.7. Let H = R and Θ be the cofinite topology on R. Then (H,Θ) is not regular. On the other
hand, since (H,Θ) is anti-locally countable, then by Lemma 2.4 (b), RωO(H,Θ) = RO(H,Θ) = {∅,H}, and
hence, (H,Θ) is ω-almost-regular.

The condition ’anti-locally countable’ in Theorem 2.6 cannot be dropped.

Example 2.8. Let H = N and Θ be the cofinite topology on H. Then (H,Θ) is not regular. So, by Theorem
2.5, (H,Θ) is not ω-almost-regular. On the other hand, since RO(H,Θ) = {∅,H}, then (H,Θ) is almost-
regular.

Theorem 2.9. For any TS (H,Θ), (H,Θω) is almost-regular if and only if (H,Θω) is ω-almost-regular.

Proof. Follows from the definitions and Lemma 2.4 (c).

Lemma 2.10. Let (H,Θ) be a TS. If X is a dense subset of (H,Θω), then for any subsetA⊆X, IntΘX(Cl(Θω)X
(A))=

IntΘ(ClΘω(A))∩X.
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Proof. Suppose that X is a dense subset of (H,Θω) and let A ⊆ X. To see that IntΘX(Cl(Θω)X
(A)) ⊆

IntΘ(ClΘω(A)) ∩ X, let r ∈ IntΘX(Cl(Θω)X
(A)). Since IntΘX(Cl(Θω)X

(A)) ∈ ΘX, then there is E ∈ Θ such
that IntΘX(Cl(Θω)X

(A)) = E∩X. Thus, we have r ∈ E∩X ⊆ Cl(Θω)X
(A) = (ClΘω(A))∩X.

Claim. E ⊆ ClΘω(A).

Proof of Claim. Suppose to the contrary that E ∩ (H− ClΘω(A)) 6= ∅. Since H− ClΘω(A) ∈ Θω and E ∈
Θ ⊆ Θω, then E ∩ (H− ClΘω(A)) ∈ Θω. Since X is a dense subset of (H,Θω), then E ∩ (H− ClΘω(A)) ∩
X 6= ∅. Choose y ∈ E∩ (H− ClΘω(A))∩X. Then we have y ∈ H− ClΘω(A) and y ∈ E∩X ⊆ (ClΘω(A))∩
X ⊆ ClΘω(A), a contradiction.

Thus, by the above Claim, we must have r ∈ E ⊆ ClΘω(A) and hence r ∈ IntΘ(ClΘω(A). Therefore,
r ∈ IntΘ(ClΘω(A)) ∩ X. To see that IntΘ(ClΘω(A)) ∩ X ⊆ IntΘX(Cl(Θω)X

(A)), let r ∈ IntΘ(ClΘω(A)) ∩ X.
Since r ∈ IntΘ(ClΘω(A)) ∈ Θ, then there is E ∈ Θ such that r ∈ E ⊆ ClΘω(A) and so r ∈ E ∩ X ⊆
ClΘω(A)∩X = Cl(Θω)X

(A). Since U∩X ∈ Θω, then r ∈ IntΘX(Cl(Θω)X
(A)).

Theorem 2.11. If (H,Θ) is an ω-almost-regular TS and X is a dense subspace of (H,Θω), then (X,ΘX) is ω-
almost-regular.

Proof. Let G ∈ RO(X,ΘX) and let r ∈ G. Since G ∈ RO(X,ΘX), then IntΘX(Cl(ΘX)ω(G)) = G. Since
by Proposition 2.7 of [14] (Θω)X = (ΘX)ω, then IntΘX(Cl(Θω)X

(G)) = G. So, by Lemma 2.10, G =
IntΘ(ClΘω(G)) ∩ X. Thus, we have r ∈ IntΘ(ClΘω(G)) ∈ RωO(H,Θ). Since (H,Θ) is ω-almost-regular,
then by Theorem 2.1 (b), there is F ∈ Θ such that r ∈ F ⊆ ClΘ(F) ⊆ IntΘ(ClΘω(G)). Therefore, we
have r ∈ F ∩ X ∈ ΘX and ClΘX(F) = ClΘ(F) ∩ X ⊆ IntΘ(ClΘω(G)) ∩ X = G. It follows that (X,ΘX) is
ω-almost-regular.

Lemma 2.12. Let (H,Θ) be a TS and let X ∈ RωO(H,Θ) − {∅}, then RωO(X,ΘX) ⊆ RωO(H,Θ).

Proof. Let X ∈ RωO(H,Θ) − {∅} and let A ∈ RωO(X,ΘX). Then A = IntΘX(Cl(ΘX)ω(A)). Since by Proposi-
tion 2.7 of [14], (Θω)X = (ΘX)ω, then Cl(ΘX)ω(A) = Cl(Θω)X

(A) = ClΘω(A) ∩ X. Since r ∈ RωO(H,Θ) ⊆
Θ, then IntΘX(Cl(ΘX)ω(A)) = IntΘ((Cl(ΘX)ω(A))). Thus, A = IntΘ(ClΘω(A) ∩ X) = IntΘ(ClΘω(A)) ∩
IntΘ(X) = IntΘ(ClΘω(A)) ∩ X. Since A ⊆ X, then IntΘ(ClΘω(A)) ⊆ IntΘ(ClΘω(X)) = X and thus,
IntΘ(ClΘω(A))∩X = IntΘ(ClΘω(A)). It follows that A = IntΘ(ClΘω(A)). Hence, A ∈ RωO(H,Θ).

Theorem 2.13. If (H,Θ) is an ω-almost-regular TS and X ∈ RωO(H,Θ) − {∅}, then (X,ΘX) is ω-almost-regular.

Proof. Let G ∈ RO(X,ΘX) and let r ∈ G. Since G ∈ RO(X,ΘX), then Lemma 2.12, G ∈ RωO(H,Θ).
Since (H,Θ) is ω-almost-regular, then by Theorem 2.1 (b), there is F ∈ Θ such that r ∈ F ⊆ ClΘ(F) ⊆ G.
Therefore, we have r ∈ F ∩ X ∈ ΘX and ClΘX(F) = ClΘ(F) ∩ X ⊆ G. It follows that (X,ΘX) is ω-almost-
regular.

Theorem 2.14. The product of two ω-almost-regular TSs is ω-almost-regular.

Proof. Let (X,Θ) and (Z, λ) be twoω-almost-regular TSs. Let (x,y) ∈ X×Z and let G ∈ RωO(X×Z,Θ×λ)
such that (x,y) ∈ G. Then G ∈ (Θ× λ)δω and by Theorem 2.17 of [9], G ∈ Θδω × λδω . Thus, there are
E ∈ Θδω and F ∈ λδω such that (x,y) ∈ E × F ⊆ G. Choose A ∈ RωO(X,Θ) and B ∈ RωO (Z, λ)
such that (x,y) ∈ A× B ⊆ E× F ⊆ G. So, by Theorem 2.1 (b), there are S ∈ Θ and T ∈ λ such that
x ∈ S ⊆ ClΘ (S) ⊆ A and y ∈ T ⊆ Clλ (T) ⊆ B. Therefore, we have S× T ∈ Θ× λ and (x,y) ∈ S× T ⊆
ClΘ×λ (S× T) = ClΘ (S) × Clλ (T) ⊆ A × B ⊆ E × F ⊆ G. It follows that (X × Z,Θ × λ) is ω-almost-
regular.

3. ω-semi-regularity

In this section, we introduce a new topological property called ω-semi-regularity. With the help of
examples, we study several relationships involving ω-semi-regularity. In particular, we demonstrate that
ω-semi-regularity is strictly weaker than each of ω-regularity and semi-regularity and that ω-regular
Hausdorff topological spaces are ω-Urysohn.
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Definition 3.1. A TS (H,Θ) is said to be ω-semi-regular if RωO(H,Θ) forms abase for Θ.

Theorem 3.2. For any TS (H,Θ), the following are equivalent.

(a) (H,Θ) is ω-semi-regular.
(b) For each E ∈ Θ− {∅} and each r ∈ E, there is F ∈ Θ such that r ∈ F ⊆ IntΘ (ClΘω(F)) ⊆ E.
(c) Θδω = Θ.

Proof.

(a) −→ (b): Let E ∈ Θ− {∅} and let r ∈ E. By (a), there is F ∈ RωO(H,Θ) such that r ∈ F = IntΘ (ClΘω(F)) ⊆
E.

(b) −→ (c): By Theorem 2.6 of [9], we have Θδω ⊆ Θ. To see that Θ ⊆ Θδω , let E ∈ Θ− {∅}, then for each
r ∈ E, there is Fr ∈ Θ such that r ∈ Fr ⊆ IntΘ (ClΘω(Fr)) ⊆ E. Put F = F = ∪r∈EIntΘ (ClΘω(Fr)). Since for
each r ∈ E, IntΘ (ClΘω(Fr)) ∈ RωO(H,Θ) ⊆ Θδω , then F ∈ Θδω .

(c) −→ (a): Since RωO(H,Θ) is a base for Θδω and by (c), Θδω = Θ, then RωO(H,Θ) is a base for Θ.
Hence, (H,Θ) is ω-semi-regular.

Theorem 3.3. Every semi-regular TS is ω-semi-regular.

Proof. Let (H,Θ) be semi-regular. Then Θδ = Θ. Thus, by Theorem 2.6 of [9], we have Θ = Θδ ⊆ Θδω ⊆ Θ,
and hence Θδω = Θ. Therefore, by Theorem 3.2, (H,Θ) is ω-semi-regular.

Theorem 3.4. Every anti-locally countable ω-semi-regular TS is semi-regular.

Proof. Let (H,Θ) be anti-locally countable and ω-semi-regular. Since (H,Θ) is ω-semi-regular, then
RωO(H,Θ) is a base for Θ. Since (H,Θ) is anti-locally countable, then by Lemma 2.4 (b), RO(H,Θ) =
RωO(H,Θ). Thus, RO(H,Θ) is a base for Θ. Hence, (H,Θ) is semi-regular.

Theorem 3.5. Every ω-regular TS is ω-semi-regular.

Proof. Let (H,Θ) be ω-regular. Let E ∈ Θ− {∅} and let r ∈ E. Then there is F ∈ Θ such that r ∈ F ⊆
ClΘω(F) ⊆ E. Hence, we have r ∈ F = IntΘ (F) ⊆ IntΘ (ClΘω(F)) ⊆ IntΘ (E) = E. Therefore, by Theorem
3.2, (H,Θ) be ω-semi-regular.

From the above theorems, we have following implications, however, Examples 3.8 and 3.9 given below
show that the converses of these implications are not true.

semi-regularity −→ ω-semi-regularity
↑

ω-regularity

Theorem 3.6. Every locally countable TS is ω-semi-regular.

Proof. Let (H,Θ) be locally countable. Then by Lemma 2.4 (a), RωO(H,Θ) = Θ. Since obviously Θ is a
base for Θ, then RωO(H,Θ) is a base for Θ. Therefore, (H,Θ) is ω-semi-regular.

Theorem 3.7. Let (H,Θ) be a TS. If (H,Θω) is ω-semi-regular, then (H,Θω) is semi-regular.

Proof. Suppose that (H,Θω) is ω-semi-regular. Then RωO(H,Θω) is a base for Θω. Since by Lemma 2.4
(c), RωO(H,Θω) = RO(H,Θω), then RO(H,Θω) is a base for Θω. therefore, (H,Θω) is semi-regular.

The following example shows that Theorem 3.3 need not be true in general.

Example 3.8. Let (H,Θ) be as in Example 2.8. Since RO (H,Θ) = {∅,H}, then RO (H,Θ) is not a base for Θ
and hence, (H,Θ) is not semi-regular. On the other hand, by Theorem 2.6, (H,Θ) is ω-semi-regular.



S. Al Ghour, J. Math. Computer Sci., 31 (2023), 188–196 195

The following example shows that Theorem 3.5 need not be true in general.

Example 3.9. Let (H,Θ) be the simplified Arens square (Example 81 of [25]). It is known that (H,Θ) is
semi-regular but not regular. Also, clearly that (H,Θ) is anti-locally countable. Therefore, by Theorem
3.19 of [6] and Theorem 3.3, (H,Θ) is ω-semi-regular but not ω-regular.

Theorem 3.10. A TS (H,Θ) is regular if and only if it is ω-semi-regular and ω-almost-regular.

Proof.

Necessity. Follows from Corollary 3.15 of [9] and Theorem 3.3.

Sufficiency. Suppose that (H,Θ) is ω-semi-regular and ω-almost-regular. Let E ∈ Θ− {∅} and let r ∈ E.
Since (H,Θ) is ω-semi-regular, then there is F ∈ RωO(H,Θ) such that r ∈ F ⊆ E. Since (H,Θ) is ω-almost-
regular, then by Theorem 2.1 (b), there is S ∈ Θ such that r ∈ S ⊆ ClΘ (S) ⊆ F ⊆ E. Therefore, (H,Θ) is
regular.

Theorem 3.11. Every Urysohn TS is ω-Urysohn.

Proof. Let (H,Θ) be Urysohn and let x,y ∈ H such that x 6= y. Then there are E, F ∈ Θ such that x ∈ E,
y ∈ F, and ClΘ (E) ∩ ClΘ (F) = ∅. Since ClΘω (E) ∩ ClΘω (F) ⊆ ClΘ (E) ∩ ClΘ (F) = ∅, then ClΘω (E) ∩
ClΘω (F) = ∅. Hence, (H,Θ) is ω-Urysohn.

Theorem 3.12. Every anti-locally countable ω-Urysohn TS is Urysohn.

Proof. Let (H,Θ) be anti-locally countable and ω-Urysohn. Let x,y ∈ H such that x 6= y. Since (H,Θ) is
ω-Urysohn, then there are E, F ∈ Θ such that x ∈ E, y ∈ F, and ClΘω (E) ∩ClΘω (F) = ∅. Since (H,Θ) is
anti-locally countable, then ClΘ (E)∩ClΘ (F) = ClΘω (E)∩ClΘω (F) = ∅. Hence, (H,Θ) is Urysohn.

Theorem 3.13. Every ω-Urysohn TS is Hausdorff.

Proof. Let (H,Θ) be ω-Urysohn and let x,y ∈ H such that x 6= y. Then there are E, F ∈ Θ such that x ∈ E,
y ∈ F, and ClΘω (E) ∩ClΘω (F) = ∅. Since E ∩ F ⊆ ClΘω (E) ∩ClΘω (F) = ∅, then E ∩ F = ∅. Hence, (H,Θ)
is Hausdorff.

Theorem 3.14. Every locally countable Hausdorff TS is ω-Urysohn.

Proof. Let (H,Θ) be locally countable and Hausdorff. Let x,y ∈ H such that x 6= y. Since (H,Θ) is
Hausdorff, then there are E, F ∈ Θ such that x ∈ E, y ∈ F, and E∩ F = ∅. Since (H,Θ) is locally countable,
then ClΘω (E)∩ClΘω (F) = E∩ F = ∅. Hence, (H,Θ) is ω-Urysohn.

The following example shows that the converse of Theorem 3.11 need not be true in general.

Example 3.15. Let (H,Θ) be the Irrational Slope Topology (Example 75 of [25]). It is known that (H,Θ) is
Hausdorff but not Urysohn. Since (H,Θ) is locally countable, then by Theorem 3.14, (H,Θ) is ω-Urysohn.

The following example shows that Theorem 3.13 need not be true in general.

Example 3.16. Let (H,Θ) be the Simplified Arens Square (Example 81 of [25]). It is known that (H,Θ)
is Hausdorff but not Urysohn. Since (H,Θ) is anti-locally countable, then by Theorem 3.12, (H,Θ) is not
ω-Urysohn.

Theorem 3.17. Every ω-regular Hausdorff TS is ω-Urysohn.

Proof. Let (H,Θ) be ω-regular and Hausdorff. Let x,y ∈ H such that x 6= y. Since (H,Θ) is Hausdorff,
then there are E, F ∈ Θ such that x ∈ E, y ∈ F, and E ∩ F = ∅. Since (H,Θ) be ω-regular, then there are
S, T ∈ Θ such that x ∈ S ⊆ ClΘω (S) ⊆ E and y ∈ T ⊆ ClΘω (T) ⊆ F. Therefore, we have x ∈ S ∈ Θ,
y ∈ T ∈ Θ and ClΘω (S)∩ClΘω (T) ⊆ E∩ F = ∅ and hence (H,Θ) is ω-Urysohn.
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Theorem 3.18. If (X,Θ) and (Z, λ) are two ω-semi-regular TSs such that the product (X× Z,Θ× λ) is ω-semi-
regular, then both of (X,Θ) and (Z, λ) are ω-semi-regular.

Proof. Since (X×Z,Θ× λ) is ω-semi-regular, then (Θ× λ)δω = Θ× λ. So, by Theorem 2.17 of [9], Θ× λ ⊆
Θδω × λδω . Therefore, Θ = Θδω and λ = λδω . Hence, (X,Θ) and (Z, λ) are ω-semi-regular.

4. Conclusion

As two weaker forms of regularity, ω-almost-regularity and ω-semi-regular have been investigated.
Several characterizations of them have been introduced (Theorems 2.1, 3.2). Subspaces and product
theorems have been given (Theorems 2.11, 2.13, 2.14, 3.18). Also, it is proved that ω-almost-regularity
lies strictly between regularity and almost-regularity (Theorems 2.2, 2.3 and Examples 2.7, 2.8) and that
ω-semi-regularity is strictly weaker than each of ω-regularity and semi-regularity (Theorems 3.3, 3.5 and
Examples 3.8, 3.9). Moreover, a decomposition theorem of regularity via ω-almost-regularity and ω-
semi-regular has been introduced (Theorem 3.10). In the upcoming work, we plan: 1) to define and study
ω-almost-normality; 2) to extend these concepts to include fuzzy topological spaces.
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