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Abstract
In general, we have constructed the operators ideal generated by extended s-fuzzy numbers and a certain space of sequences

of fuzzy numbers. An investigation into the conditions sufficient for Nakano sequence space of fuzzy numbers furnished with
the definite function to create pre-quasi Banach and closed is carried out. The (R) and the normal structural properties of this
space are shown. Fixed points for Kannan contraction and non-expansive mapping have been introduced. Lastly, we explore
whether the Kannan contraction mapping has a fixed point in its associated pre-quasi operator ideal. The existence of solutions
to non-linear difference equations is illustrated with a few real-world examples and applications.
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1. Introduction

After Zadeh [29] established the concept of fuzzy sets and fuzzy set operations, many researchers
adopted the concept of fuzziness in cybernetics and artificial intelligence as well as in expert systems
and fuzzy control. Fuzzy sequence spaces were introduced, and their various features were studied by
many workers on sequence spaces and summability theory. Nuray and Savaş [20] defined and studied
the Nakano sequences of fuzzy numbers, `F(τ) equipped with the function h. Operators ideal are very
important in fixed point theory, Banach space geometry, normal series theory, approximation theory, and
ideal transformations, see [17, 21, 22]. Pre-quasi operator ideals are more extensive than quasi-operator
ideals, according to Faried and Bakery [10]. The learning about the variable exponent Lebesgue spaces
obtained impetus from the mathematical description of the hydrodynamics of non-Newtonian fluids (see
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[24, 26]). There are numerous uses for electrorheological fluids, which include military science, civil
engineering, and orthopedic. There have been many developments in mathematics since the Banach fixed
point theorem [8] was first published. While contractions have fixed point actions, Kannan [13] cited an
example of a type of mapping that is not continuous. In Reference [11], the only attempt was made to
explain Kannan operators in modular vector spaces. For more details on Kannan’s fixed point theorems
see [2, 4–7, 25]. Given that the demonstration of many fixed point theorems in a given space entails
either expanding the space itself or its self-mapping, both of these alternatives are possible. In this paper,
we examined a novel general space known as the Nakano sequence space of fuzzy numbers equipped
with various pre-quasi functions and its associated mappings’ ideal solutions space for several stochastic
non-linear and matrix systems of Kannan type, respectively. These spaces’ geometric and topological
structures connected to a Kannan-type fixed point are presented. We have addressed the requirements
on these spaces essential for these dynamical systems to have unique or many solutions in these spaces.
It is the goal of this work to introduce the certain space of sequences of fuzzy numbers, in short (cssf),
under a certain function to be pre-quasi (cssf). This space and s-numbers have been used to describe
the structure of the ideal operators. An investigation into the conditions necessary to create pre-quasi
Banach and closed (cssf)

(
`F(τ)

)
h

furnished with the definite function h is carried out. The (R) and
the normal structure-property of this space are shown. Fixed points for Kannan contraction and non-
expansive mapping have been introduced. Lastly, we explore whether the Kannan contraction mapping
has a fixed point in its associated pre-quasi operator ideal. The existence of solutions to non-linear
difference equations is illustrated with a few real-world examples and applications.

2. Definitions and preliminaries

As a reminder, Matloka [16] presented the notion of ordinary convergence of sequences of fuzzy
numbers, where he introduced bounded and convergent fuzzy numbers, explored some of their features,
and proved that any convergent fuzzy number sequence is bounded. Nanda [19] studied the sequences of
fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers forms a complete
metric space. Kumar et al. [15] investigated the limit points and cluster points of sequences of fuzzy
numbers. Let Ω be the set of all closed and bounded intervals on the real line R. For f = [f1, f2] and
g = [g1,g2] in Ω, suppose

f 6 g if and only if f1 6 g1 and f2 6 g2.

Define a metric ρ on Ω by
ρ(f,g) = max{|f1 − g1|, |f2 − g2|}.

Matloka [16] showed that ρ is a metric on Ω and (Ω, ρ) is a complete metric space. Also, the relation 6 is
a partial order on Ω.

Definition 2.1. A fuzzy number g is a fuzzy subset of R, i.e., a mapping g : R→ [0, 1], which verifies the
following four settings:

(a) g is fuzzy convex, i.e., for x,y ∈ R and α ∈ [0, 1], g(αx+ (1 −α)y) > min{g(x),g(y)};
(b) g is normal, i.e., there is y0 ∈ R such that g(y0) = 1;
(c) g is an upper-semi continuous, i.e., for all α > 0, g−1([0, x+α)) for all x ∈ [0, 1] is open in the usual

topology of R;
(d) the closure of g0 := {y ∈ R : g(y) > 0} is compact.

The β-level set of a fuzzy real number g, 0 < β < 1 indicated by gβ is defined as

gβ = {y ∈ R : g(y) > β}.
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The set of every upper semi-continuous, normal, convex fuzzy number and gβ is compact is denoted by
R([0, 1]). The set R can be embedded in R([0, 1]), if we define r ∈ R([0, 1]) by

r(t) =

{
1, t = r,
0, t 6= r.

The additive identity and multiplicative identity in R[0, 1] are denoted by 0 and 1, respectively. The
arithmetic operations on R[0, 1] are defined as follows:

(f⊕ g)(y) = sup
y∈R

min{f(x),g(y− x)}, (f	 g)(y) = sup
y∈R

min{f(x),g(x− y)},

(f⊗ g)(y) = sup
y∈R

min{f(x),g(
y

x
)}, (

f

g
)(y) = sup

y∈R
min{f(xy),g(x)},

xf(y) =

{
f(x−1y), x 6= 0,
0, x = 0.

The absolute value |f| of f ∈ R[0, 1] is defined by

|f|(y) =

{
max{f(y), f(−y)}, if y > 0,
0, if y < 0.

Suppose f,g ∈ R[0, 1] and the β-level sets are [f]β = [fβ1 , fβ2 ], [g]
β = [gβ1 ,gβ2 ], β ∈ [0, 1]. A partial ordering

for any f,g ∈ R[0, 1] is as follows: f � g if and only if fβ 6 gβ, for all β ∈ [0, 1]. Then the above operations
can be defined in terms of β-level sets as follows:

[f⊕ g]β = [fβ1 + gβ1 , fβ2 + gβ2 ], [f	 g]β = [fβ1 − gβ2 , fβ2 − gβ1 ],

[f⊗ g]β = [ min
j∈{1,2}

f
β
j g
β
j , max
j∈{1,2}

f
β
j g
β
j ], [f−1]β = [(fβ2 )

−1, (fβ1 )
−1], fβj > 0, for every β ∈ (0, 1],

[xf]β =

{
[xfβ1 , xfβ2 ], x > 0,
[xfβ2 , xfβ1 ], x < 0.

Assume ρ : R[0, 1]×R[0, 1]→ R+ ∪ {0} is defined by ρ(f,g) = sup06β61 ρ(f
β,gβ). Recall that:

1. (R[0, 1], ρ) is a complete metric space;
2. ρ(f+ k,g+ k) = ρ(f,g) for all f,g,k ∈ R[0, 1];
3. ρ(f+ k,g+ l) 6 ρ(f,g) + ρ(k, l);
4. ρ(ξf, ξg) = |ξ|ρ(f,g), for all ξ ∈ R.

Definition 2.2. A sequence f = (fj) of fuzzy numbers is said to be

(a) bounded if the set {fj : j ∈N} of fuzzy numbers is bounded, i.e., if a sequence (fj) is bounded, then
there are two fuzzy numbers g, l such that g 6 fj 6 l;

(b) convergent to a fuzzy real number f0 if for every ε > 0, there exists n0 ∈ N such that ρ(fj, f0) < ε,
for all j > j0.

By `∞ and `r, we denote the spaces of bounded and r-absolutely summable sequences of real numbers,
respectively. Letω(F) denote the classes of all sequence spaces of fuzzy real numbers. Suppose τ = (τa) ∈
R+N, where R+N is the space of positive real sequences. The Nakano sequence space of fuzzy numbers
defined and studied in [20] is denoted by: `F(τ) =

{
v = (va) ∈ ω(F) : h(µv) <∞ , for some µ > 0

}
, when
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h(v) =
∑∞
a=0[ρ(va, 0)]τa . The space (`F(τ), ‖.‖), where ‖v‖ = inf

{
κ > 0 : h(vκ) 6 1

}
and τa > 1, for all

a ∈ N, is a Banach space. If (τa) ∈ `∞, then

`F(τ) =
{
v = (va) ∈ ω(F) : h(µv) <∞ , for some µ > 0

}
=
{
v = (va) ∈ ω(F) : inf

a
|µ|τa

∞∑
a=0

[ρ(va, 0)]τa 6
∞∑
a=0

[ρ(µva, 0)]τa <∞ , for some µ > 0
}

=
{
v = (va) ∈ ω(F) :

∞∑
a=0

[ρ(va, 0)]τa <∞}
=
{
v = (va) ∈ ω(F) : h(µv) <∞ , for any µ > 0

}
.

Lemma 2.3 ([3]). Suppose τa > 0 and va, ta ∈ R, for every a ∈ N, then |va + ta|
τa 6 2K−1(|va|

τa + |ta|
τa),

where K = max{1, supa τa}.

3. Main results

3.1. Some properties of `F(τ)

In this section, we have introduced the certain space of sequences of fuzzy numbers, (cssf), under
definite function to be pre-quasi (cssf). We explain the sufficient setting of `F(τ) equipped with the
definite function h to be pre-quasi Banach and closed (cssf). The Fatou property of various pre-quasi
norms h on `F(τ) has been investigated. We have presented this space’s uniform convexity (UUC 2), the
property (R), and the h-normal structure-property.

Definition 3.1. The linear space U is said to be a certain space of sequences of fuzzy numbers (cssf), if

(1) {bq}q∈N ⊆ U, where bq = {0, 0, . . . , 1, 0, 0, . . .}, while 1 displays at the qth place;
(2) U is solid, i.e., suppose Y = (Yq) ∈ ω(F), Z = (Zq) ∈ U and |Yq| 6 |Zq|, for all q ∈ N, then Y ∈ U;
(3) (Y[q2 ])

∞
q=0 ∈ U, where [q2 ] marks the integral part of q2 , if (Yq)∞q=0 ∈ U.

Definition 3.2. A subclass Uh of U is called a pre-modular (cssf), if there is h ∈ [0,∞)U that satisfies the
next settings:

(i) if Y ∈ U, Y = ϑ⇔ h(Y) = 0 with h(Y) > 0, where ϑ = (0, 0, 0, . . .);
(ii) there is Q > 1, the inequality h(αY) 6 Q|α|h(Y) holds, for every Y ∈ U and α ∈ R;

(iii) there is P > 1, the inequality h(Y +Z) 6 P(h(Y) + h(Z)) holds, for every Y,Z ∈ U;
(iv) if |Yq| 6 |Zq|, for every q ∈ N, one has h((Yq)) 6 h((Zq));
(v) the inequality h((Yq)) 6 h((Y[q2 ])) 6 P0h((Yq)) holds, for some P0 > 1;

(vi) let E be the space of finite sequences of fuzzy numbers, then the closure of E = Uh;
(vii) there is σ > 0 with h(α, 0, 0, 0, . . .) > σ|α|h(1, 0, 0, 0, . . .), where

α(y) =

{
1, y = α,
0, y 6= α.

Definition 3.3. Suppose U is a (cssf). The function h ∈ [0,∞)U is called a pre-quasi norm on U, if it holds
the following conditions:

(i) if Y ∈ U, Y = ϑ⇔ h(Y) = 0 with h(Y) > 0, where ϑ = (0, 0, 0, . . .);
(ii) there is Q > 1, the inequality h(αY) 6 Q|α|h(Y) satisfies, for every Y ∈ U and α ∈ R;

(iii) there is P > 1, the inequality h(Y +Z) 6 P(h(Y) + h(Z)) holds, for each Y,Z ∈ U.
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Clearly, from the last two definitions, we conclude the following two theorems.

Theorem 3.4. If U is a pre-modular (cssf), then it is pre-quasi normed (cssf).

Theorem 3.5. U is a pre-quasi normed (cssf) if it is quasi-normed (cssf).

Definition 3.6.

(a) The function h on `F(τ) is said to be h-convex, if

h(αY + (1 −α)Z) 6 αh(Y) + (1 −α)h(Z),

for every α ∈ [0, 1] and Y,Z ∈ `F(τ).
(b) {Yq}q∈N ⊆

(
`F(τ)

)
h

is h-convergent to Y ∈
(
`F(τ)

)
h

, if and only if, limq→∞ h(Yq − Y) = 0. When
the h-limit exists, then it is unique.

(c) {Yq}q∈N ⊆
(
`F(τ)

)
h

is h-Cauchy, if limq,r→∞ h(Yq − Yr) = 0.

(d) Γ ⊂
(
`F(τ)

)
h

is h-closed, when for all h-converges {Yq}a∈N ⊂ Γ to Y, then Y ∈ Γ .

(e) Γ ⊂
(
`F(τ)

)
h

is h-bounded, if δh(Γ) = sup
{
h(Y −Z) : Y,Z ∈ Γ

}
<∞.

(f) The h-ball of radius ε > 0 and center Y, for every Y ∈
(
`F(τ)

)
h

, is described as:

Bh(Y, ε) =
{
Z ∈

(
`F(τ)

)
h
: h(Y −Z) 6 ε

}
.

(g) A pre-quasi norm h on `F(τ) holds the Fatou property, if for every sequence {Zq} ⊆
(
`F(τ)

)
h

under

limq→∞ h(Zq −Z) = 0 and all Y ∈
(
`F(τ)

)
h

, one has h(Y −Z) 6 supr infq>r h(Y −Zq).

Note that the Fatou property implies the h-closedness of the h-balls. We will denote the space of all
increasing sequences of real numbers by I.

Theorem 3.7.
(
`F(τ)

)
h

, where h(Y) =
[∑∞

q=0[ρ(Yq, 0)]τq
] 1
K , for all Y ∈ `F(τ), is a pre-modular (cssf), when

(τq)q∈N ∈ `∞ ∩ I with τ0 > 0.

Proof.

(i) Evidently, h(Y) > 0 and h(Y) = 0⇔ Y = ϑ.

(1-i) Let Y,Z ∈ `F(τ). One has

h(Y +Z) =
[ ∞∑
q=0

[ρ(Yq +Zq, 0)]τq
] 1
K
6
[ ∞∑
q=0

[ρ(Yq, 0)]τq
] 1
K
+
[ ∞∑
q=0

[ρ(Zq, 0)]τq
] 1
K
= h(Y) + h(Z) <∞,

then Y +Z ∈ `F(τ).
(iii) One gets P > 1 with h(Y +Z) 6 P(h(Y) + h(Z)), for all Y,Z ∈ `F(τ).
(1-ii) Assume α ∈ R and Y ∈ `F(τ), we obtain

h(αY) =
[ ∞∑
q=0

[ρ(αYq, 0)]τq
] 1
K
6 sup

q

|α|
τq
K

[ ∞∑
q=0

[ρ(Yq, 0)]τq
] 1
K
6 Q|α|h(Y) <∞.

As αY ∈ `F(τ), hence, from conditions (1-i) and (1-ii), one has `F(τ) is linear. Also bp ∈ `F(τ), for all p ∈ N,

since h(bp) =
[∑∞

q=0[ρ(bp, 0)]τq
] 1
K
= 1.
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(ii) There is Q = max
{

1, supq |α|
τq
K −1
}
> 1 with h(αY) 6 Q|α|h(Y), for all Y ∈ `F(τ) and α ∈ R.

(2) Assume |Yq| 6 |Zq|, for all q ∈ N and Z ∈ `F(τ). One finds

h(Y) =
[ ∞∑
q=0

[ρ(Yq, 0)]τq
] 1
K
6
[ ∞∑
q=0

[ρ(Zq, 0)]τq
] 1
K
= h(Z) <∞,

then Y ∈ `F(τ).
(iv) Obviously, from (2).

(3) Let (Yq) ∈ `F(τ), we get

h
(
(Y[q2 ])

)
=
[ ∞∑
q=0

[ρ(Y[q2 ], 0)]τq
] 1
K
=
[ ∞∑
q=0

[ρ(Yq, 0)]τ2q +

∞∑
q=0

[ρ(Yq, 0)]τ2q+1
] 1
K
6 2

1
K

[ ∞∑
q=0

[ρ(Yq, 0)]τq
] 1
K

= 2
1
Kh
(
(Yq)

)
,

then (Y[q2 ]) ∈ `
F(τ).

(v) From (3), we obtain P0 = 2
1
K > 1.

(vi) Evidently the closure of E = `F(τ).

(vii) There is 0 < σ 6 |α|
τ0
K −1, for α 6= 0 or σ > 0, for α = 0 with h(α, 0, 0, 0, . . .) > σ|α|h(1, 0, 0, 0, . . .).

Theorem 3.8. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, then
(
`F(τ)

)
h

is a pre-quasi Banach (cssf), where h(Y) =[∑∞
q=0[ρ(Yq, 0)]τq

] 1
K , for every Y ∈ `F(τ).

Proof. In view of Theorems 3.7 and 3.4, the space
(
`F(τ)

)
h

is a pre-quasi normed (cssf). Assume Yl =

(Ylq)
∞
q=0 is a Cauchy sequence in

(
`F(τ)

)
h

. Hence, for every ε ∈ (0, 1), one has l0 ∈ N such that for all
l,m > l0, one gets

h(Yl − Ym) =
[ ∞∑
q=0

[ρ(Ylq − Y
m
q , 0)]τq

] 1
K
< ε.

That implies ρ(Ylq− Ymq , 0) < ε. As (R[0, 1], ρ) is a complete metric space, then (Ymq ) is a Cauchy sequence
in R[0, 1], for fixed q ∈ N, which implies limm→∞ Ymq = Y0

q, for constant q ∈ N. Hence h(Yl − Y0) < ε,
for every l > l0. Since h(Y0) = h(Y0 − Yl + Yl) 6 h(Yl − Y0) + h(Yl) <∞. So Y0 ∈ `F(τ).

Theorem 3.9. Suppose (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, then
(
`F(τ)

)
h

is a pre-quasi closed (cssf), where h(Y) =[∑∞
q=0[ρ(Yq, 0)]τq

] 1
K , for every Y ∈ `F(τ).

Proof. In view of Theorems 3.7 and 3.4, the space
(
`F(τ)

)
h

is a pre-quasi normed (cssf). Assume Yl =

(Ylq)
∞
q=0 ∈

(
`F(τ)

)
h

and liml→∞ h(Yl − Y0) = 0, then for all ε ∈ (0, 1), there is l0 ∈ N such that for all
l > l0, we obtain

ε > h(Yl − Y0) =
[ ∞∑
q=0

[ρ(Ylq − Y
0
q, 0)]τq

] 1
K

,
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which implies ρ(Ylq − Y0
q, 0) < ε. As (R[0, 1], ρ) is a complete metric space, therefore, (Ylq) is a convergent

sequence in R[0, 1], for fixed q ∈ N. So, liml→∞ Ylq = Y0
q, for fixed q ∈ N. Since h(Y0) = h(Y0 − Yl + Yl) 6

h(Yl − Y0) + h(Yl) <∞, one has Y0 ∈ `F(τ).

Theorem 3.10. The function h(Y) =
[∑∞

q=0[ρ(Yq, 0)]τq
] 1
K holds the Fatou property, when (τq)q∈N ∈ `∞ ∩ I

with τ0 > 0, for all Y ∈ `F(τ).

Proof. Let {Zr} ⊆
(
`F(τ)

)
h

such that limr→∞ h(Zr − Z) = 0. Since
(
`F(τ)

)
h

is a pre-quasi closed space,

one has Z ∈
(
`F(τ)

)
h

. For all Y ∈
(
`F(τ)

)
h

, one gets

h(Y −Z) =
[ ∞∑
q=0

[ρ(Yq −Zq, 0)]τq
] 1
K
6
[ ∞∑
q=0

[ρ(Yq −Zrq, 0)]τq
] 1
K
+
[ ∞∑
q=0

[ρ(Zrq −Zq, 0)]τq
] 1
K

6 sup
m

inf
r>m

h(Y −Zr).

Theorem 3.11. The function h(Y) =
∑∞
q=0[ρ(Yq, 0)]τq does not hold the Fatou property, for all Y ∈ `F(τ), when

(τq) ∈ `∞ and τq > 1, for all q ∈ N.

Proof. Let {Zr} ⊆
(
`F(τ)

)
h

so that limr→∞ h(Zr − Z) = 0. Since
(
`F(τ)

)
h

is a pre-quasi closed space, one

gets Z ∈
(
`F(τ)

)
h

. For every Z ∈
(
`F(τ)

)
h

, we obtain

h(Y −Z) =

∞∑
q=0

[ρ(Yq −Zq, 0)]τq 6 2supq τq−1

 ∞∑
q=0

[ρ(Yq −Zrq, 0)]τq +
∞∑
q=0

[ρ(Zrq −Zq, 0)]τq


6 2supq τq−1 sup

m

inf
r>m

h(Y −Zr).

Example 3.12. For (τq) ∈ [1,∞)N, the function h(Y) = inf
{
α > 0 :

∑
q∈N[ρ(

Yq
α , 0)]τq 6 1

}
is a norm on

`F(τ).

Example 3.13. The function h(Y) = 3
√∑

q∈N[ρ(Yq, 0)]
3q+2
q+1 is a pre-quasi norm (not a norm) on `F(( 3q+2

q+1 )
∞
q=0).

Example 3.14. The function h(Y) =
∑
q∈N[ρ(Yq, 0)]

3q+2
q+1 is a pre-quasi norm (not a quasi norm) on

`F(( 3q+2
q+1 )

∞
q=0).

Example 3.15. The function h(Y) = d

√∑
q∈N[ρ(Yq, 0)]d is a pre-quasi norm, quasi norm and not a norm

on `Fd, for 0 < d < 1.

Definition 3.16.

(1) [14] Suppose p > 0 and q > 0. Indicate

K2(p,q) =
{
(Y,Z) : Y,Z ∈ Uh, h(Y) 6 p, h(Z) 6 p, h

(
Y −Z

2

)
> pq

}
.

When K2(p,q) 6= ∅, we put

K2(p,q) = inf
{

1 −
1
p
h

(
Y +Z

2

)
: (Y,Z) ∈ K2(p,q)

}
.

If K2(p,q) = ∅, we put K2(p,q) = 1.
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(2) [14] The function h satisfies (UUC 2) if for every r > 0 and q > 0, there is β2(r,q) with

K2(p,q) > β2(r,q) > 0 , for p > r.

(3) [18] The function h is strictly convex, (SC), if for all Y,Z ∈ Uh such that h(Y) = h(Z) and h
(
Y+Z

2

)
=

h(Y)+h(Z)
2 , we get Y = Z.

Lemma 3.17.

(i) [9] Let t > 2 and for all f,g ∈ R, then∣∣∣∣f+ g2

∣∣∣∣t + ∣∣∣∣f− g2

∣∣∣∣t 6 1
2

(
|f|t + |g|t

)
.

(ii) [28] If 1 < t 6 2 and for every f,g ∈ R so that |f|+ |g| 6= 0, then∣∣∣∣f+ g2

∣∣∣∣t + t(t− 1)
2

∣∣∣∣ f− g|f|+ |g|

∣∣∣∣2−t ∣∣∣∣f− g2

∣∣∣∣t 6 1
2

(
|f|t + |g|t

)
.

In the next part of this section, we will use the function h as h(g) =
[∑∞

m=0
(
ρ(gm, 0)

)τm ] 1
K

, for every

g ∈ `F(τ).

Theorem 3.18. Suppose (τq)q∈N ∈ `∞ ∩ I with τ0 > 1, then h is (UUC2).

Proof. Let the condition be satisfied, b > 0 and a > r > 0. Suppose f,g ∈ `F(τ)h so that

h(f) 6 a, h(g) 6 a and h
(
f− g

2

)
> ab. (3.1)

From the definition of h, we have

ab 6 h

(
f− g

2

)
=

[ ∞∑
m=0

(
ρ

(
fm − gm

2
, 0
))τm] 1

K

6 2−
τ0
K

[ ∞∑
m=0

(
ρ(fm, 0)

)τm] 1
K

+

[ ∞∑
m=0

(
ρ(gm, 0)

)τm] 1
K


= 2−

τ0
K (h(f) + h(g)) 6 2a,

this implies b 6 2. Consequently, let Q = {x ∈ N : 1 < τx < 2} and P = {x ∈ N : τx > 2} = N\Q. For every
w ∈ `F(τ)h, we get hK(w) = hKP (w)+h

K
Q(w). From the setup, one has hP

(
f−g

2

)
> ab

2 or hQ
(
f−g

2

)
> ab

2 .

Assume first hP
(
f−g

2

)
> ab

2 . By using Lemma 3.17, condition (i), we obtain

hKP

(
f+ g

2

)
+ hKP

(
f− g

2

)
6
hKP (f) + h

K
P (g)

2
,

which implies

hKP

(
f+ g

2

)
6
hKP (f) + h

K
P (g)

2
−

(
ab

2

)K
. (3.2)

As

hKQ

(
f+ g

2

)
6
hKQ(f) + h

K
Q(g)

2
, (3.3)
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by adding inequalities (3.2) and (3.3), and from inequality (3.1), we have

hK
(
f+ g

2

)
6
hK(f) + hK(g)

2
−

(
ab

2

)K
6 aK

(
1 −

(
b

2

)K)
.

That gives

h

(
f+ g

2

)
6 a

(
1 −

(
b

2

)K) 1
K

. (3.4)

Next, suppose hQ
(
f−g

2

)
> ab

2 . Set B =
(
b
4

)K
,

Q1 =
{
m ∈ Q : ρ(fm − gm, 0) 6 B(ρ(fm, 0) + ρ(gm, 0))

}
and Q2 = Q \Q1.

As B 6 1 and the power function is convex, so

hKQ1

(
f− g

2

)
6
∑
m∈Q1

Bτm
(
ρ

(
fm + gm

2
, 0
))τm

6

(
B

2

)τ0 (
hKQ1

(f) + hKQ1
(g)
)
6
B

2
(
hKQ(f) + h

K
Q(g)

)
6
B

2
(
hK(f) + hK(g)

)
6 BaK.

Since hQ
(
f−g

2

)
> ab

2 , we get

hKQ2

(
f− g

2

)
= hKQ

(
f− g

2

)
− hKQ1

(
f− g

2

)
> aK

((
b

2

)K
−

(
b

4

)K)
.

For any m ∈ Q2, we have

τ0 − 1 < τ0(τ0 − 1) 6 · · · 6 τm−1(τm−1 − 1) 6 τm(τm − 1)
and

B < B2−τm <

[
ρ(fm − gm, 0)

ρ(fm, 0) + ρ(gm, 0)

]2−τm

,

by Lemma 3.17, condition (ii), we have that(
ρ

(
fm + gm

2
, 0
))τm

+
(τ0 − 1)B

2

(
ρ

(
fm − gm

2
, 0
))τm

6
1
2

((
ρ(fm, 0)

)τm
+
(
ρ(gm, 0)

)τm) .

Hence

hKQ2

(
f+ g

2

)
+

(τ0 − 1)B
2

hKQ2

(
f− g

2

)
6
hKQ2

(f) + hKQ2
(g)

2
,

that investigates

hKQ2

(
f+ g

2

)
6
hKQ2

(f) + hKQ2
(g)

2
−

(τ0 − 1)B
2

aK

((
b

2

)K
−

(
b

4

)K)
. (3.5)

Since

hKQ1

(
f+ g

2

)
6
hKQ1

(f) + hKQ1
(g)

2
, (3.6)
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by adding inequalities (3.5) and (3.6), one has

hKQ

(
f+ g

2

)
6
hKQ(f) + h

K
Q(g)

2
−

(τ0 − 1)B
2

aK

((
b

2

)K
−

(
b

4

)K)

6
hKQ(f) + h

K
Q(g)

2
−

(τ0 − 1)
2

(
b

4

)2K

aK
(
2K − 1

)
6
hKQ(f) + h

K
Q(g)

2
−

(τ0 − 1)
2K − 1

(
b

4

)2K

aK.

(3.7)

Since

hKP

(
f+ g

2

)
6
hKP (f) + h

K
P (g)

2
, (3.8)

by adding inequalities (3.7) and (3.8), and from inequality (3.1), we obtain

hK
(
f+ g

2

)
6
hK(f) + hK(g)

2
−

(τ0 − 1)
2K − 1

(
b

4

)2K

aK 6 aK
[

1 −
(τ0 − 1)
2K − 1

(
b

4

)2K
]

.

This implies

h

(
f+ g

2

)
6 a

[
1 −

(τ0 − 1)
2K − 1

(
b

4

)2K
] 1
K

. (3.9)

It is clear that

1 < τ0 6 K < 2K ⇒ 0 <
τ0 − 1
2K − 1

< 1.

By using inequalities (3.4) and (3.9), and Definition 3.16, if we put

β2(r,b) = min

1 −

(
1 −

(
b

2

)K) 1
K

, 1 −

[
1 −

(τ0 − 1)
2K − 1

(
b

4

)2K
] 1
K

 ,

one has K2(a,b) > β2(r,b) > 0, we deduce that h is (UUC2).

Definition 3.19. The space Uh holds the property (R) if and only if for all decreasing sequences {Γj}j∈N
of h-closed and h-convex nonempty subsets of Uh with supj∈N Kh(Y, Γj) <∞, for some Y ∈ Uh, one has⋂
j∈N Γj 6= ∅.

By fixing Γ a nonempty h-closed and h-convex subset of
(
`F(τ)

)
h

we have the following.

Theorem 3.20. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 1, one has

(i) suppose Y ∈
(
`F(τ)

)
h

with

Kh(Y, Γ) = inf
{
h(Y −Z) : Z ∈ Γ

}
<∞,

there is a unique κ ∈ Γ so that Kh(Y, Γ) = h(Y − κ);

(ii)
(
`F(τ)

)
h

holds the property (R).
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Proof. To prove (i), assume Y /∈ Γ as Γ is h-closed. One has C := Kh(Y, Γ) > 0. Hence for all r ∈ N, one has

Zr ∈ Γ with h(Y −Zr) < C(1 + 1
r). If {Zr2 } is not h-Cauchy. One gets a subsequence {

Zg(r)
2 } and l0 > 0 with

h

(
Zg(r)−Zg(j)

2

)
> l0, for every r > j > 0. Also, one gets K2

(
C(1 + 1

r),
l0
2C

)
> α := β2

(
C(1 + 1

r),
l0
2C

)
> 0,

for all r ∈ N. Since

max
(
h(Y −Zg(r)),h(Y −Zg(j))

)
6 C

(
1 +

1
g(j)

)
and

h

(
Zg(r) −Zg(j)

2

)
> l0 > C

(
1 +

1
g(j)

)
l0

2C
,

for every r > j > 0, we obtain

h

(
Y −

Zg(r) +Zg(j)

2

)
6 C

(
1 +

1
g(j)

)
(1 −α).

Then

C = Kh(Y, Γ) 6 C
(

1 +
1
g(j)

)
(1 −α),

for all j ∈ N. By putting j→∞, one has

0 < C 6 C

(
1 +

1
g(j)

)
(1 −α) < C,

which is a contradiction. So {Zr2 } is h-Cauchy. As
(
`F(τ)

)
h

is h-complete, then {Zr2 } h-converges to some

Z. For all j ∈ N, one gets {Zr+Zj2 } h-converges to Z+
Zj
2 . Since Γ is h-closed and h-convex, then Z+

Zj
2 ∈ Γ .

Since Z+
Zj
2 h-converges to 2Z, then 2Z ∈ Γ . Let λ = 2z and from Theorem 3.10, since h holds the Fatou

property, one has

Kh(Y, Γ) 6 h(Y − λ) 6 sup
i

inf
j>i
h

(
Y −

(
Z+

Zj

2

))
6 sup

i

inf
j>i

sup
i

inf
r>i

h

(
Y −

Zr +Zj
2

)
6

1
2

sup
i

inf
r>i

sup
i

inf
r>i

[
h(Y −Zr) + h(Y −Zj)

]
= Kh(Y, Γ).

Then h(Y − λ) = Kh(Y, Γ). Since h is (UUC2), so is (SC), this implies the uniqueness of λ. To prove (ii),
assume Y /∈ Γr0 , for some r0 ∈ N. Since

(
Kh(Y, Γr)

)
r∈N ∈ `∞ is increasing, put limr→∞ Kh(Y, Γr) = C,

when C > 0. Otherwise Y ∈ Γr, for all r ∈ N. According to (i), there is one point Zr ∈ Γr with Kh(Y, Γr) =
h(Y − Zr), for every r ∈ N. A similar proof will prove that {Zr2 } h-converges to some Z ∈

(
`F(τ)

)
h

. As

{Γr} are h-convex, decreasing and h-closed, one has 2Z ∈ ∩r∈NΓr.

Definition 3.21. Uh holds the h-normal structure-property if and only if for all nonempty h-bounded,
h-convex and h-closed subset Γ of Uh not decreased to one point, one has Y ∈ Γ with

sup
Z∈Γ

h(Y −Z) < δh(Γ) := sup
{
h(Y −Z) : Y,Z ∈ Γ

}
<∞.

Theorem 3.22. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 1, then
(
`F(τ)

)
h

holds the h-normal structure-property.
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Proof. Theorem 3.18 gives that h is (UUC2). If Γ is a h-bounded, h-convex and h-closed subset of
(
`F(τ)

)
h

not decreased to one point, hence, δh(Γ) > 0. Set C = δh(Γ). Suppose Y, Z ∈ Γ such that Y 6= Z. Hence
h
(
Y−Z

2

)
= l > 0. For every α ∈ Γ , one gets h(Y − α) 6 C and h(Z− α) 6 C. As Γ is h-convex, one gets

Y+Z
2 ∈ Γ . As

h

(
Y +Z

2
−α

)
= h

(
(Y −α) + (Z−α)

2

)
6 C

(
1 − K2

(
C,
l

C

))
,

for all α ∈ Γ , then

sup
α∈Γ

h

(
Y +Z

2
−α

)
6 C

(
1 − K2

(
C,
l

C

))
< C = δh(Γ).

3.2. Kannan contraction mapping on `F(τ)

In this section, we look at how to configure
(
`F(τ)

)
h

with different h so that there is only one fixed
point of Kannan contraction mapping.

Definition 3.23. An operator V : Uh → Uh is said to be a Kannan h-contraction, if one gets α ∈ [0, 1
2)

with h(VY − VZ) 6 α(h(VY − Y) + h(VZ − Z)), for all Y,Z ∈ Uh. The operator V is called Kannan
h-non-expansive, when α = 1

2 .
An element Y ∈ Uh is called a fixed point of V , when V(Y) = Y.

Theorem 3.24. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, and V :
(
`F(τ)

)
h
→
(
`F(τ)

)
h

is Kannan h-contraction

mapping, where h(Y) =
[∑∞

q=0[ρ(Yq, 0)]τq
] 1
K , for all Y ∈ `F(τ), then V has a unique fixed point.

Proof. If Y ∈ `F(τ), one has VpY ∈ `F(τ). As V is a Kannan h-contraction mapping, one gets

h(Vl+1Y − VlY) 6 α
(
h(Vl+1Y − VlY) + h(VlY − Vl−1Y)

)
⇒

h(Vl+1Y − VlY) 6
α

1 −α
h(VlY − Vl−1Y) 6

(
α

1 −α

)2

h(Vl−1Y − Vl−2Y) 6 · · · 6
(

α

1 −α

)l
h(VY − Y).

So for all l,m ∈ N with m > l, one gets

h(VlY − VmY) 6 α
(
h(VlY − Vl−1Y) + h(VmY − Vm−1Y)

)
6 α

((
α

1 −α

)l−1

+

(
α

1 −α

)m−1
)
h(VY − Y).

Then, {VlY} is a Cauchy sequence in
(
`F(τ)

)
h

. As the space
(
`F(τ)

)
h

is pre-quasi Banach space, one has

Z ∈
(
`F(τ)

)
h

with liml→∞ VlY = Z. To prove that VZ = Z, since h has the Fatou property, one obtains

h(VZ−Z) 6 sup
i

inf
l>i
h(Vl+1Y − VlY) 6 sup

i

inf
l>i

(
α

1 −α

)l
h(VY − Y) = 0,

then VZ = Z. So Z is a fixed point of V . To show the uniqueness, let Y,Z ∈
(
`F(τ)

)
h

be two not equal
fixed points of V . One has

h(Y −Z) 6 h(VY − VZ) 6 α
(
h(VY − Y) + h(VZ−Z)

)
= 0.

So, Y = Z.
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Corollary 3.25. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 1, and V :
(
`F(τ)

)
h
→
(
`F(τ)

)
h

is Kannan h-contraction

mapping, where h(Y) =
[∑∞

q=0[ρ(Yq, 0)]τq
] 1
K , for all Y ∈ `F(τ), one has V has unique fixed point Z so that

h(VlY −Z) 6 α
(
α

1−α

)l−1
h(VY − Y).

Proof. In view of Theorem 3.24, one has a unique fixed point Z of V . So

h(VlY −Z) = h(VlY − VZ) 6 α
(
h(VlY − Vl−1Y) + h(VZ−Z)

)
= α

(
α

1 −α

)l−1

h(VY − Y).

Example 3.26. Assume V :
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h
→
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

, where h(g) =

√∑∞
q=0

(
ρ(gq, 0)

) 2q+3
q+2 ,

for every g ∈ `F(( 2q+3
q+2 )

∞
q=0) and

V(g) =

{
g
4 , h(g) ∈ [0, 1),
g
5 , h(g) ∈ [1,∞).

As for each g1,g2 ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

with h(g1),h(g2) ∈ [0, 1), one has

h(Vg1 − Vg2) = h(
g1

4
−
g2

4
) 6

1
4
√

27

(
h(

3g1

4
) + h(

3g2

4
)
)
=

1
4
√

27

(
h(Vg1 − g1) + h(Vg2 − g2)

)
.

For all g1,g2 ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

with h(g1),h(g2) ∈ [1,∞), one has

h(Vg1 − Vg2) = h(
g1

5
−
g2

5
) 6

1
4
√

64

(
h(

4g1

5
) + h(

4g2

5
)
)
=

1
4
√

64

(
h(Vg1 − g1) + h(Vg2 − g2)

)
.

For all g1,g2 ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

with h(g1) ∈ [0, 1) and h(g2) ∈ [1,∞), we get

h(Vg1 − Vg2) = h(
g1

4
−
g2

5
) 6

1
4
√

27
h(

3g1

4
) +

1
4
√

64
h(

4g2

5
)

6
1

4
√

27

(
h(

3g1

4
) + h(

4g2

5
)
)
=

1
4
√

27

(
h(Vg1 − g1) + h(Vg2 − g2)

)
.

Hence, V is Kannan h-contraction. As h satisfies the Fatou property. From Theorem 3.24, one has V holds
one fixed point ϑ ∈

(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

.

Definition 3.27. Pick up Uh be a pre-quasi normed (cssf), V : Uh → Uh and Z ∈ Uh. The operator V is
called h-sequentially continuous at Z, if and only if, when limq→∞ h(Yq −Z) = 0, then limq→∞ h(VYq −
VZ) = 0.

Example 3.28. Suppose V :
(
`F(( q+1

2q+4)
∞
q=0)

)
h
→
(
`F(( q+1

2q+4)
∞
q=0)

)
h

, where h(Z) =
[∑∞

q=0
(
ρ(Zq, 0)

) q+1
2q+4

]4

,

for every Z ∈ `F(( q+1
2q+4)

∞
q=0) and

V(Z) =


1
18(b0 +Z), Z0(y) ∈ [0, 1

17),
1
17b0, Z0(y) =

1
17 ,

1
18b0, Z0(y) ∈ ( 1

17 , 1].

V is clearly both h-sequentially continuous and discontinuous at 1
17b0 ∈

(
`F(( q+1

2q+4)
∞
q=0)

)
h

.
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Example 3.29. Assume V is defined as in Example 3.26. Suppose {Z(n)} ⊆
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

is such that

limn→∞ h(Z(n) −Z(0)) = 0, where Z(0) ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

with h(Z(0)) = 1. As the pre-quasi norm h is
continuous, we have

lim
n→∞h(VZ(n) − VZ(0)) = lim

n→∞h
(Z(n)

4
−
Z(0)

5

)
= h

(Z(0)

20

)
> 0.

Therefore, V is not h-sequentially continuous at Z(0).

Theorem 3.30. If (τq)q∈N∈`∞ ∩ I with τ0 > 1, and V :
(
`F(τ)

)
h
→
(
`F(τ)

)
h

, where h(Y) =
∑∞
q=0[ρ(Yq, 0)]τq ,

for all Y ∈ `F(τ), suppose

(1) V is Kannan h-contraction mapping;

(2) V is h-sequentially continuous at Z ∈
(
`F(τ)

)
h

;

(3) there is Y ∈
(
`F(τ)

)
h

with {VlY} has {VljY} converging to Z,

then Z ∈
(
`F(τ)

)
h

is the only fixed point of V

Proof. Assume Z is not a fixed point of V , one has VZ 6= Z. From parts (2) and (3), we get

lim
lj→∞h(VljY −Z) = 0 and lim

lj→∞h(Vlj+1Y − VZ) = 0.

As V is Kannan h-contraction, one obtains

0 < h(VZ−Z) = h
(
(VZ− Vlj+1Y) + (VljY −Z) + (Vlj+1Y − VljY)

)
6 22 supi τi−2h

(
Vlj+1Y − VZ

)
+ 22 supi τi−2h

(
VljY −Z

)
+2supi τi−1α

(
α

1 −α

)lj−1

h(VY − Y).

As lj → ∞, one has a contradiction. Then Z is a fixed point of V . To show that the uniqueness, let

Z, Y ∈
(
`F(τ)

)
h

be two not equal fixed points of V . One obtains

h(Z− Y) 6 h(VZ− VY) 6 α
(
h(VZ−Z) + h(VY − Y)

)
= 0.

Hence, Z = Y.

Example 3.31. Assume V is defined as in Example 3.26. Let h(Y) =
∑
q∈N

(
ρ(Yq, 0)

) 2q+3
q+2 , for all Y ∈

`F(( 2q+3
q+2 )

∞
q=0). Since for all Y1, Y2 ∈

(
`F(( 2a+3

q+2 )
∞
q=0)

)
h

with h(Y1),h(Y2) ∈ [0, 1), one gets

h(VY1 − VY2) = h(
Y1

4
−
Y2

4
) 6

2√
27

(
h(

3Y1

4
) + h(

3Y2

4
)
)
=

2√
27

(
h(VY1 − Y1) + h(VY2 − Y2)

)
,

for all Y1, Y2 ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

with h(Y1),h(Y2) ∈ [1,∞), one gets

h(VY1 − VY2) = h(
Y1

5
−
Y2

5
) 6

1
4

(
h(

4Y1

5
) + h(

4Y2

5
)
)
=

1
4

(
h(VY1 − Y1) + h(VY2 − Y2)

)
.

For all Y1, Y2 ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

with h(Y1) ∈ [0, 1) and h(Y2) ∈ [1,∞), one gets

h(VY1 − VY2) = h(
Y1

4
−
Y2

5
) 6

2√
27
h(

3Y1

4
) +

1
4
h(

4Y2

5
)

6
2√
27

(
h(

3Y1

4
) + h(

4Y2

5
)
)
=

2√
27

(
h(VY1 − Y1) + h(VY2 − Y2)

)
.
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So V is Kannan h-contraction and Vp(Y) =

{
Y
4p , h(Y) ∈ [0, 1),
Y
5p , h(Y) ∈ [1,∞).

Obviously V is h-sequentially contin-

uous at ϑ ∈
(
`F(( 2a+3

q+2 )
∞
q=0)

)
h

and {VpY} holds, {VljY} converges to ϑ. By Theorem 3.30, the point

ϑ ∈
(
`F(( 2a+3

q+2 )
∞
q=0)

)
h

is the only fixed point of V .

3.3. Kannan non-expansive mapping on
(
`F(τ)

)
h

We introduce the sufficient conditions of
(
`F(τ)

)
h

, where h(g) =
[∑∞

m=0
(
ρ(gm, 0)

)τm ] 1
K

, for every

g ∈ `F(τ), such that the Kannan non-expansive mapping on it has a fixed point, by fixing Γ a nonempty
h-bounded, h-convex and h-closed subset of

(
`F(τ)

)
h

.

Lemma 3.32. If
(
`F(τ)

)
h

holds the (R) property and the h-quasi-normal property, assume V : Γ → Γ is a Kannan

h-non-expansive mapping. For t > 0, let Gt =
{
Y ∈ Γ : h(Y − V(Y)) 6 t

}
6= ∅. Put

Γt =
⋂{

Bh(r, j) : V(Gt) ⊂ Bh(r, j)
}
∩ Γ .

Then Γt 6= ∅, h-convex, h-closed subset of Γ and V(Γt) ⊂ Γt ⊂ Gt and δh(Γt) 6 t.

Proof. Since V(Gt) ⊂ Γt, then Γt 6= ∅. As the h-balls are h-convex and h-closed, then Γt is a h-closed and
h-convex subset of Γ . To show that Γt ⊂ Gt, assume Y ∈ Γt. When h(Y − V(Y)) = 0, one has Y ∈ Gt. Else,
assume h(Y − V(Y)) > 0. Put

r = sup
{
h
(
V(Z) − V(Y)

)
: Z ∈ Gt

}
.

From the definition of r, one gets V(Gt) ⊂ Bh
(
V(Y), r

)
. Therefore, Γt ⊂ Bh

(
V(Y), r

)
, then h

(
Y −V(Y)

)
6

r. Let l > 0. One has Z ∈ Gt with r− l 6 h
(
V(Z) − V(Y)

)
. So

h
(
Y − V(Y)

)
− l 6 r− l 6 h

(
V(Z) − V(Y)

)
6

1
2

(
h
(
Y − V(Y)

)
+ h
(
Z− V(Z)

))
6

1
2

(
h
(
Y − V(Y)

)
+ t
)

.

As l is an arbitrary positive, one obtains h
(
Y − V(Y)

)
6 t, then Y ∈ Gt. Since V(Gt) ⊂ Γt, one gets

V(Γt) ⊂ V(Gt) ⊂ Γt, so Γt is V-invariant. To show that δh(Γt) 6 t. Since

h
(
V(Y) − V(Z)

)
6

1
2

(
h
(
Y − V(Y)

))
+ h
(
Z− V(Z)

))
,

for all Y,Z ∈ Gt, let Y ∈ Gt, then V(Gt) ⊂ Bh
(
V(Y), t

)
. The definition of Γt gives Γt ⊂ Bh

(
V(Y), t

)
.

Therefore, V(Y) ∈
⋂
t∈Γt Bh(Z, t). One has h

(
Z− Y

)
6 t, for all Z, Y ∈ Γt, so δh(Γt) 6 t.

Theorem 3.33. If
(
`F(τ)

)
h

holds the h-quasi-normal property and the (R) property, let V : Γ → Γ be a Kannan
h-non-expansive mapping, then V has a fixed point.

Proof. Let t0 = inf
{
h
(
Y −V(Y)

)
: Y ∈ Γ

}
and tr = t0 +

1
r , for every r > 1. By the definition of t0, one gets

Gtr =
{
Y ∈ Γ : h

(
Y − V(Y)

)
6 tr

}
6= ∅, for every r > 1. Assume Γtr is defined as in Lemma 3.32. Clearly

{Γtr} is a decreasing sequence of nonempty h-bounded, h-closed and h-convex subsets of Γ . The property
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(R) investigates that Γ∞ =
⋂
r>1 Γtr 6= ∅. Let Y ∈ Γ∞, one has h

(
Y − V(Y)

)
6 tr, for all r > 1. Suppose

r → ∞, then h
(
Y − V(Y)

)
6 t0, so h

(
Y − V(Y)

)
= t0. Therefore, Gt0 6= ∅. Then t0 = 0. Else, t0 > 0 then

V fails to have a fixed point. Let Γt0 be defined in Lemma 3.32. As V fails to have a fixed point and Γt0

is V-invariant, then Γt0 has more than one point, so δh(Γt0) > 0. By the h-quasi-normal property, one has
Y ∈ Γt0 with

h
(
Y −Z

)
< δh(Γt0) 6 t0,

for all Z ∈ Γt0 . From Lemma 3.32, we get Γt0 ⊂ Gt0 . From definition of Γt0 , so V(Y) ∈ Gt0 ⊂ Γt0 . Then

h
(
Y − V(Y)

)
< δh(Γt0) 6 t0,

which contradicts the definition of t0. Then t0 = 0, which gives that any point in Gt0 is a fixed point of
V .

According to Theorems 3.20, 3.22, and 3.33, we conclude the following.

Corollary 3.34. Assume (τq)q∈N ∈ `∞ ∩ I with τ0 > 1, and V : Γ → Γ is a Kannan h-non-expansive mapping.
Then V has a fixed point.

Example 3.35. Assume V : Γ → Γ with V(Y) =

{
Y
4 , h(Y) ∈ [0, 1),
Y
5 , h(Y) ∈ [1,∞),

where Γ =
{
Y ∈

(
`F(( 2q+3

q+2 )
∞
q=0)

)
h
:

Y0 = Y1 = 0
}

and h(Y) =

√∑
q∈N

(
ρ(Yq, 0)

) 2q+3
q+2 , for every Y ∈

(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

. By using Example 3.31,

V is Kannan h-contraction. So it is Kannan h-non-expansive. By Corollary 3.34, V holds a fixed point ϑ
in Γ .

3.4. Kannan contraction and structure of operators ideal

The structure of the operators ideal by
(
`F(τ)

)
h

equipped with the definite function h, where h(g) =[∑∞
m=0

(
ρ(gm, 0)

)τm ] 1
K

, for every g ∈ `F(τ), and s-numbers has been explained. Finally, we examine the
idea of Kannan contraction mapping in its associated pre-quasi operator ideal. As well, the existence of
a fixed point of Kannan contraction mapping has been introduced. We indicate the space of all bounded,
finite rank linear operators from a Banach space ∆ into a Banach space Λ by L(∆,Λ), and F(∆,Λ) and if
∆ = Λ, we inscribe L(∆) and F(∆).

Definition 3.36 ([23]). An s-number function is s : L(∆,Λ) → R+N, which sorts every V ∈ L(∆,Λ) as
(sd(V))

∞
d=0 and verifies the following settings:

(a) ‖V‖ = s0(V) > s1(V) > s2(V) > · · · > 0, for all V ∈ L(∆,Λ);
(b) sl+d−1(V1 + V2) 6 sl(V1) + sd(V2), for all V1,V2 ∈ L(∆,Λ) and l, d ∈ N;
(c) sd(VYW) 6 ‖V‖sd(Y) ‖W‖, for all W ∈ L(∆0,∆), Y ∈ L(∆,Λ) and V ∈ L(Λ,Λ0), where ∆0 and Λ0

are arbitrary Banach spaces;
(d) if V ∈ L(∆,Λ) and γ ∈ R, then sd(γV) = |γ|sd(V);
(e) suppose rank(V) 6 d, then sd(V) = 0, for each V ∈ L(∆,Λ);
(f) sl>a(Ia) = 0 or sl<a(Ia) = 1, where Ia denotes the unit mapping on the a-dimensional Hilbert

space `a2 .

Definition 3.37 ([22]). If L is the class of all bounded linear operators within any two arbitrary Banach
spaces, a subclass U of L is said to be an operator ideal, if all U(∆,Λ) = U ∩L(∆,Λ) verify the following
conditions:
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(i) IΓ ∈ U, where Γ denotes Banach space of one dimension;
(ii) the space U(∆,Λ) is linear over R;

(iii) assume W ∈ L(∆0,∆), X ∈ U(∆,Λ) and Y ∈ L(Λ,Λ0), then, YXW ∈ U(∆0,Λ0).

Notations 3.38.

EU :=
{
EU(∆,Λ)

}
, where EU(∆,Λ) :=

{
V ∈ L(∆,Λ) : ((sd(V))∞d=0 ∈ U

}
,

where

sd(V)(x) =

{
1, x = sd(V),
0, x 6= sd(V).

Theorem 3.39. Suppose U is a (cssf), then EU is an operator ideal.

Proof.

(i) Assume V ∈ F(∆,Λ) and rank(V) = n for all n ∈ N, as bi ∈ U for all i ∈ N and U is a linear space,
one has (si(V))

∞
i=0 = (s0(V), s1(V), . . . , sn−1(V), 0, 0, 0, . . .) =

∑n−1
i=0 si(V)bi ∈ U; for that V ∈ EU(∆,Λ),

then F(∆,Λ) ⊆ EE(∆,Λ).

(ii) Suppose V1,V2 ∈ EU(∆,Λ) and β1,β2 ∈ R then by Definition 3.1 condition (3) one has (s[ i2 ]
(V1))

∞
i=0 ∈

U and (s[ i2 ]
(V1))

∞
i=0 ∈ U, as i > 2[ i2 ], by the definition of s-numbers and si(V) is a decreasing sequence of

fuzzy numbers, one gets si(β1V1 +β2V2) 6 s2[ i2 ]
(β1V1 +β2V2) 6 s[ i2 ]

(β1V1) + s[ i2 ]
(β2V2) = |β1|s[ i2 ]

(V1) +

|β2|s[ i2 ]
(V2) for each i ∈ N. In view of Definition 3.1 condition (2) and U is a linear space, one obtains

(si(β1V1 +β2V2))
∞
i=0 ∈ U, hence β1V1 +β2V2 ∈ EU(∆,Λ).

(iii) Suppose P ∈ L(∆0,∆), T ∈ EU(∆,Λ) and R ∈ L(Λ,Λ0), one has (si(T))
∞
i=0 ∈ U and as si(RTP) 6

‖R‖si(T) ‖P‖, by Definition 3.1 conditions (1) and (2) one gets (si(RTP))
∞
i=0 ∈ U, then RTP ∈ EU(∆0,Λ0).

According to Theorems 3.7 and 3.39, one concludes the following theorem.

Theorem 3.40. Let (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, one has E(
`F(τ)

)
h

is an operator ideal.

Definition 3.41 ([10]). A function H ∈ [0,∞)U is called a pre-quasi norm on the ideal U if the next
conditions hold:

(1) let V ∈ U(∆,Λ), H(V) > 0 and H(V) = 0, if and only if, V = 0;
(2) we have Q > 1 so as to H(αV) 6 D|α|H(V), for every V ∈ U(∆,Λ) and α ∈ R;
(3) we have P > 1 so that H(V1 + V2) 6 P[H(V1) +H(V2)], for each V1,V2 ∈ U(∆,Λ);
(4) we have σ > 1 for to if V ∈ L(∆0,∆), X ∈ U(∆,Λ) and Y ∈ L(Λ,Λ0), then H(YXV) 6 σ ‖Y‖H(X) ‖V‖.

Theorem 3.42 ([10]). H is a pre-quasi norm on the ideal U if H is a quasi norm on the ideal U.

Theorem 3.43. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, then the function H is a pre-quasi norm on E(
`F(τ)

)
h

, with

H(Z) = h(sq(Z))
∞
q=0, for all Z ∈ E(

`F(τ)

)
h

(∆,Λ).

Proof.

(1) When X ∈ E(
`F(τ)

)
h

(∆,Λ), H(X) = h(sq(X))
∞
q=0 > 0 and H(X) = h(sq(X))

∞
q=0 = 0, if and only if,

sq(X) = 0, for all q ∈ N, if and only if, X = 0.
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(2) There is Q > 1 with H(αX) = h(sq(αX))∞q=0 6 Q|α|H(X), for all X ∈ E(
`F(τ)

)
h

(∆,Λ) and α ∈ R.

(3) One has PP0 > 1 so that for X1,X2 ∈ E(
`F(τ)

)
h

(∆,Λ), one can see

H(X1 +X2) = h(sq(X1 +X2))
∞
q=0 6 P

(
h(s[q2 ](X1))

∞
q=0 + h(s[q2 ](X2))

∞
q=0

)
6 PP0

(
h(sq(X1))

∞
q=0 + h(sq(X2))

∞
q=0

)
.

(4) We have ρ > 1, if X ∈ L(∆0,∆), Y ∈ E(
`F(τ)

)
h

(∆,Λ) and Z ∈ L(Λ,Λ0), then H(ZYX) = h(sq(ZYX))∞q=0

6 h( ‖X‖ ‖Z‖sq(Y))∞q=0 6 ρ ‖X‖H(Y) ‖Z‖.

In the next theorems, we will use the notation
(
E(
`F(τ)

)
h

,H
)

, where H(V) = h
(
(sq(V))

∞
q=0

)
, for all

V ∈ E(
`F(τ)

)
h

.

Theorem 3.44. Suppose (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, one has
(
E(
`F(τ)

)
h

,H
)

is a pre-quasi Banach operator

ideal.

Proof. Suppose (Va)a∈N is a Cauchy sequence in E(
`F(τ)

)
h

(∆,Λ). As L(∆,Λ) ⊇ S(
`F(τ)

)
h

(∆,Λ), one has

H(Vr − Va) = h
(
(sq(Vr − Va))

∞
q=0

)
> h

(
s0(Vr − Va), 0, 0, 0, . . .

)
> σ ‖Vr − Va‖,

hence (Va)a∈N is a Cauchy sequence in L(∆,Λ). As L(∆,Λ) is a Banach space, so there exists V ∈ L(∆,Λ)
so that lima→∞ ‖Va − V ‖ = 0 and since (sq(Va))

∞
q=0 ∈

(
`F(τ)

)
h

, for all a ∈ N and
(
`F(τ)

)
h

is a pre-
modular (cssf). Hence, one can see

H(V) = h
(
(sq(V))

∞
q=0

)
6 h

(
(s[q2 ](V − Va)

)∞
q=0

) + h
(
(s[q2 ](Va)

∞
q=0)

)
6 h

(
( ‖Va − V ‖1)∞q=0

)
+ (2)

1
Kh
(
(sq(Va))

∞
q=0

)
< ε,

we obtain (sq(V))
∞
q=0 ∈

(
`F(τ)

)
h

, hence V ∈ E(
`F(τ)

)
h

(∆,Λ).

Theorem 3.45. If (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, one has
(
E(
`F(τ)

)
h

,H
)

is a pre-quasi closed operator ideal.

Proof. Suppose Va ∈ E(
`F(τ)

)
h

(∆,Λ), for all a ∈ N and lima→∞H(Va − V) = 0. Therefore, there is σ > 0

and as L(∆,Λ) ⊇ S(
`F(τ)

)
h

(∆,Λ), one has

H(Va − V) = h
(
(sq(Va − V))

∞
q=0

)
> h

(
s0(Va − V), 0, 0, 0, . . .

)
> σ‖Va − V‖.

So (Va)a∈N is convergent in L(∆,Λ), i.e., lima→∞ ‖Va − V ‖ = 0 and since (sq(Va))
∞
q=0 ∈

(
`F(τ)

)
h

, for

all q ∈ N and
(
`F(τ)

)
h

is a pre-modular (cssf). Hence, one can see

H(V) = h
(
(sq(V))

∞
q=0

)
6 h

(
(s[q2 ](V − Va)

)∞
q=0

) + h
(
(s[q2 ](Va)

∞
q=0)

)
6 h

(
( ‖Va − V ‖1)∞q=0

)
+ (2)

1
Kh
(
(sq(Va))

∞
q=0

)
< ε,



O. K. S. K. Mohamed, A. O. Mustafa, A. A. Bakery, J. Math. Computer Sci., 31 (2023), 162–187 180

we obtain (sq(V))
∞
q=0 ∈

(
`F(τ)

)
h

, hence V ∈ E(
`F(τ)

)
h

(∆,Λ).

Definition 3.46. A pre-quasi norm H on the ideal EUh verifies the Fatou property if for every {Tq}q∈N ⊆
EUh(∆,Λ) so that limq→∞H(Tq − T) = 0 and M ∈ EUh(∆,Λ), one gets

H(M− T) 6 sup
q

inf
j>q

H(M− Tj).

Theorem 3.47. Suppose (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, then

E(
`F(τ)

)
h

,H

 does not hold the Fatou property.

Proof. Assume {Tq}q∈N ⊆ E(
`F(τ)

)
h

(∆,Λ) with limq→∞H(Tq − T) = 0. Since E(
`F(τ)

)
h

is a pre-quasi

closed ideal, then T ∈ E(
`F(τ)

)
h

(∆,Λ). So for every M ∈ E(
`F(τ)

)
h

(∆,Λ), one has

H(M− T) =
[ ∞∑
q=0

(
ρ(sq(M− T), 0)

)τq ] 1
K

6
[ ∞∑
q=0

(
ρ(s[q2 ](M− Ti), 0)

)τq ] 1
K
+
[ ∞∑
q=0

(
ρ(s[q2 ](Ti − T), 0)

)τq ] 1
K

6 (2)
1
K sup

r

inf
j>r

[ ∞∑
q=0

(
ρ(sq(M− Tj), 0)

)τq ] 1
K

.

Definition 3.48. An operator V : EUh(∆,Λ)→ EUh(∆,Λ) is said to be a Kannan H-contraction, if one has
α ∈ [0, 1

2) with H(VT − VM) 6 α
(
H(VT − T) +H(VM−M)

)
, for all T ,M ∈ EUh(∆,Λ).

Definition 3.49. An operator V : EUh(∆,Λ) → EUh(∆,Λ) is said to be H-sequentially continuous at M,
where M ∈ EUh(∆,Λ), if and only if, limr→∞H(Tr −M) = 0⇒ limr→∞H(VTr − VM) = 0.

Example 3.50. If
V : E(

`F(( 2q+3
q+2 )∞q=0)

)
h

(∆,Λ)→ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ),

where H(T) =

√∑∞
q=0

(
ρ(sq(T), 0)

) 2q+3
q+2

, for every T ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) and

V(T) =

{
T
6 , H(T) ∈ [0, 1),
T
7 , H(T) ∈ [1,∞),

evidently, V is H-sequentially continuous at the zero operator Θ ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ). Let {T (j)} ⊆

E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) be such that limj→∞H(T (j) − T (0)) = 0, where T (0) ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) with

H(T (0)) = 1. Since the pre-quasi norm H is continuous, one gets

lim
j→∞H(VT (j) − VT (0)) = lim

j→∞H
(T (0)

6
−
T (0)

7

)
= H

(T (0)

42

)
> 0.

Therefore, V is not H-sequentially continuous at T (0).
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Theorem 3.51. Pick up (τq)q∈N ∈ `∞ ∩ I with τ0 > 0 and V : E(
`F(τ)

)
h

(∆,Λ)→ E(
`F(τ)

)
h

(∆,Λ). Assume

(i) V is Kannan H-contraction mapping;
(ii) V is H-sequentially continuous at an element M ∈ E(

`F(τ)

)
h

(∆,Λ);

(iii) there are G ∈ E(
`F(τ)

)
h

(∆,Λ) such that the sequence of iterates {VrG} has a {VrmG} converging to M.

Then M ∈ E(
`F(τ)

)
h

(∆,Λ) is the unique fixed point of V .

Proof. Let M be not a fixed point of V , hence VM 6=M. By using parts (ii) and (iii), we get

lim
rm→∞H(VrmG−M) = 0 and lim

rm→∞H(Vrm+1G− VM) = 0.

Since V is Kannan H-contraction, one obtains

0 < H(VM−M) = H
(
(VM− Vrm+1G) + (VrmG−M) + (Vrm+1G− VrmG)

)
6 (2)

1
KH
(
Vrm+1G− VM

)
+ (2)

2
KH (VrmG−M) + (2)

2
Kα

(
α

1 −α

)rm−1

H(VG−G).

As rm → ∞, there is a contradiction. Hence, M is a fixed point of V . To prove the uniqueness of the
fixed point M, suppose one has two not equal fixed points M, J ∈ E(

`F(τ)

)
h

(∆,Λ) of V . So, one gets

H(M− J) 6 H(VM− VJ) 6 α
(
H(VM−M) +H(VJ− J)

)
= 0. Then, M = J.

Example 3.52. Because of Example 3.50, since for all T1, T2 ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) with H(T1),H(T2) ∈

[0, 1), we have

H(VT1 − VT2) = H(
T1

6
−
T2

6
) 6

√
2

4
√

125

(
H(

5T1

6
) +H(

5T2

6
)
)
=

√
2

4
√

125

(
H(VT1 − T1) +H(VT2 − T2)

)
.

For all T1, T2 ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) with H(T1),H(T2) ∈ [1,∞), we have

H(VT1 − VT2) = H(
T1

7
−
T2

7
) 6

√
2

4
√

216

(
H(

6T1

7
) +H(

6T2

7
)
)
=

√
2

4
√

216

(
H(VT1 − T1) +H(VT2 − T2)

)
.

For all T1, T2 ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) with H(T1) ∈ [0, 1) and H(T2) ∈ [1,∞), we have

H(VT1 − VT2) = H(
T1

6
−
T2

7
) 6

√
2

4
√

125
H(

5T1

6
) +

√
2

4
√

216
H(

6T2

7
) 6

√
2

4
√

125

(
H(VT1 − T1) +H(VT2 − T2)

)
.

Hence, V is Kannan H-contraction and Vr(T) =

{
T
6r , H(T) ∈ [0, 1),
T
7r , H(T) ∈ [1,∞).

Obviously, V is H-sequentially

continuous at Θ ∈ E(
`F(( 2q+3

q+2 )∞q=0)

)
h

(∆,Λ) and {VrT } has a subsequence {VrmT } that converges to Θ. By

Theorem 3.51, Θ is the only fixed point of V .
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4. Applications

In this section, we have introduced a solution in `F(τ) with different pre-quasi functions and its asso-
ciated pre-quasi operators ideal to non-linear uncertainty equation of fuzzy functions (4.1) and non-linear
uncertainty matrix equation of fuzzy functions (4.6).

Throughout the next part of this article, we will use the two functions h1 and h2 as

h1(Y) =
[ ∞∑
j=0

(
ρ(Yj, 0)

)τj ] 1
K

and h2(Y) =
(
h1(Y)

)K ,

for every Y ∈ `F(τ).

Theorem 4.1. Consider the summable equations:

Yq = Rq +

∞∑
r=0

D(q, r)m(r, Yr), (4.1)

which has been presented by many authors [1, 12, 27], and assume V :
(
`F(τ)

)
h1
→
(
`F(τ)

)
h1

, where (τq)q∈N ∈
`∞ ∩ I with τ0 > 0, defined by

V(Yq)q∈N =
(
Rq +

∞∑
r=0

D(q, r)m(r, Yr)
)
q∈N

. (4.2)

The summable equation (4.1) has a unique solution in
(
`F(τ)

)
h1

, if D : N2 → R, m : N ×R[0, 1] → R[0, 1],

R : N→ R[0, 1], Z : N→ R[0, 1], one has ε ∈ R with supq |ε|
τq
K ∈ [0, 1

2) and for all q ∈ N, let∣∣∣∣∣∑
r∈N

D(q, r)(m(r, Yr) −m(r,Zr))

∣∣∣∣∣
τq

6|ε|

[∣∣∣∣∣Rq − Yq +
∞∑
r=0

D(q, r)m(r, Yr)

∣∣∣∣∣
τq

+

∣∣∣∣∣Rq −Zq +
∞∑
r=0

D(q, r)m(r,Zr)

∣∣∣∣∣
τq]

.

Proof. One has

h1(VY − VZ) =

∑
q∈N

(
ρ(VYq − VZq, 0)

)τq 1
K

=

∑
q∈N

(
ρ

(∑
r∈N

D(q, r)[m(r, Yr) −m(r,Zr)], 0

))τq 1
K

6 sup
q

|ε|
τq
K

∑
q∈N

(
ρ

(
Rq − Yq +

∞∑
r=0

D(q, r)m(r, Yr), 0

))τq 1
K

+ sup
q

|ε|
τq
K

∑
q∈N

(
ρ

(
Rq −Zq +

∞∑
r=0

D(q, r)m(r,Zr), 0

))τq 1
K

= sup
q

|ε|
τq
K
(
h1(VY − Y) + h1(VZ−Z)

)
.

By Theorem 3.24, one gets a unique solution of equation(4.1) in
(
`F(τ)

)
h1

.
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Example 4.2. Suppose
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

, where h(Y) =

√∑
q∈N

(
ρ(Yq, 0)

) 2q+3
q+2 , for all Y ∈ `F(( 2q+3

q+2 )
∞
q=0).

Consider the summable equations:

Yq = Rq +

∞∑
r=0

(−1)q+r
( Yq

q2 + r2 + 1

)t
, (4.3)

with q > 2 and t > 0. Suppose Γ =
{
Y ∈

(
`F(( 2q+3

q+2 )
∞
q=0)

)
h
: Y0 = Y1 = 0

}
. Indeed, Γ is a nonempty,

h-convex, h-closed and h-bounded subset of
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

. Let us define V : Γ → Γ as

V(Yq)q>2 =
(
Rq +

∞∑
r=0

(−1)q+r
( Yq

q2 + r2 + 1

)t)
q>2

.

Obviously,∣∣∣∣∣
∞∑
r=0

(−1)q
( Yq

q2 + r2 + 1

)t(
(−1)r − (−1)r

)∣∣∣∣∣
2q+3
q+2

6
1√
2

∣∣∣∣∣Rq − Yq +
∞∑
r=0

(−1)q+r
( Yq

q2 + r2 + 1

)t∣∣∣∣∣
2q+3
q+2

+

∣∣∣∣∣Rq −Zq +
∞∑
r=0

(−1)q+r
( Zq

q2 + r2 + 1

)t∣∣∣∣∣
2q+3
q+2
 .

By Theorem 4.1 and Corollary 3.34, the summable equations (4.3) have a solution in Γ .

Example 4.3. Suppose
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h

, where h(Y) =

√∑
q∈N

(
ρ(Yq, 0)

) 2q+3
q+2 , for Y ∈ `F(( 2q+3

q+2 )
∞
q=0).

Consider the non-linear difference equations:

Yq = sin(3q− 1) +
∞∑
l=0

7q+l
Yrq−2

Y
p
q−1 + l

2 + 1
, (4.4)

with r,p > 0, Y−2(x), Y−1(x) > 0, for all x ∈ R, and assume V : `F(( 2q+3
q+2 )

∞
q=0) → `F(( 2q+3

q+2 )
∞
q=0), defined

by

V(Yq)
∞
q=0 =

(
sin(3q− 1) +

∞∑
l=0

7q+l
Yrq−2

Y
p
q−1 + l

2 + 1

)∞
q=0

. (4.5)

Evidently,∣∣∣∣∣
∞∑
l=0

7q
Yrq−2

Y
p
q−1 + l

2 + 1

(
7l − 7l

)∣∣∣∣∣
2q+3
q+2

6
1√
2

∣∣∣∣∣sin(3q− 1) − Yq +
∞∑
l=0

7q+l
Yrq−2

Y
p
q−1 + l

2 + 1

∣∣∣∣∣
2q+3
q+2

+
1√
2

∣∣∣∣∣sin(3q− 1) −Zq +
∞∑
l=0

7q+l
Zrq−2

Z
p
q−1 + l

2 + 1

∣∣∣∣∣
2q+3
q+2

.

By Theorem 4.1, the non-linear difference equations (4.4) have a unique solution in `F(( 2q+3
q+2 )

∞
q=0).

Theorem 4.4. Suppose V :
(
`F(τ)

)
h2
→
(
`F(τ)

)
h2

is defined by equation (4.2) and τ0 > 1. The non-linear

uncertainty equation of fuzzy functions (4.1) has a unique solution l ∈
(
`F(τ)

)
h2

, if the next setups are verified.
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(1) If D : N2 → R, m : N ×R[0, 1] → R[0, 1], R : N → R[0, 1], Z : N → R[0, 1], one has ε ∈ R with
2K−1 supq |ε|

τq ∈ [0, 1
2) and for all q ∈ N, let∣∣∣∣∣∑

r∈N
D(q, r)(m(r, Yr) −m(r,Zr))

∣∣∣∣∣
τq

6|ε|

[∣∣∣∣∣Rq − Yq +
∞∑
r=0

D(q, r)m(r, Yr)

∣∣∣∣∣
τq

+

∣∣∣∣∣Rq −Zq +
∞∑
r=0

D(q, r)m(r,Zr)

∣∣∣∣∣
τq]

.

(2) V is h2-sequentially continuous at l ∈
(
`F(τ)

)
h2

.

(3) There is i ∈
(
`F(τ)

)
h2

with {Vpi} which has {Vpji} converging to l.

Proof. We have

h2(VY − VZ) =
∑
q∈N

(
ρ(VYq − VZq, 0)

)τq
=
∑
q∈N

(
ρ

(∑
r∈N

D(q, r)[m(r, Yr) −m(r,Zr)], 0

))τq

6 2K−1 sup
q

|ε|τq
∑
q∈N

(
ρ

(
Rq − Yq +

∞∑
r=0

D(q, r)m(r, Yr), 0

))τq

+ 2K−1 sup
q

|ε|τq
∑
q∈N

(
ρ

(
Rq −Zq +

∞∑
r=0

D(q, r)m(r,Zr), 0

))τq
= 2K−1 sup

q

|ε|τq
(
h2(VY − Y) + h2(VZ−Z)

)
.

By Theorem 3.30, we obtain a unique solution l ∈
(
`F(τ)

)
h2

of equation (4.1).

Example 4.5. Consider
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h2

. Suppose the summable equations (4.4). Assume

V :
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h2
→
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h2

is defined by equation (4.5). If V is h2-sequentially continu-

ous at l ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h2

, and there is i ∈
(
`F(( 2q+3

q+2 )
∞
q=0)

)
h2

with {Vpi} which has {Vpji} converging

to l, obviously, one has ε ∈ R with 2K−1 supq |ε|
2q+3
q+2 ∈ [0, 1

2) and for every q ∈ N, we have

∣∣∣∣∣
∞∑
l=0

7q
Yrq−2

Y
p
q−1 + l

2 + 1

(
7l − 7l

)∣∣∣∣∣
2q+3
q+2

6
1√
2

∣∣∣∣∣sin(3q− 1) − Yq +
∞∑
l=0

7q+l
Yrq−2

Y
p
q−1 + l

2 + 1

∣∣∣∣∣
2q+3
q+2

+

∣∣∣∣∣sin(3q− 1) −Zq +
∞∑
l=0

7q+l
Zrq−2

Z
p
q−1 + l

2 + 1

∣∣∣∣∣
2q+3
q+2
 .

According to Theorem 4.4, the non-linear uncertainty equation of fuzzy functions (4.4) has a unique
solution l ∈

(
`F(( 2q+3

q+2 )
∞
q=0)

)
h2

.

We explain in this part a solution to non-linear matrix equations (4.6) at B ∈ E(
`F(τ)

)
h

(∆,Λ), the

setups of Theorem 3.7 are confirmed, and H(T) =
(∑∞

a=0

(
ρ(sa(T), 0)

)τa) 1
K

, for all T ∈ E(
`F(τ)

)
h

(∆,Λ).
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Suppose the non-linear uncertainty equation of fuzzy functions:

sa(T) = sa(A) +

∞∑
q=0

Π(a,q)f(q, sq(T)), (4.6)

and assume L : E(
`F(τ)

)
h

(∆,Λ)→ E(
`F(τ)

)
h

(∆,Λ) is defined by

L(T) =

sa(A) + ∞∑
q=0

Π(a,q)f(q, sq(T))

 I. (4.7)

Theorem 4.6. The non-linear uncertainty equation of fuzzy functions (4.6) has a unique solution B ∈
E(
`F(τ)

)
h

(∆,Λ), suppose the next setups are satisfied:

(1) Π : N2 → R, f : N×R([0, 1]) → R([0, 1]), A ∈ L(∆,Λ), U ∈ L(∆,Λ), and for all a ∈ N, one has ε with
supa |ε|

τa
K ∈ [0, 0.5) and∣∣∣∣∣∣

∑
q∈N

Π(a,q)
(
f(q, sq(T)) − f(q, sq(U))

)∣∣∣∣∣∣
6|ε|

∣∣∣∣∣∣sa(A) − sa(T) +
∑
q∈N

Π(a,q)f(q, sq(T))

∣∣∣∣∣∣+
∣∣∣∣∣∣sa(A) − sa(U) +

∑
q∈N

Π(a,q)f(q, sq(U))

∣∣∣∣∣∣
 ;

(2) L is H-sequentially continuous at a point B ∈ E(
`F(τ)

)
h

(∆,Λ);

(3) one has Q ∈ E(
`F(τ)

)
h

(∆,Λ) with {LpQ} having a subsequence {LpiQ} converging to B.

Proof. : Assume L : E(
`F(τ)

)
h

(∆,Λ)→ E(
`F(τ)

)
h

(∆,Λ) is defined by equation (4.7). Hence

H(LT − LU) =

[ ∞∑
a=0

(
ρ(sa(T) − sa(U), 0)

)τa] 1
K

=

 ∞∑
a=0

ρ
∑
q∈N

Π(a,q)
(
f(q, sq(T)) − f(q, sq(U))

)
, 0

τa
1
K

6 sup
a

|ε|
τa
K

 ∞∑
a=0

ρ
sa(A) − sa(T) +∑

q∈N
Π(a,q)f(q, sq(T))

 , 0

τa
1
K

+ sup
a

|ε|
τa
K

 ∞∑
a=0

ρ
sa(A) − sa(U) +∑

q∈N
Π(a,q)f(q, sq(U))

 , 0

τa
1
K

= sup
a

|ε|
τa
K (H(LT − T) +H(LU−U)) .

By Theorem 3.51, we have a unique solution of equation (4.6) at B ∈ E(
`F(τ)

)
h

(∆,Λ).
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Example 4.7. Consider E(
`F(( 2a+3

a+2 ))

)
h

(∆,Λ), where H(G) =

√∑∞
a=0

(
ρ(sa(G), 0)

) 2a+3
a+2

, for every G ∈

E(
`F(( 2a+3

a+2 ))

)
h

(∆,Λ). Suppose the non-linear uncertainty equation of fuzzy functions:

sz(G) = sin z+
∞∑
m=0

cos(3m2) tanh(mz) sinhb |sz−2(G)|

secd |sz−1(G)|+ ln(m+ z+ 1) + 1
, (4.8)

where z > 2 and b,d > 0 and assume W : E(
`F(( 2a+3

a+2 ))

)
h

(∆,Λ)→ E(
`F(( 2a+3

a+2 ))

)
h

(∆,Λ) is defined as

W(G) =

(
sin z+

∞∑
m=0

cos(3m2) tanh(mz) sinhb |sz−2(G)|

secd |sz−1(G)|+ ln(m+ z+ 1) + 1

)
I.

Let W be H-sequentially continuous at a point D ∈ E(
`F(( 2a+3

a+2 ))

)
h

(∆,Λ), and there is B ∈

E(
`F(( 2a+3

a+2 ))

)
h

(∆,Λ) so that the sequence of iterates {WpB} has a subsequence {WpiB} converging to D.

Obviously, ∣∣∣∣∣
∞∑
m=0

tanh(mz) sinhb |sz−2(G)|

secd |sz−1(G)|+ ln(m+ z+ 1) + 1

(
cos(3m2) − cos(3m2)

)∣∣∣∣∣
6

1
25

∣∣∣∣∣sin z− sz(G) +
∞∑
m=0

cos(3m2) tanh(mz) sinhb |sz−2(G)|

secd |sz−1(G)|+ ln(m+ z+ 1) + 1

∣∣∣∣∣
+

1
25

∣∣∣∣∣sin z− sz(T) +
∞∑
m=0

cos(3m2) tanh(mz) sinhb |sz−2(T)|

secd |sz−1(T)|+ ln(m+ z+ 1) + 1

∣∣∣∣∣ .
In view of Theorem 4.6, the non-linear uncertainty equation of fuzzy functions (4.8) has one solution D.

5. Conclusion

Rather than simply referring to a ”quasi-normed” place, we used the term ”pre-quasi-normed.” The
concept of a fixed point of the Kannan pre-quasi norm contraction mapping in the pre-quasi Banach (cssf).
Pre-quasi-normal structure and (R) are supported. The Kannan non-expansive mapping’s presence of a
fixed point was investigated. A fixed point of Kannan contraction mapping in the pre-quasi Banach oper-
ator ideal produced by Nakano (cssf) and s-fuzzy numbers has also been examined. To put our findings
to the test, we introduce several numerical experiments. In addition, various effective implementations
of the stochastic non-linear dynamical system are discussed. The fixed points of any Kannan contraction
and non-expansive mappings on this new fuzzy functions space, it’s associated pre-quasi ideal, and a
new general space of solutions for many stochastic non-linear dynamical systems are investigated.
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Inequal. Appl., 2018 (2018), 1–14. 1, 3.41, 3.42
[11] S. J. H. Ghoncheh, Some Fixed point theorems for Kannan mapping in the modular spaces, CeN, 37 (2015), 462–466. 1
[12] N. Hussain, A. R. Khan, R. P. Agarwal, Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces, J.

Nonlinear Convex Anal., 11 (2010), 475–489. 4.1
[13] R. Kannan, Some results on fixed points. II, Amer. Math. Monthly, 76 (1969), 405–408. 1
[14] M. A. Khamsi, W. M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Birkhäuser/Springer, Cham, (2015).
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