
J. Math. Computer Sci., 31 (2023), 102–136

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Numerical solutions for generalized trapezoidal fully fuzzy
Sylvester matrix equation with sufficient conditions to have
a positive solution

Ahmed Abdel Aziz Elsayeda, Nazihah Ahmadb,∗, Ghassan Malkawic, Bassem Saassouhd, Oluwaseun Adeyeyeb

aDepartment of Mathematics, Institute of Applied Technology, Mohamed Bin Zayed City 33884, United Arab Emirates.
bSchool of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia.
cFaculty of Engineering, Math and Natural Science Division, Higher Colleges of Technology (HCT), Al Ain Campus, Abu Dhabi 17155,
United Arab Emirates.

dAcademic Support Department, Abu Dhabi Polytechnic College, Abu Dhabi 111499, United Arab Emirates.

Abstract

This paper proposes three methods for solving a generalized trapezoidal fully fuzzy Sylvester matrix equation (GTrFFSME)
and its special cases. The GTrFFSME is converted to an equivalent system of generalized crisp Sylvester matrix equations based
on a new constructed fuzzy multiplication operation between three trapezoidal fuzzy numbers. An analytical solution to the
GTrFFSME is obtained by developing a fuzzy matrix vectorization method, and the numerical solution is obtained by developing
fuzzy gradient and fuzzy least-squares iterative methods. The necessary and sufficient conditions for the GTrFFSME to have a
unique positive fuzzy solution are proved in addition to the convergence for the fuzzy gradient and fuzzy least-square methods.
The constructed methods can solve other fuzzy equations such as Sylvester, Lyapunov and Stein matrix equations up to size
100× 100. We illustrate the proposed methods by solving numerical examples with different size systems.

Keywords: Generalized fully fuzzy Sylvester matrix equations, gradient iterative, numerical fuzzy solution, least-squares
iterative, trapezoidal fuzzy multiplication.
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1. Introduction

Generalized Sylvester matrix equation (GSME) and its special cases, including Sylvester, Lyapunov,
and Stein matrix equations, play an important role in the design and analysis of linear control systems [10],
reduction of large-scale dynamical systems [43], restoration of noisy images [7, 8], medical imaging data
acquisition, model reduction [46] and stochastic control, image processing and filtering [7]. Analytical
solutions to the GSME can be obtained by applying the concept of Vec-operator and Kronecker products.
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This approach, however, is limited to GSMEs of small size because it requires getting the inverse of
mn×mn matrices for a GSME of size m× n, which leads to computation complexity for large GSME.
Authors in [27] proposed another method for solving the GSME by converting the coefficient matrix into
its Schur or Hessenberg form. However, this approach is also limited to small-sized GSMEs. For GSME
with large dimensions (n > 100), numerical methods are more practical [45]. Many researchers have
proposed numerical approaches for solving GSME and its special cases. For instance, the method of block
successive over-relaxation proposed by Starke and Niethammer [47] and the Krylov subspace method by
Lin [36], in addition to the method of the truncated low-rank algorithm by Kressner and Sirković [33], and
the skew-Hermitian splitting method by [13]. Moreover, Ding and Chen [14, 15] have developed gradient
iterative (GI) and least-squares iterative (LSI) algorithms, and Niu et al. [42] suggested a relaxed gradient
iterative for finding the solution of the GSME.

However, in many applications, some of the system parameters with incomplete or uncertain values
are represented by fuzzy numbers rather than crisp numbers. Fuzzy numbers can present uncertainty
problems such as conflicting requirements during the system process, the distraction of any elements and
noise. When all parameters of the GSME are in the fuzzy form, it is called a Generalized Fully Fuzzy
Sylvester Matrix Equation (GFFSME). Therefore, GFFSME can be used in the stability, controllability and
observability analysis of linear time-invariant systems and model order reduction of non-linear control
systems and as an equation solver for image restoration, model reduction and medical imaging acquisition
systems.

Definition 1.1. The fully fuzzy matrix equation that can be written as

ÃX̃B̃+ C̃X̃D̃ = Ẽ, (1.1)

where, Ã=
(
ãij
)
q×p, B̃=

(
b̃ij
)
n×r, C̃ =

(
c̃ij
)
q×p, D̃ =

(
d̃ij
)
n×r, X̃ =

(
x̃ij
)
p×n and Ẽ =

(
ẽij
)
q×r, is called

GFFSME.

The GFFSME in Eq. (1.1) contains the following well-known fully fuzzy matrix equation.

Definition 1.2. If B̃ and C̃ are identity fuzzy matrices, then Eq. (1.1) can be written as

ÃX̃+ X̃D̃ = Ẽ, (1.2)

where, Ã =
(
ãij
)
p×p, D̃ =

(
d̃ij
)
n×n, X̃ =

(
x̃ij
)
p×n and Ẽ =

(
ẽij
)
p×n is called a Fully Fuzzy Sylvester

Matrix Equation (FFSME).

Definition 1.3. If B̃ and C̃ are identity fuzzy matrices and D̃ = ÃT , then Eq. (1.1) can be written as

ÃX̃+ X̃ÃT = Ẽ, (1.3)

where, Ã =
(
ãij
)
p×p, ÃT =

(
ãTij

)
p×p

, X̃ =
(
x̃ij
)
p×p and Ẽ =

(
ẽij
)
p×p is called a Fully Fuzzy Continuous-

Time Lyapunov Matrix Equation (FFCTLME).

Definition 1.4. If Ã and B̃ are identity fuzzy matrices, then Eq. (1.1) can be written as

X̃+ C̃X̃D̃ = Ẽ, (1.4)

where, C̃ =
(
c̃ij
)
p×p, D̃ =

(
d̃ij
)
n×n, X̃ =

(
x̃ij
)
p×n and Ẽ =

(
ẽij
)
p×n is called a Fully Fuzzy Stein Matrix

Equation (FFSTME).

Authors in the fuzzy environment have proposed analytical methods for solving the FFSME. The
FFSME converted to a system of crisp linear equations using Dubois and Prade’s arithmetic operators
for multiplication [18]. The solution for such systems is obtained using many classical methods such as
matrix inversion, Vec-operator and Kronecker product.
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The Triangular Fully Fuzzy Sylvester Matrix Equation (TFFSME) has been studied analytically by [11,
28, 38]. Recently, El Sayed et al. [20, 23, 32] considered the solution of a Trapezoidal Fully Fuzzy Sylvester
Matrix Equation (TrFFSME) by transforming the TrFFSME to a system of linear matrix equations where
the positive and negative fuzzy solutions are obtained using the Vec-operator and Kronecker product
method. However, these methods were restricted only to positive fuzzy numbers and required a long
multiplication process and consequently long computational timing. In addition, El Sayed et al. [25]
proposed a two-stage algorithm method for solving TrFFSME with arbitrary fuzzy solutions where the
first stage algorithm can reduce the search area for the solution and the second stage algorithm can find
the fuzzy solution. The two-stage algorithm method succussed in obtaining a full arbitrary fuzzy solution
to the TrFFSME. However, it required long computational timing to solve the TrFFSME with large sizes
(n> 10). Furthermore, El Sayed et al. [21] extended the TrFFSMEE to a GTrFFSME and to a Coupled
Trapezoidal Fully Fuzzy Sylvester Matrix Equations (CTrFFSME) [22, 24]. The arbitrary fuzzy solutions to
the GTrFFSME and the CTrFFSME are obtained by applying new reduced fuzzy multiplication operations
which convert the arbitrary GTrFFSME and CTrFFSME into a non-linear system of min-max equations.
The system of min-max equations was then converted to an equivalent system of absolute equations
where the fuzzy solutions are obtained by solving that system.

There are two main drawbacks of the existing methods in the literature; the first is that the existing
analytical methods proposed for solving TFFSME and TrFFSME are based on Kronecker product and
Vec-operator and therefore limit the size of the system to (2× 2) or (3× 3) due to its long multiplication
process required to obtain the fuzzy solution. Few researchers considered fuzzy systems with sizes up to
(10× 10) such as in [37]. The second drawback is that the existence and uniqueness of the fuzzy solution
for the TFFSME and TrFFSME are not examined before applying the existing methods. Therefore, there
is no guarantee that applying many existing methods will always give the desired fuzzy solution.

In addition, the GTrFFSME is not investigated in the fuzzy literature. Thus, it is important to develop
new analytical and numerical methods for solving the GTrFFSME and its special cases with large sizes.
To deal with this shortcoming, in this paper, new arithmetic fuzzy multiplication operators between three
TrFNs are constructed and then applied to the positive GTrFFSME in Eq. (1.1), which converts the GTrFF-
SME to an equivalent system of GSME. The Equivalency of the GTrFFSME and the system of GSME is
proved, and therefore the consistency of the GTrFFSME can be examined using the system of GSME.
In addition, three different methods are proposed for solving the GTrFFSME and its special cases. The
exact positive fuzzy solution to the GTrFFSME is obtained analytically by the fuzzy matrix vectoriza-
tion method. To solve positive GTrFFSME with large sizes, the hierarchical identification principle is
applied to construct two new numerical methods, namely Fuzzy Gradient Iterative Methods (FGIM) and
Fuzzy Least-Squares Iterative Methods (FLSIM). The numerical methods can obtain the fuzzy solution
for large GTrFFSME up to (100× 100) with a very small error bound compared to the existing numerical
approaches, which were applied to at max (10× 10) fuzzy systems [2–6, 12, 19, 26, 29, 48].

Moreover, the proposed methods can also be applied to other fuzzy equations such as Sylvester,
Lyapunov and Stein matrix equations in Eqs. (1.2), (1.3), and (1.4) with both Triangular Fuzzy Numbers
(TFNs) and Trapezoidal Fuzzy Numbers (TrFNs). To illustrate the effectiveness of the proposed methods
for solving the GTrFFSME in Eq. (1.1), we solve two examples with different sizes, small (2× 2) and
large (100 × 100). In addition, the performance of the proposed methods is compared by calculating
the number of iterations (k), convergence factor (α), error δl (k), error bound (ε), convergence rate, CPU
time, real-time and memory usage. In addition to the graphical representation of the error δl (k) when k
increases.

This paper is organized as follows. Section 2 introduces preliminary arithmetic operations of trape-
zoidal fuzzy numbers. In Section 3, new arithmetic multiplication operations between three TrFNs are
developed. In Section 4, proposed methods for solving GTrFFSME are developed along with a presenta-
tion of its algorithm and necessary theorems for consistency and convergence. In Section 5, two numerical
examples are presented to illustrate the proposed methods. Section 6 is dedicated to the conclusion.
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2. Preliminaries

The following are basic definitions and results related to TrFNs in fuzzy theory [17, 30, 31, 35] and
fuzzy matrix [1, 40, 41].

Definition 2.1. Let X be a universal set. Then, the fuzzy subset Ã of X is defined by its membership
function µÃ : X → [0, 1] which assigns to each element x ∈ X a real number µÃ (x) in the interval [0, 1],
where the function value of µÃ (x) represents the grade of membership of x in Ã. A fuzzy set Ã is written
as Ã = {(x, µÃ (x)) , x ∈ X, µÃ (x) ∈ [0, 1]}.

Definition 2.2. A fuzzy set Ã, defined on the universal set of real number R, is said to be a fuzzy number
if its membership function has the following characteristics:

1. Ã is convex, i.e.,

µÃ (λx1 + (1 − λ) x2 > min (µÃ (x) ,µÃ (x)) ∀ x1, x2 ∈ R , ∀λ ∈ [0, 1] ;

2. Ã is normal, i.e., ∃ x0 ∈ R such that µÃ ( x0) = 1;
3. µÃ is piecewise continuous.

Definition 2.3. A fuzzy number Â = (a1, a2, a3, a4) is a TrFN if its membership function is:

µÃ (x) =


0, x<a1,
x−a1
a2−a1

, a16x6a2,
1, a26x6a3,
a4−x
a4−a3

, a36x6a4,
0, x > a4.

Figure 1 Represents a TrFN in the form (a1,a2,a3,a4).

Figure 1: Representation of TrFN (a1,a2,a3,a4).

Definition 2.4. The sign of the TrFN Ã = (a1,a2,a3,a4) can be classified as:

1. Ã is positive (negative) iff a1 > 0, (a4 6 0);
2. Ã is zero iff (a1,a2,a3 and a4 = 0);
3. Ã is near zero iff a1 6 0 6 a4.

Definition 2.5 (Operations of TrFNs). The arithmetic operations of TrFNs are presented as follows, let
Â = (a1,a2,a3,a4), B̂ = (b1,b2,b3,b4) be two TrFNs then:

1. Addition:

Â+ B̂ = (a1,a2,a3,a4) + (b1,b2,b3,b4) = (a1 + b1,a2 + b2,a3 + b3,a4 + b4) . (2.1)
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2. Subtraction:

Â− B̂ = (a1,a2,a3,a4) − (b1,b2,b3,b4) = (a1 − b4,a2 − b3,a3 − b2,a4 − b1) .

3. Symmetric image:
−Â = (−a4,−a3,−a2,−a1) .

4. Scalar multiplication: Let λ ∈ R, then,

λ⊗ (a1,a2,a3,a4)=

{
(λa1, λa2, λa3, λa4) , λ>0,
(λa4, λa3, λa2, λa1) , λ< 0.

5. Multiplication: The multiplication between fuzzy numbers is neither commutative nor associative.
Thus, TrFNs multiplication operations can be classified as follows:

Case I: If Â = (a1,a2,a3,a4), B̂ = (b1,b2,b3,b4) be two arbitrary TrFNs then:

ÃB̃ = (a,h,m,d) , (2.2)

where,

a = min(a1b1,a1b4,a4b1,a4b4), h = min(a2b2,a2b3,a3b2,a3b3),
m = max (a2b2,a2b3,a3b2,a3b3) , d = max (a1b1,a1b4,a4b1,a4b4) .

Case II: If Â, B̂ > 0, then:

ÃB̃ = (a1b1,a2b2,a3b3,a4b4) . (2.3)

Case III: If Â, B̂ < 0, then:

ÃB̃ = (a4b4,a3b3,a2b2,a1b1) .

Case IV: If Â > 0 and B̂ < 0, then:

ÃB̃ = (a4b1,a3b2,a2b3,a1b4) .

Case V: If Â < 0 and B̂ > 0, then:

ÃB̃ = (a1b4,a2b3,a3b2,a4b1) . (2.4)

6. Equality: The fuzzy numbers Â = (a1,a2,a3,a4) and B̂ = (b1,b2,b3,b4) are equal iff

a1 = b1, a2 = b2, a3 = b3, and a4 = b4. (2.5)

Definition 2.6. A matrix Ã =
(
ãij
)
m×n is called a trapezoidal fuzzy matrix, if each element of Ã is a

TrFN.

Definition 2.7. A fuzzy matrix Ã will be:

1. positive (negative) and denoted by Ã > 0,
(
Ã < 0

)
if each element of Ã is positive (negative) TrFN;

2. non-negative (non-positive) and denoted by Ã > 0,
(
Ã 6 0

)
if each element of Ã is non-negative

(non-positive) TrFNs;
3. arbitrary, if at least one element of Ã is near zero TrFNs.
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Definition 2.8. The Vec-operator generates a column vector from a matrix A by stacking the column

vectors of A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 as Vec (A)=


a11
a21

...
ann

 . In addition, if A = Vec−1


a11
a21

...
ann

,

then A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

.

Definition 2.9 ([39]). A block diagonal matrix is invertible if and only if each of its main-diagonal blocks
is invertible, and in this case, its inverse is another block diagonal matrix given by

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


−1

=


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

n

 .

Definition 2.10 ([39]). The determinant of the block diagonal matrix A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

 is,

det (A) = det (A1)× · · · × det (An).

Theorem 2.11 ([16]). If the crisp linear matrix equation AXB = E has a unique solution X, then the gradi-
ent iterative solution X̂ (k) given by X̂ (k) = X̂ (k− 1) + α • (A)T

(
E−AX̂ (k− 1)B

)
(B)T converges to X or

limk→∞ (X̂ (k)
)
= X for any initial value X̂ (0).

Theorem 2.12 ([44]). If the crisp linear matrix equation AXB = E has a unique solution X, then the gradient

iterative solution X̂ (k) given by X̂ (k) = X̂ (k− 1)+α •
(
(A)T •A

)−1
(A)T

(
E−AX̂ (k− 1)B

)
(B)T ((B(B)T )

−1

converges to X or limk→∞ (X̂ (k)
)
= X for any initial value X̂ (0).

In the following section, the arithmetic multiplication operations for TrFNs are discussed.

3. Trapezoidal fuzzy numbers multiplication

The multiplication between fuzzy numbers is neither commutative nor associative. Therefore, in the
following propositions, the arithmetic multiplication operations between three TrFNs are discussed based
on the multiplication operations in (2.2)-(2.4).

Proposition 3.1 (Multiplication of three arbitrary trapezoidal fuzzy numbers). If Â = (a1,a2,a3,a4), B̂ =
(b1,b2,b3,b4), and X̂ = (x1, x2, x3, x4) be three arbitrary TrFNs, then

ÃX̃B̃ = (b, l,k,h) , (3.1)

where

b = min
[

min(a1x1,a1x4,a4x1,a4x4) · b1, min (a1x1,a1x4,a4x1,a4x4) · b4,
max (a1x1,a1x4,a4x1,a4x4) · b1, max (a1x1,a1x4,a4x1,a4x4) · b4

]
,

l = min
[

min(a2x2,a2x3,a3x2,a3x3) · b2, min (a2x2,a2x3,a3x2,a3x3) · b3,
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max (a2x2,a2x3,a3x2,a3x3) · b2, max(a2x2,a2x3,a3x2,a3x3) · b3
]
,

k = max
[

min(a2x2,a2x3,a3x2,a3x3) · b2, min (a2x2,a2x3,a3x2,a3x3) · b3,
max (a2x2,a2x3,a3x2,a3x3) · b2, max(a2x2,a2x3,a3x2,a3x3) · b3

]
,

h = max
[

min(a1x1,a1x4,a4x1,a4x4) · b1, min (a1x1,a1x4,a4x1,a4x4) · b4,
max (a1x1,a1x4,a4x1,a4x4) · b1, max (a1x1,a1x4,a4x1,a4x4) · b4

]
.

Proof. Straightforward using Eq. (2.2) in Definition 2.5.

Proposition 3.2 (Multiplication of three positive trapezoidal fuzzy numbers). If Â=(a1, a2, a3, a4),
X̂=(x1, x2, x3, x4), and B̂=(b1, b2, b3, b4) be three positive TrFNs respectively, then,

ÃX̃B̃=(a1x1b1,a2x2b2,a3x3b3,a4x4b4) .

Proof. From Definition 2.5 and by Eq. (2.2), we have:

ÃX̃ = (a,h,m,d) .

Since Â, X̂ > 0, and by Eq. (2.3) in Definition 2.5, ÃB̃ can be reduced as follows:

a = min(a1x1,a1x4,a4x1,a4x4) = a1x1, h = min(a2x2,a2x3,a3x2,a3x3)= a2x2,
m = max (a2x2,a2x3,a3x2,a3x3) = a3x3, d = max (a1x1,a1x4,a4x1,a4x4) = a4x4.

Thus, Eq. (3.1) can be reduced as follows:

b = min[a1x1b1,a1x1b4,a4x4b1,a4x4b4], l = min[a2x2b2,a2x2b3,a3x3b2,a3x3b3],
k = max[a2x2b2,a2x2b3,a3x3b2,a3x3b3], h = max[a1x1b1,a1x1b4,a4x4b1,a4x4b4].

(3.2)

Since B̂ = (b1,b2,b3,b4) is a positive fuzzy number, by Definition 2.6, the following can be concluded:

0 < b1 6 b2 6 b3 6 b4.

Thus, Eq. (3.2) can be reduced to:

a = min[a1x1b1,a1x1b4,a4x4b1,a4x4b4] = a1x1b1, h = min[a2x2b2,a2x2b3,a3x3b2,a3x3b3] = a2x2b2,
m = max[a2x2b2,a2x2b3,a3x3b2,a3x3b3] = a3x3b3, d = max[a1x1b1,a1x1b4,a4x4b1,a4x4b4] = a4x4b4,

and therefore,
ÃX̃B̃ = (a1x1b1,a2x2b2,a3x3b3,a4x4b4) .

The following section proposes three new methods for solving the GTrFFSME in Eq. (1.1) based on
the arithmetic multiplication operation proposed in Proposition 3.2.

4. The solution of generalized trapezoidal fully fuzzy Sylvester matrix equation

In this section, the positive GTrFFSME is converted to an equivalent system of GSME, and the solution
to the system of GSME is obtained by three different methods. In the following subsection, we first prove
the equivalency between the GTrFFSME and the system of GSME and derive the sufficient and necessary
conditions to have a unique positive fuzzy solution.
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4.1. Systems of generalized Sylvester matrix equations

To obtain the positive fuzzy solution to the positive GTrFFSME in Eq. (1.1), the developed arithmetic
fuzzy multiplication in Section 3 is applied to the positive GTrFFSME to convert it to an equivalent system
of GSME. The exact fuzzy solution is obtained analytically using the fuzzy matrix vectorization method
(FMVM) and approximated numerically using FGIM and FLSIM. There are five steps involved in the
construction of the methods. Figure 2 displays the flow chart of the constructed methods for solving
positive GTrFFSME.

Figure 2: Flow chart of the constructed methods for solving positive GTrFFSME.

In the following Theorem 4.1, the positive GTrFFSME is converted to an equivalent system of GSME.

Theorem 4.1 (Fundamental theorem of generalized trapezoidal fully fuzzy Sylvester matrix equation). In
the GTrFFSME in Eq. (1.1), if Ã =

(
ãij
)
q×p = (a

(1)
ij ,a(2)

ij ,a(3)
ij ,a(4)

ij ) > 0, C̃ =
(
c̃ij
)
q×p = (c

(1)
ij , c(2)

ij , c(3)
ij , c(4)

ij )

> 0, ∀1 6 i, j 6 q,p and B̃ =
(
b̃ij
)
n×r= (b

(1)
ij ,b(2)

ij ,b(3)
ij ,b(4)

ij ) > 0, D̃ =
(
d̃ij
)
n×r = (d

(1)
ij ,d(2)

ij ,d(3)
ij ,d(4)

ij ) >

0, ∀1 6 i, j 6 n, r and X̃ =
(
x̃ij
)
p×n = (x

(1)
ij , x(2)

ij , x(3)
ij , x(4)

ij ) > 0,∀1 6 i, j 6 p,n, and Ẽ =
(
ẽij
)
q×r

= (e
(1)
ij , e(2)

ij , e(3)
ij , e(4)

ij ) > 0, ∀1 6 i, j 6 q, r, then, the positive GTrFFSME in Eq. (1.1) is equivalent to the
following system of GSME: 

a
(1)
ij x

(1)
ij b

(1)
ij + c

(1)
ij x

(1)
ij d

(1)
ij = e

(1)
ij ,

a
(2)
ij x

(2)
ij b

(2)
ij + c

(2)
ij x

(2)
ij d

(2)
ij = e

(2)
ij ,

a
(3)
ij x

(3)
ij b

(3)
ij + c

(3)
ij x

(3)
ij d

(3)
ij = e

(3)
ij ,

a
(4)
ij x

(4)
ij b

(4)
ij + c

(4)
ij x

(4)
ij d

(4)
ij = e

(4)
ij .

(4.1)

Proof. The ijth equation of the GTrFFSME in Eq. (1.1) can be written as follows:

j∑
t=1

p∑
k=1

ãikx̃ktb̃tj +

j∑
t=1

p∑
k=1

c̃ikx̃ktd̃tj = ẽij, ∀1 6 i 6 q, 1 6 j 6 r.
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Since Ã, B̃, C̃, D̃, Ẽ and X̃ in Eq. (1.1) are positive trapezoidal fully fuzzy matrices respectively, then
Proposition 3.2 is used to find ãijx̃ijb̃ij and c̃ijx̃ijd̃ij as follows:

ÃX̃B̃ =

j∑
t=1

(
a
(1)
ij x

(1)
ij b

(1)
ij ,a(2)

ij x
(2)
ij b

(2)
ij ,a(3)

ij x
(3)
ij b

(3)
ij ,a(4)

ij x
(4)
ij b

(4)
ij

)
and

C̃X̃D̃ =

j∑
t=1

(
c
(1)
ij x

(1)
ij d

(1)
ij , c(2)

ij x
(2)
ij d

(2)
ij , c(3)

ij x
(3)
ij d

(3)
ij , c(4)

ij x
(4)
ij d

(4)
ij

)
,

∀1 6 i 6 q, 1 6 j 6 r. By Definition 2.5 and Eq. (2.1), we get,

ÃX̃B̃+ C̃X̃D̃ =

j∑
t=1

(
a
(1)
ij x

(1)
ij b

(1)
ij ,a(2)

ij x
(2)
ij b

(2)
ij ,a(3)

ij x
(3)
ij b

(3)
ij ,a(4)

ij x
(4)
ij b

(4)
ij

+ c
(1)
ij x

(1)
ij d

(1)
ij , c(2)

ij x
(2)
ij d

(2)
ij , c(3)

ij x
(3)
ij d

(3)
ij , c(4)

ij x
(4)
ij d

(4)
ij

)
, ∀1 6 i 6 q, 1 6 j 6 r.

By Definition 2.5 and Eq. (2.5), the GTrFFSME in Eq. (1.1) is equivalent to the following:
a
(1)
ij x

(1)
ij b

(1)
ij + c

(1)
ij x

(1)
ij d

(1)
ij = e

(1)
ij ,

a
(2)
ij x

(2)
ij b

(2)
ij + c

(2)
ij x

(2)
ij d

(2)
ij = e

(2)
ij ,

a
(3)
ij x

(3)
ij b

(3)
ij + c

(3)
ij x

(3)
ij d

(3)
ij = e

(3)
ij ,

a
(4)
ij x

(4)
ij b

(4)
ij + c

(4)
ij x

(4)
ij d

(4)
ij = e

(4)
ij .

In the following definition, the trapezoidal positive fuzzy solution matrix in general form is presented.

Definition 4.2. The trapezoidal fuzzy matrix X̃ =
(
x
(1)
ij , x(2)

ij , x(3)
ij , x(4)

ij

)
is called an exact positive fuzzy

solution of GTrFFSME in Eq. (4.1) if x(4)
ij > x(3)

ij > x(2)
ij > x(1)

ij > 0, ∀1 6 i, j 6 n,m.

To solve the positive GTrFFSME in Eq. (1.1), we consider the corresponding system of GSME in Eq.
(4.1). Now, in the next Theorem 4.3, sufficient conditions for the system of GSME in Eq. (4.1) to have a
unique positive solution are discussed.

Theorem 4.3 (Uniqueness of positive solution to system of GSME). The system of GSME in Eq. (4.1) has a
unique positive solution if:

1. det (r1) 6= 0, det (r2) 6= 0, det (r3) 6= 0 and det (r4) 6= 0 i.e r1, r2, r3 and r4 are invertible matrices, where,

r1 = (b
(1)
ij )

T⊗
a
(1)

ij
+ (d

(1)
ij )

T⊗
c
(1)
ij , r2 = (b

(2)
ij )

T⊗
a
(2)

ij
+ (d

(2)
ij )

T⊗
c
(2)
ij ,

r3 = (b
(3)
ij )

T⊗
a
(3)

ij
+ (d

(3)
ij )

T⊗
c
(3)
ij , r1 = (b

(4)
ij )

T⊗
a
(4)

ij
+ (d

(4)
ij )

T⊗
c
(4)
ij ;

2. r−1
1 , r−1

2 , r−1
3 and r−1

4 > 0.
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Proof.

1. By Theorem 4.1, the positive GTrFFSME in Eq. (1.1) is converted to an equivalent system of GSME in
Eq. (4.1). Applying the concept of Vec-operator and Kronecker product on the system of GSME in Eq.
(4.1) yield a system of linear matrix equations as follows:

((b
(1)
ij )

T⊗
a
(1)
ij + (d

(1)
ij )

T⊗
c
(1)
ij )vec(x(1)

ij ) = vec(e(1)
ij ),

((b
(2)
ij )

T⊗
a
(2)
ij + (d

(2)
ij )

T⊗
c
(2)
ij )vec(x(2)

ij ) = vec(e(2)
ij ),

((b
(3)
ij )

T⊗
a
(3)
ij + (d

(3)
ij )

T⊗
c
(3)
ij )vec(x(3)

ij ) = vec(e(3)
ij ),

((b
(4)
ij )

T⊗
a
(4)
ij + (d

(4)
ij )

T⊗
c
(4)
ij )vec(x(4)

ij ) = vec(e(4)
ij ).

(4.2)

If we let

r1 = (b
(1)
ij )

T⊗
a
(1)

ij
+ (d

(1)
ij )

T⊗
c
(1)
ij , r2 = (b

(2)
ij )

T⊗
a
(2)

ij
+ (d

(2)
ij )

T⊗
c
(2)
ij ,

r3 = (b
(3)
ij )

T⊗
a
(3)

ij
+ (d

(3)
ij )

T⊗
c
(3)
ij , r1 = (b

(4)
ij )

T⊗
a
(4)

ij
+ (d

(4)
ij )

T⊗
c
(4)
ij ,

then, this system in Eq. (4.2) can be written as

RS = T , (4.3)

or in a matrix form as, 
r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4



s1
s2
s3
s4

 =


t1
t2
t3
t4

 ,

where,

R =


r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4

 , S =


vec

(
x
(1)
ij

)
vec

(
x
(2)
ij

)
vec

(
x
(3)
ij

)
vec

(
x
(4)
ij

)

 =


s1
s2
s3
s4

 , and T =


vec

(
e
(1)
ij

)
vec

(
e
(2)
ij

)
vec

(
e
(3)
ij

)
vec

(
e
(4)
ij

)

 =


t1
t2
t3
t4

 .

Matrix R is a block diagonal matrix, by Definition 2.10, the determinant of R (det (R)) is obtained as
follows:

det (R) = det



r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4


 = det (r1)× det (r2)× det (r3)× det (r4).

The linear matrix equation RS = T has a unique solution if and only if det (R) 6= 0. Therefore, the system of
GSME in Eq. (4.1) has a unique positive solution if: det (r1) 6= 0, det (r2) 6= 0, det (r3) 6= 0 and det (r4) 6= 0,
i.e., r1, r2, r3, and r4 are invertible matrices.

2. If r−1
1 , r−1

2 , r−1
3 , and r−1

4 > 0 then the system of GSME in Eq. (4.1) has a positive solution, and the proof
is straightforward.

From 1 and 2, the system of GSME in Eq. (4.1) has a unique positive solution if: det (r1) 6= 0, det (r2) 6=
0, det (r3) 6= 0, and det (r4) 6= 0, i.e., r1, r2, r3 and r4 are invertible matrices; and r−1

1 , r−1
2 , r−1

3 , and r−1
4 >

0.
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Since the system of GSME obtained in Eq. (4.1) consists of four crisp GSMEs, in the following remark,
the system of GSME is represented in a more general form.

Remark 4.4. Based on Eq. (4.1), the GTrFFSME in Eq. (1.1) can be written as follows: for 1 6 l 6 4 we
have:

a
(l)
ij x

(l)
ij b

(l)
ij + c

(l)
ij x

(l)
ij d

(l)
ij = e

(l)
ij . (4.4)

Based on Theorem 4.1, the GTrFFSME in Eq. (1.1) is transferred to an equivalent linear system of
GSME in crisp form, which can be solved analytically and numerically. The main advantage of the
analytical method is that the exact fuzzy solution to the GTrFFSME in Eq. (1.1) can be obtained. In
addition, the analytical methods can be applied to the GTrFFSME in Eq. (1.1) with square and non-square
fuzzy coefficient matrices.

However, the conversion of m× n GTrFFSME vec-operator and Kronecker product increases the di-
mension of the system by mn×mn, which makes the computational more complex and impracticable.
Normally, previous researchers limited their examples to small sizes (n < 10). For GTrFFSME with large
dimensions (n > 10), iterative algorithms to find an approximated solution are more practical [9]. There-
fore, three different methods are proposed in the following sections for solving the GTrFFSME in Eq.
(1.1). The first method aims to find the exact fuzzy solution by extending the matrix vec-operator and
Kronecker product concept. In addition, two iterative methods are developed to approximate the positive
fuzzy solution of the positive GTrFFSME with large dimensions.

4.1.1. Fuzzy matrix vectorization method for GTrFFSME
In this method, the GTrFFSME in Eq. (1.1) is solved analytically using vec-operator and Kronecker

product. The detail of the constructed method is presented in the following steps.

Step 1: Decompose Ã, B̃, C̃, D̃, Ẽ and X̃ into a(l)ij , b(l)ij , c(l)ij , d(l)ij , e(l)ij and x
(l)
ij , where l = 1, 2, 3, 4,

respectively, and convert the GTrFFSME in Eq. (1.1) to the system of linear matrix equations in Eq. (4.1)
using Theorem 4.1.

Step 2: Applying the vec-operator and Kronecker product on Eq. (4.1) gives:


((b

(1)
ij )

T⊗
a
(1)
ij + (d

(1)
ij )

T⊗
c
(1)
ij )vec(x(1)

ij ) = vec(e(1)
ij ),

((b
(2)
ij )

T⊗
a
(2)
ij + (d

(2)
ij )

T⊗
c
(2)
ij )vec(x(2)

ij ) = vec(e(2)
ij ),

((b
(3)
ij )

T⊗
a
(3)
ij + (d

(3)
ij )

T⊗
c
(3)
ij )vec(x(3)

ij ) = vec(e(3)
ij ),

((b
(4)
ij )

T⊗
a
(4)
ij + (d

(4)
ij )

T⊗
c
(4)
ij )vec(x(4)

ij ) = vec(e(4)
ij ).

Step 3: Multiply the system of linear matrix equation in step 2 by matrix multiplicative inverse as follows:

vec
(
x
(1)
ij

)
= ((b

(1)
ij )

T⊗
a
(1)
ij + (d

(1)
ij )

T⊗
c
(1)
ij )

−1
vec

(
e
(1)
ij

)
,

vec
(
x
(2)
ij

)
= ((b

(2)
ij )

T⊗
a
(2)
ij + (d

(2)
ij )

T⊗
c
(2)
ij )

−1
vec

(
e
(2)
ij

)
,

vec
(
x
(3)
ij

)
= ((b

(3)
ij )

T⊗
a
(3)
ij + (d

(3)
ij )

T⊗
c
(3)
ij )

−1
vec

(
e
(3)
ij

)
,

vec
(
x
(4)
ij

)
= ((b

(4)
ij )

T⊗
a
(4)
ij + (d

(4)
ij )

T⊗
c
(4)
ij )

−1
vec

(
e
(4)
ij

)
.

Step 4: Multiplying the system of linear matrix equation in step 3 by vec−1 gives the following positive
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fuzzy solutions: 

x
(1)
ij = vec−1(((b

(1)
ij )

T⊗
a
(1)
ij + (d

(1)
ij )

T⊗
c
(1)
ij )

−1
vec(e(1)

ij )),

x
(2)
ij = vec−1

(
((b

(2)
ij )

T⊗
a
(2)
ij + (d

(2)
ij )

T⊗
c
(2)
ij

)−1

vec(e(2)
ij )),

x
(3)
ij = vec−1

(
((b

(3)
ij )

T⊗
a
(3)
ij + (d

(3)
ij )

T⊗
c
(3)
ij

)−1

vec(e(3)
ij )),

x
(4)
ij = vec−1(((b

(4)
ij )

T⊗
a
(4)
ij + (d

(4)
ij )

T⊗
c
(4)
ij )

−1
vec(e(4)

ij )).

(4.5)

Step 5: Combine the positive fuzzy solutions obtained in Eq. (4.5) as follows:

X̃ =


(
x
(1)
11 , x(2)

11 , x(3)
11 , x(4)

11

)
· · ·

(
x
(1)
1n , x(2)

1n , x(3)
1n , x(4)

1n

)
...

. . .
...(

x
(1)
p1 , x(2)

p1 , x(3)
p1 , x(4)

p1

)
. . .

(
x
(1)
pn, x(2)

pn, x(3)
pn, x(4)

pn

)
 .

In the following remark, the system of equations in Step 4 is written in a general form.
Remark 4.5. The positive fuzzy solution in Eq. (4.5) to the positive GTrFFSME in Eq. (1.1) can be written
as follows: for 1 6 l 6 4 we have

x
(l)
ij = vec−1(((b

(l)

ij )
T⊗

a
(l)

ij
+ (d

(l)
ij )

T⊗
c
(l)
ij )

−1

vec(e(l)ij )). (4.6)

In the next Theorem 4.6, the relation between the positive fuzzy solution obtained in Eq. (4.6) to the
positive GTrFFSME in Eq. (1.1) and the solution to the system of crisp linear matrix equation in Eq. (4.3)
is discussed.

Theorem 4.6. The solution for the system of linear matrix equations of the RS = T and the positive fuzzy solution
to the GTrFFSME are equivalent if:

1. det (r1) 6= 0, det (r2) 6= 0, det (r3) 6= 0 and det (r4) 6= 0, i.e., r1, r2, r3 and r4 are invertible matrices.
2. r−1

1 , r−1
2 , r−1

3 , and r−1
4 > 0;

3. r1
−1t1 6 r2

−1t2 6 r3
−1t3 6 r4

−1t4.

Proof. By Theorem 4.3, the positive GTrFFSME is converted to the system of linear matrix equations in
Eq. (4.3). Multiplying both sides of Eq. (4.3) by R−1 gives:

s1
s2
s3
s4

 =


r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4


−1

t1
t2
t3
t4

 .

Since R−1 is a block diagonal matrix, R−1 can be evaluated by Definition 2.9 as follows:
s1
s2
s3
s4

 =


r1

−1 0 0 0
0 r2

−1 0 0
0 0 r3

−1 0
0 0 0 r4

−1



t1
t2
t3
t4

 .

The right-hand side can be simplified to the following:
s1
s2
s3
s4

 =


r1

−1t1
r2

−1t2
r3

−1t3
r4

−1t4

 . (4.7)
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By Theorem 4.3, the positive GTrFFSME has a positive fuzzy solution only if r1, r2, r3 and r4 are invertible.
Thus, the solution to the system of linear matrix equations RS = T in Eq. (4.3) is as follows: for 1 6 l 6 4,
we have

sl = rl
−1tl,

where,

rl = (b
(l)
ij )

T⊗
a
(l)

ij
+ (d

(l)
ij )

T⊗
c
(l)
ij , sl = vec

(
x
(l)
ij

)
, and tl = vec

(
e
(l)
ij

)
.

To get a unique positive solution, the following conditions must be met.

1. det (r1) 6= 0, det (r2) 6= 0, det (r3) 6= 0, and det (r4) 6= 0, i.e., r1, r2, r3 and r4 are invertible matrices;
2. r−1

1 , r−1
2 , r−1

3 , and r−1
4 > 0.

For the obtained solution to be fuzzy, the following condition must be met.

1. r1
−1t1 6 r2

−1t2 6 r3
−1t3 6 r4

−1t4.

Therefore, the positive fuzzy solution obtained in Eq. (4.5) to the positive GTrFFSME in Eq. (1.1) and the
solution to the system of crisp linear matrix equation in Eq. (4.3) is equivalent.

Corollary 4.7 (Uniqueness of fuzzy solution to positive GTrFFSME). The positive GTrFFSME in Eq. (1.1)
has a unique positive fuzzy solution if the corresponding system of GSME in Eq. (4.1) has a unique solution (i.e.,
det (r1) 6= 0, det (r2) 6= 0, det (r3) 6= 0, and det (r4) 6= 0, i.e., r1, r2, r3 and r4 are invertible matrices).

Proof. The solution to the positive GTrFFSME in Eq. (1.1) is equivalent to the solution system of GSME
in Eq. (4.1) by Theorem 4.6. Therefore, the positive GTrFFSME in Eq. (1.1) has a unique positive fuzzy
solution if the corresponding system of GSME in Eq. (4.1) has a unique solution. Therefore, by Theorem
4.3, the positive GTrFFSME in Eq. (1.1) has a unique positive fuzzy solution if: det (r1) 6= 0, det (r2) 6=
0, det (r3) 6= 0, and det (r4) 6= 0, i.e., r1, r2, r3 and r4 are invertible matrices.

In the next Theorem 4.8, necessary and sufficient conditions for positive GTrFFSME to have a positive
fuzzy solution are discussed.

Theorem 4.8 (Existence of positive fuzzy solution to positive GTrFFSME). The positive GTrFFSME has a
positive fuzzy solution when matrices r1, r2, r3 and r4 are invertible, and if:

1. r−1
1 , r−1

2 , r−1
3 , and r−1

4 > 0;
2. r1

−1t1 > 0, r2
−1t2 > 0, r3

−1t3 > 0, and r4
−1t4 > 0;

3. r1
−1t1 6 r2

−1t2 6 r3
−1t3 6 r4

−1t4.

Proof. Part 1 and 2 can be proved as follows. By Corollary 4.7, the positive GTrFFSME has a unique
positive solution only if r1, r2, r3 and r4 are positive and invertible. And by Theorem 4.6, the solution for
the system of linear matrix equations RS = T and the GTrFFSME is equivalent. Thus, from Eq. (4.7), the
positive GTrFFSME has a positive solution only if

r1
−1t1 > 0, r2

−1t2 > 0, r3
−1t3 > 0, r4

−1t4 > 0.

By the definition of positive fuzzy solution matrix in Definition 4.2, the positive GTrFFSME has a unique
positive fuzzy solution if the following condition is satisfied,

r1
−1t1 6 r2

−1t2 6 r3
−1t3 6 r4

−1t4.

Now we proceed to the feasibility of a positive fuzzy solution to the positive GTrFFSME.
Based on the conditions for a feasible fuzzy solution by [34], the obtained positive fuzzy solution in Eq.

(4.5) to the positive GTrFFSME in Eq. (1.1) is feasible (strong fuzzy solution) if the following conditions
are satisfied: for 1 6 l 6 4,

x
(l)
ij > 0, ∀ {1 6 i, j 6 p,n} , and x

(4)
ij > x(3)

ij > x(2)
ij > x(1)

ij , ∀ {1 6 i, j 6 p,n} . (4.8)
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Remark 4.9. If the solution fails to satisfy the feasibility conditions, it is infeasible (weak fuzzy solution).

The algorithm of the FMVM for solving the CTrFFMSE in Eq. (1.1) is given in the following five steps.

Algorithm 4.10 (Fuzzy matrix vectorization and Kronecker product algorithm for solving GTrFFSME).

Step 1: Convert the GTrFFSME in Eq. (1.1) to a system of linear matrix equations using Theorem 4.1.
Step 2: Apply vec-operator and Kronecker product on the system obtained in Step 1.
Step 3: Multiply both sides of the system obtained in Step 2 by the multiplicative inverse of

((b
(l)
ij )

T⊗
a
(l)

ij
+ (d

(l)
ij )

T⊗
c
(l)
ij ), ∀1 6 l 6 4.

Step 4: Multiply both sides of the system obtained in Step 3 by vec−1.
Step 5: Solving the system of matrix equations in Step 4 and write the positive fuzzy solution as follows:

X̃ =


(
x
(1)
11 , x(2)

11 , x(3)
11 , x(4)

11

)
· · ·

(
x
(1)
1n , x(2)

1n , x(3)
1n , x(4)

1n

)
...

. . .
...(

x
(1)
p1 , x(2)

p1 , x(3)
p1 , x(4)

p1

)
. . .

(
x
(1)
pn, x(2)

pn, x(3)
pn, x(4)

pn

)
 .

Approximating the positive fuzzy solution to the positive GTrFFSME in Eq. (1.1) is more practical
than getting the exact fuzzy solution by FMVM, especially if the GTrFFSME’s size is more than 10. In
addition, since the positive GTrFFSME in Eq. (1.1) is converted to a system of four crisp GSME equations
in Eq. (4.1), many methods can numerically approximate the fuzzy solution to the positive GTrFFSME.
The following section extends the GI for solving the positive GTrFFSME in Eq. (1.1).

4.1.2. Fuzzy gradient-iterative method for GTrFFSME
In this section, the positive fuzzy solution to the positive GTrFFSME in Eq. (1.1) is approximated

iteratively by extending the GI method in Theorem 2.11 to the system of GSME in Eq. (4.1) or equivalently
in Eq. (4.4). The hierarchical identification principle is used to split the system of GSME in Eq. (4.1) into
two subsystems, where the GI method is applied in obtaining the solution.

Using the hierarchical identification principle and Remark 4.1, the system of GSME in Eq. (4.4) can be
decomposed into two subsystems. For 1 6 l 6 4,

ξ
(l)
1 = e

(l)
ij − a

(l)
ij x

(l)
ij b

(l)
ij and ξ

(l)
2 = e

(l)
ij − c

(l)
ij x

(l)
ij d

(l)
ij , (4.9)

where the iterative positive solution to the system of GSME in Eq. (4.4) is the average of the iterative
solution for the subsystems.

From Eqs. (4.4) and (4.9), the following can be obtained: for 1 6 l 6 4,

ξ
(l)
2 = a

(l)
ij x

(l)
ij b

(l)
ij and ξ

(l)
1 = c

(l)
ij x

(l)
ij d

(l)
ij . (4.10)

The iterative positive solution to the system of equations in (4.10) can be obtained by Theorem 2.11 as
follows:

x̂
(l)
1 (k) = x̂(l) (k− 1) +αl •

(
a
(l)
ij

)T (
ξ
(l)
2 − a

(l)
ij x̂

(l) (k− 1)b(l)ij
)(
b
(l)
ij

)T
, (4.11)

x̂
(l)
2 (k) = x̂(l) (k− 1) +αl •

(
c
(l)
ij

)T (
ξ
(l)
1 − c

(l)
ij x̂

(l) (k− 1)d(l)ij
)(
d
(l)
ij

)T
. (4.12)

Substitute Eq. (4.9) into (4.11) and (4.12) as follows:

x̂
(l)
1 (k) = x̂(l) (k− 1) +αl •

(
a
(l)
ij

)T (
e
(l)
ij − c

(l)
ij x̂

(l) (k− 1)d(l)ij − a
(l)
ij x̂

(l) (k− 1)b(l)ij
)(
b
(l)
ij

)T
, (4.13)
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x̂
(l)
2 (k) = x̂(l) (k− 1) +αl •

(
c
(l)
ij

)T (
e
(l)
ij − a

(l)
ij x̂

(l) (k− 1)b(l)ij − c
(l)
ij x̂

(l) (k− 1)d(l)ij
)(
d
(l)
ij

)T
. (4.14)

If we let
sl (k− 1) = e(l) − a(l)x̂(l) (k− 1)b(l) − c(l)x̂(l) (k− 1)d(l),

then, the average of the two iterative positive solutions in Eqs. (4.13) and (4.14) is

x̂(l) (k) =
x̂
(l)
1 (k) + x̂

(l)
2 (k)

2
.

Therefore, for 1 6 l 6 4 the iterative positive solution to the system of GSME in Eq. (4.4) is

x̂(l) (k) = x̂(l) (k− 1) +
αl
2

((
a(l)

)T (
sl (k− 1)

) (
b(l)

)T
+
(
c(l)
)T (

sl (k− 1)
) (
d(l)

)T)
, (4.15)

where the convergence factor (step size) is given by,

0 < αl <
2

λmax

[(
a(l)

)T
a(l)

]
λmax

[
b(l)

(
b(l)

)T]
+ λmax

[(
c(l)
)T
c(l)
]
λmax

[
d(l)

(
d(l)

)T] . (4.16)

It can also be obtained as follows,

0 < αl <
2∥∥a(l)∥∥2∥∥b(l)∥∥2
+
∥∥c(l)∥∥2∥∥d(l)∥∥2 , (4.17)

where,
∥∥a(l)∥∥2

= tr
[
a(l)•

(
a(l)

)T]
. If we let ff0 =

∥∥a(l)∥∥2∥∥b(l)∥∥2
+
∥∥c(l)∥∥2∥∥d(l)∥∥2

, then

0 < αl <
2

ff0
. (4.18)

At step kth of the iteration, the following error is considered:

δl (k) =
∥∥sl (k− 1)

∥∥
2.

The obtained iterative positive solution in Eq. (4.15), can be expressed as,

x̂ =
(
x̂(1), x̂(2), x̂(3), x̂(4)

)
.

It can also be written in matrix form as,

X̂ =


(
x̂
(1)
11 , x̂(2)

11 , x̂(3)
11 , x̂(4)

11

)
· · ·

(
x̂
(1)
1n , x̂(2)

1n , x̂(3)
1n , x̂(4)

1n

)
...

. . .
...(

x̂
(1)
p1 , x̂(2)

p1 , x̂(3)
p1 , x̂(4)

p1

)
. . .

(
x̂
(1)
pn, x̂(2)

pn, x̂(3)
pn, x̂(4)

pn

)
 . (4.19)

In the next theorem, we prove that the iterative solution obtained by the FGIM converges to the positive
solution of the positive GTrFFSME for any initial value.

Theorem 4.11. If the positive GTrFFSME in Eq. (1.1), or equivalently the system of GSME in Eq. (4.4), has
a unique positive solution X(l), then the iterative solution x̂(l) (k) in Eq. (4.19) converges to X(l) for any initial
values x̂(l) (0) (i.e., if k→∞, then X(l) = X̂(l) (k)).
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Proof. Let, ψ (k) be the error at each k, for k = 1, . . . ,n and 1 6 l 6 4 as

ψ (k) = X(l) − X̂(l) (k) . (4.20)

From (4.4), (4.15), and (4.20), the following is obtained:

ψ (k) = ψ (k− 1) +
αl
2

((
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T)
.

(4.21)

Taking ‖.‖2 to both sides of Eq. (4.21) gives

‖ψ (k)‖2 =

∥∥∥∥∥ψ (k− 1) +
αl
2

((
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T)∥∥∥∥∥
2

.

(4.22)

Apply the following formula

‖A+B‖2 = tr
(
(A+B)T (A+B)

)
= ‖A‖2 + 2tr

(
ATB

)
+ ‖B‖2.

to Eq. (4.22) we get,

‖ψ (k)‖2 = ‖ψ (k− 1)‖2 +αltr
[
ψT (k− 1)

((
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T)]
+
α2
l

4

∥∥∥(a(l))T (−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T∥∥∥2
.

Applying norm properties gives:

‖ψ (k)‖2 6 ‖ψ (k− 1)‖2 +αltr
[(
ψ
T
(k− 1)

(
a(l)

)T(
b(l)

)T
+ψT (k− 1)

(
c(l)
)T(

d(l)
)T)

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

) ]
+
α2
l

4

∥∥∥(a(l))T (−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T∥∥∥2
.

And since ‖A‖2 = tr
[
(A)TA

]
, then

‖ψ (k)‖2 6 ‖ψ (k− 1)‖2 −αl

∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

+
α2
l

4

∥∥∥(a(l))T (−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T∥∥∥2
.
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Applying norm properties gives:

‖ψ (k)‖2 6 ‖ψ (k− 1)‖2 −αl

∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

+
α2
l

4

(∥∥∥a(l)∥∥∥2∥∥∥b(l)∥∥∥2
+
∥∥∥c(l)∥∥∥2∥∥∥d(l)∥∥∥2

)∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

,

‖ψ (k)‖2 6 ‖ψ (k− 1)‖2

+

(
−αl +

α2
l

4

(∥∥∥a(l)∥∥∥2∥∥∥b(l)∥∥∥2
+
∥∥∥c(l)∥∥∥2∥∥∥d(l)∥∥∥2

))∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

.

By (4.18), the following can be obtained:

‖ψ (k)‖2 6 ‖ψ (k− 1)‖2 +

(
−αl +

α2
l

4
× 2
α0

)∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

.

At k = 1, ‖ψ (1)‖2 6 ‖ψ (0)‖2 − αl

(
1 − αl

2α0

)∥∥a(l)ψ (0)b(l) + c(l)ψ (0)d(l)
∥∥2

. At k = 2, ‖ψ (2)‖2 6

‖ψ (1)‖2 −αl

(
1 − αl

2α0

)∥∥a(l)ψ (1)b(l) + c(l)ψ (1)d(l)
∥∥2

. At k = 3,

‖ψ (3)‖2 6 ‖ψ (2)‖2 −αl

(
1 −

αl
2α0

)∥∥∥a(l)ψ (2)b(l) + c(l)ψ (2)d(l)
∥∥∥2

.

At k = n − 1, ‖ψ (n− 1)‖2 6 ‖ψ (n− 2)‖2 − αl

(
1 − αl

2α0

)∥∥a(l)ψ (n− 2)b(l) + c(l)ψ (n− 2)d(l)
∥∥2

. At

k = n, ‖ψ (n)‖2 6 ‖ψ (n− 1)‖2 −αl

(
1 − αl

2α0

)∥∥a(l)ψ (n− 1)b(l) + c(l)ψ (n− 1)d(l)
∥∥2

. Therefore, the fol-
lowing is obtained,

‖ψ (k)‖2 6 ‖ψ (0)‖2 −αl

(
1 −

αl
2α0

) n∑
k=1

(∥∥∥a(l)ψ (k)b(l) + c(l)ψ (k)d(l)
∥∥∥2
)

.

If the convergence factor ff is chosen to (4.18) and k→∞, then

∞∑
k=1

(∥∥∥a(l)ψ (k)b(l) + c(l)ψ (k)d(l)
∥∥∥2
)
<∞.

Therefore,
lim
k→∞(a(l)ψ (k)b(l) + c(l)ψ (k)d(l)) = 0.

Since a(l) > 0, b(l) > 0, c(l) > 0, and d(l) > 0, then,

lim
k→∞ψ (k) = 0.

By Eq. (4.20), the following is obtained,

lim
k→∞

(
X(l) − X̂(l) (k)

)
= 0.

Consequently, if k → ∞, then X(l) = X̂(l) (k) and therefore, the positive GTrFFSME in Eq. (1.1), or
equivalently the system of GSME in Eq. (4.4) has a unique positive solution X(l), then the iterative
solution x̂(l) (k) in Eq. (4.19) converges to X(l) for any initial values x̂(l) (0) and for 1 6 l 6 4.

The convergence rate of the FGIM algorithm in Eq. (4.20) is slow. To improve the convergence speed,
in the following section, we derive a FLSIM. It is worth mentioning that the FGIM can only be applied
to GTrFFSME with square coefficients; however, the FLSIM algorithm can be applied to GTrFFSME with
non-square coefficients.
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4.1.3. Fuzzy least-square iterative method for GTrFFSME
The development of the FLSIM is similar to the FGIM. However, to improve the convergence rate of

the FGIM in Section 4.1.2, the least-square term of the coefficients in Eq. (4.4) should be added to the
FGIM algorithm obtained in Eq. (4.15). Therefore, by Theorem 2.12 and Eq. (4.15), the following can be
obtained: for 1 6 l 6 4 we have:

x̂(l) (k) = x̂(l) (k− 1) +
αl
2

(((
a(l)

)T
• a(l)

)−1

•
(
a(l)

)T (
sl (k− 1)

) (
b(l)

)T
((b(l)

(
b(l)

)T
)
−1

)

+

((
c(l)
)T
• c(l)

)−1 (
c(l)
)T (

sl (k− 1)
) (
d(l)

)T
((d(l)

(
d(l)

)T
)
−1
)

.

Where the convergence factor (step size) is given by,

0 < αl < 4.

As step kth of the iteration, the following error is considered:

δl (k) =
∥∥sl (k− 1)

∥∥
2.

The obtained iterative positive solution in Eq. (4.15), can be expressed as,

x̂ =
(
x̂(1), x̂(2), x̂(3), x̂(4)

)
.

It can also be written in matrix form as,

X̂ =


(
x̂
(1)
11 , x̂(2)

11 , x̂(3)
11 , x̂(4)

11

)
· · ·

(
x̂
(1)
1n , x̂(2)

1n , x̂(3)
1n , x̂(4)

1n

)
...

. . .
...(

x̂
(1)
p1 , x̂(2)

p1 , x̂(3)
p1 , x̂(4)

p1

)
. . .

(
x̂
(1)
pn, x̂(2)

pn, x̂(3)
pn, x̂(4)

pn

)
 . (4.23)

In the next theorem, we prove that the iterative solution obtained by the FLSIM method converges to the
positive solution of the positive GTrFFSME for any initial value.

Theorem 4.12. If the positive GTrFFSME in Eq. (1.1), or equivalently the system of GSME in Eq. (4.4), has
a unique positive solution X(l), then the iterative solution x̂(l) (k) in Eq. (4.23) converges to X(l) for any initial
values x̂(l) (0) (i.e., if k→∞, then X(l) = X̂(l) (k)).

Proof. Let, ψ (k) be the error at each k, for k = 1, . . . ,n and 1 6 l 6 4 as

ψ (k) = X(l) − X̂(l) (k) . (4.24)

From (4.4), (4.15), and (4.24), the following is obtained:

ψ (k) = ψ (k− 1) +
αl
2

(((
a(l)

)T
• a(l)

)−1 (
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
×
(
b(l)

)T(
b(l)

(
b(l)

)T)−1

+

((
c(l)
)T
• c(l)

)−1(
c(l)
)T

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
d(l)

)T(
d(l)

(
d(l)

)T)−1
)

.

(4.25)
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Taking ‖.‖2 to both sides of Eq. (4.25) gives

‖ψ (k)‖2 =

∥∥∥∥∥ψ (k− 1) +
αl
2

(((
a(l)

)T
• a(l)

)−1 (
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
×
(
b(l)

)T(
b(l)

(
b(l)

)T)−1

+

((
c(l)
)T
• c(l)

)−1(
c(l)
)T

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
d(l)

)T(
d(l)

(
d(l)

)T)−1)∥∥∥∥∥
2

.

(4.26)

Applying the following formula∥∥∥∥A(X+
(
(A)T •A

)−1
Y
(
B(B)T

)−1
)
B

∥∥∥∥2

= tr

(((
X+

(
(A)T •A

)−1
Y
(
B(B)T

)−1
)
B

)T ((
X+

(
(A)T •A

)−1
Y
(
B(B)T

)−1
)
B

))

= ‖AXB‖2 + 2tr
(
XTY

)
+

∥∥∥∥(A((A)T •A)−1
Y
(
B(B)T

)−1
)
B

∥∥∥∥2

.

to Eq. (4.26) we get,∥∥∥a(l)ψ (k)b(l)
∥∥∥2

=
∥∥∥a(l)ψ (k− 1)b(l)

∥∥∥2

+αltr

[
ψT (k− 1)

((
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T)]

+
α2
l

4

∥∥∥∥∥
(((

a(l)
)T
• a(l)

)−1 (
a(l)

)T
a(l)

(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
× b(l)

(
b(l)

)T(
b(l)

(
b(l)

)T)−1

+

((
c(l)
)T
• c(l)

)−1(
c(l)
)T
c(l)

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
d(l)

(
d(l)

)T(
d(l)

(
d(l)

)T)−1
)∥∥∥∥∥

2

.

Applying norm properties, we get∥∥∥a(l)ψ (k)b(l)
∥∥∥2

6
∥∥∥a(l)ψ (k− 1)b(l)

∥∥∥2

+ 2αltr

[
ψT (k− 1)

((
a(l)

)T (
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)(
b(l)

)T
+
(
c(l)
)T (

−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)
)(
d(l)

)T)]

+
α2
l

4

∥∥∥∥∥
(((

a(l)
)T
• a(l)

)−1 (
a(l)

)T
a(l)

(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
× b(l)

(
b(l)

)T(
b(l)

(
b(l)

)T)−1

+

((
c(l)
)T
• c(l)

)−1(
c(l)
)T
c(l)



A. A. A. Elsayeda, et al., J. Math. Computer Sci., 31 (2023), 102–136 121

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
d(l)

(
d(l)

)T(
d(l)

(
d(l)

)T)−1
)∥∥∥∥∥

2

,

which can be written as,∥∥∥a(l)ψ (k)b(l)
∥∥∥2

6
∥∥∥a(l)ψ (k− 1)b(l)

∥∥∥2

+ 2αltr
[
(ψT (k− 1)

(
a(l)

)T(
b(l)

)T
+ψT (k− 1)

(
c(l)
)T(

d(l)
)T

)

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

) ]
+
α2
l

4

∥∥∥∥∥
(((

a(l)
)T
• a(l)

)−1 (
a(l)

)T
a(l)

(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
× b(l)

(
b(l)

)T(
b(l)

(
b(l)

)T)−1

+

((
c(l)
)T
• c(l)

)−1(
c(l)
)T
c(l)

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

)
d(l)

(
d(l)

)T(
d(l)

(
d(l)

)T)−1
)∥∥∥∥∥

2

.

Applying norm properties, we get∥∥∥a(l)ψ (k)b(l)
∥∥∥2

6
∥∥∥a(l)ψ (k− 1)b(l)

∥∥∥2

+ 2αl tr
[
(ψT (k− 1)

(
a(l)

)T(
b(l)

)T
+ψT (k− 1)

(
c(l)
)T(

d(l)
)T

)

×
(
−a(l)ψ (k− 1)b(l) − c(l)ψ (k− 1)d(l)

) ]
+
α2
l

4

∥∥∥−2
(
a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)

)∥∥∥2
.

And since ‖A‖2 = tr
[
(A)TA

]
, then∥∥∥a(l)ψ (k)b(l)

∥∥∥2
6
∥∥∥a(l)ψ (k− 1)b(l)

∥∥∥2
− 2αl

∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

+
α2
l

2

∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

,

‖ψ (k)‖2 6 ‖ψ (k− 1)‖2 − 2αl
(

1 −
αl
4

)∥∥∥a(l)ψ (k− 1)b(l) + c(l)ψ (k− 1)d(l)
∥∥∥2

.

At k = 1, ‖ψ (1)‖2 6 ‖ψ (0)‖2 − 2αl
(
1 − αl

4

) ∥∥a(l)ψ (0)b(l) + c(l)ψ (0)d(l)
∥∥2

. At k = 2,

‖ψ (2)‖2 6 ‖ψ (1)‖2 − 2αl
(

1 −
αl
4

)∥∥∥a(l)ψ (1)b(l) + c(l)ψ (1)d(l)
∥∥∥2

.

At k = 3,

‖ψ (3)‖2 6 ‖ψ (2)‖2 − 2αl
(

1 −
αl
4

)∥∥∥a(l)ψ (2)b(l) + c(l)ψ (2)d(l)
∥∥∥2

.

At k = n− 1, ‖ψ (n− 1)‖2 6 ‖ψ (n− 2)‖2 − 2αl
(
1 − αl

4

) ∥∥a(l)ψ (n− 2)b(l) + c(l)ψ (n− 2)d(l)
∥∥2

. At k =

n, ‖ψ (n)‖2 6 ‖ψ (n− 1)‖2 − 2αl
(
1 − αl

4

) ∥∥a(l)ψ (n− 1)b(l) + c(l)ψ (n− 1)d(l)
∥∥2

. Consequently,

‖ψ (k)‖2 6 ‖ψ (0)‖2 − 2αl
(

1 −
αl
4

) n∑
k=1

(∥∥∥a(l)ψ (k)b(l) + c(l)ψ (k)d(l)
∥∥∥2
)

,
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‖ψ (k)‖2 6 ‖ψ (0)‖2 − 2αl
(

1 −
αl
4

) n∑
k=1

(∥∥∥a(l)ψ (k)b(l) + c(l)ψ (k)d(l)
∥∥∥2
)

,

if the convergence factor α is chosen to satisfy

0 < αl < 4,

and n→∞, then ∞∑
k=1

(∥∥∥a(l)ψ (k)b(l) + c(l)ψ (k)d(l)
∥∥∥2
)
<∞,

then
lim
k→∞(a(l)ψ (k)b(l) + c(l)ψ (k)d(l)) = 0,

therefore, since a(l) > 0, b(l) > 0, c(l) > 0, and d(l) > 0, then,

lim
k→∞ψ (k) = 0, lim

k→∞
(
X(l) − X̂(l) (k)

)
= 0.

Consequently, if n → ∞, then X(l) = X̂(l) (k) . Thus, the positive GTrFFSME in Eq. (1.1), or equivalently
the system of GSME in Eq. (4.4), has a unique positive solution X(l), then the iterative solution x̂(l) (k)
in Eq. (4.23) converges to X(l) for any initial values x̂(l) (0) (i.e., if k → ∞, then X(l) = X̂(l) (k)) for
1 6 l 6 4.

Below is Algorithm 4.13 for the FGIM. This algorithm can be used by different software for solving
the positive GTrFFSME in Eq. (1.1).

Algorithm 4.13 (Fuzzy gradient algorithm for GTrFFSME). Input Ã, B̃, C̃, D̃, and Ẽ. Split each matrix into
4 matrices (e.g., a(1), a(2), a(3), a(4)). For l = 1, 2, 3, 4: choose αl, ε, x(l) (k) = 0 # 0 is the zero matrix
with the same dimension as x(l) (k).

While k = 0, 1, 2, . . . ,n do

x̂(l) (k) = x̂(l) (k− 1) +
αl
2

((
a(l)

)T (
sl (k− 1)

) (
b(l)

)T
+
(
c(l)
)T (

sl (k− 1)
) (
d(l)

)T)
,

s(l) = e(l) − a(l)x(l) (k)b(l) − c(l)x(l) (k)d(l),

αl =
∥∥∥s(l)∥∥∥

2
.

If αl < ε then
print (x(l) (k)); print

(
“number of iterations = ′′, k

)
,

else

x̂(l) (k) = x̂(l) (k− 1) +
αl
2

((
a(l)

)T (
sl (k− 1)

) (
b(l)

)T
+
(
c(l)
)T (

sl (k− 1)
) (
d(l)

)T)
.

Update k.
end

print (x(l) (k)); print
(
“number of iterations = ′′, k

)
,

end

Below is the algorithm for the FLSIM. This algorithm can be used by different software for solving the
positive GTrFFSME in Eq. (1.1).
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Algorithm 4.14 (Fuzzy least-square algorithm for GTrFFSME). Input Ã, B̃, C̃, D̃ and Ẽ # Split each matrix
into 4 matrices (e.g., a(1), a(2), a(3), a(4)) , for l = 1, 2, 3, 4: choose αl, ε, x(l) (k) = 0 # 0 is the zero
matrix with the same dimension as x(l) (k).

While k = 0, 1, 2, . . . , n do

x̂(l) (k) = x̂(l) (k− 1) +
αl
2

(((
a(l)

)T
• a(l)

)−1

•
(
a(l)

)T (
sl (k− 1)

) (
b(l)

)T
((b(l)

(
b(l)

)T
)
−1

)

+

((
c(l)
)T
• c(l)

)−1 (
c(l)
)T (

sl (k− 1)
) (

d(l)
)T

((d(l)
(
d(l)

)T
)
−1
)

,

s(l) = e(l) − a(l)x(l) (k)b(l) − c(l)x(l) (k)d(l),

αl =
∥∥∥s(l)∥∥∥

2
.

If αl < ε then
print (x(l) (k)); print

(
“number of iterations = ′′, k

)
,

else

x̂(l) (k) = x̂(l) (k− 1) +
αl
2

((
a(l)

)T (
sl (k− 1)

) (
b(l)

)T
+
(
c(l)
)T (

sl (k− 1)
) (
d(l)

)T)
,

Update k.
end

print (x(l) (k)); print
(
“number of iterations = ′′, k

)
,

end

Computational complexity analysis
The computational complexity of the algorithms developed in this article is discussed in this section.

The computations in these algorithms include Kronecker product of matrices and other matrix algebra
operations where the matrices under consideration are considered as square m×m matrices. The com-
putational complexity of the Kronecker product of two matrices of size m×m is O

(
m4
)

with resulting
matrix of size m2×m2, while the computational complexity to take the inverse of a square matrix of size
m×m using the classical Gaussian elimination method is roughly O

(
m3
)
. For matrix multiplication of

one n×m matrix and one m×p, the computational complexity is O (nmp), the computational complexity
of computing the transpose of an m×m matrix is O

(
m2
)
, and matrix algebra of addition and subtraction

between two m×m involves a computational complexity of O
(
m2
)
. The computational complexity of

taking the p-norm of an m×m matrix depends on the value of P. If p= 1 or p=∞, the computational
complexity of calculating the p-norm is O

(
m2
)
, since we need to iterate over all the elements of the ma-

trix at least once, while for other values of p, the computational complexity of calculating the p-norm is
O
(
m3
)

because we need to first calculate the sum of squares of all the elements in the matrix, which takes
O
(
m2
)

time, and then take the square root, which takes O (m) time. Therefore, the overall computational
complexity is O

(
m2+m

)
=O

(
m2
)
.

In Algorithm 4.10, which is the fuzzy matrix vectorization and Kronecker product, the steps require
a total complexity of l

(
m2
(
O
(
m2
)))

+O
((
m2
)3
)
+O

((
m2
)3
)

. Upon simplification, this implies that

Algorithm 4.10 has a computational complexity order of O
(
m6
)
. For Algorithm 4.13, the maximum pos-

sible computational complexity is n
(
11
(
O
(
m2
))

+6
(
O
(
m2
))

+O
(
m3
)
+11

(
O
(
m2
)))

which simplifies
to O

(
m3
)
. Whereas Algorithm 4.14 requires a maximum computational complexity of n(20

(
O
(
m2
))

+6
(
O
(
m2
))

+O
(
m3
)
+11

(
O
(
m2
))
) which also simplifies to O

(
m3
)

like Algorithm 4.13. This implies
that, among the developed algorithms, Algorithms 4.13 and 4.14 have the same complexity of O

(
m3
)
,

while Algorithm 4.10 has a higher complexity of O
(
m6
)
. Therefore, Algorithms 4.13 and Algorithm 4.14
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are better than Algorithm 4.10 in terms of computational complexity. However, between Algorithms 4.13
and 4.14, Algorithm 4.13 has a lower constant factor compared to Algorithm 4.14. Therefore, Algorithm
4.13 is better than Algorithm 4.14 in terms of computational complexity.

In the following section, the three proposed methods for solving the GTrFFSME in Eq. (1.1) are applied
to different fuzzy systems in (1.2), (1.3), and (1.4), respectively.

4.1.4. Applications of the proposed methods to other fuzzy systems and fuzzy numbers
The proposed methods for the GTrFFSME in (1.1) can be modified to solve the fuzzy systems in (1.2),

(1.3), and (1.4), respectively. In the following method, the FMVM for GTrFFSEM is applied to the fuzzy
systems in (1.2), (1.3), and (1.4).

Fuzzy matrix vectorization method (FMVM)
The FMVM method is reduced to solve different fuzzy systems. FMVM is applied to FFSME in Eq.

(1.2) as follows: for 1 6 l 6 4 and by modifying the solution in Eq. (4.5) and Definition 1.2, we get:

x
(l)
ij = vec−1

(
I
(l)
ij

⊗
a
(l)

ij
+ (d

(l)
ij )

T⊗
I
(l)
ij

)−1

vec(e(l)ij )).

FMVM is applied to FFCTLME in Eq. (1.3) as follows: for 1 6 l 6 4 and by modifying the solution in Eq.
(4.5) and Definition 1.3, we have:

x
(l)
ij = vec−1

(
I
(l)
ij

⊗
a
(l)

ij
+ a

(l)
ij

⊗
I
(l)
ij

)−1

vec(e(l)ij )).

FMVM is applied to FFSTME in Eq. (1.4) as follows: for 1 6 l 6 4 and by modifying the solution in Eq.
(4.5) and Definition 1.4, we have:

x
(l)
ij = vec−1

(
I
(l)
ij

⊗
I
(l)

ij
+ (d

(l)
ij )

T⊗
c
(l)
ij

)−1

vec(e(l)ij )).

In the following method, the FGIM for GTrFFSEM is applied to the fuzzy systems in (1.2), (1.3), and (1.4).

Fuzzy gradient-iterative method (FGIM)
The FGIM method is reduced to solve different fuzzy systems. FGIM is applied to FFSME in Eq. (1.2)

as follows: for 1 6 l 6 4 and by modifying the solution in Eq. (4.15) and Definition 1.2, we have:

X̂(l) (K) = X̂(l) (k− 1) +
αl
2

((
A(l)

)T (
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)D(l)

)
+
(
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)D(l)

)(
D(l)

)T)
,

where the convergence factor (step size) is given by,

0 < αl <
2

λmax

[(
A(l)

)T
A(l)

]
+ λmax

[
D(l)

(
D(l)

)T] .

FGIM is applied to FFCTLME in Eq. (1.3) as follows: for 1 6 l 6 4 and by modifying the solution in Eq.
(4.15) and Definition 1.3, we have

X̂(l) (K) = X̂(l) (k− 1) +
αl
2

((
A(l)

)T (
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)

(
A(l)

)T)
+

(
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)

(
A(l)

)T)
A(l)

)
,
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where the convergence factor (step size) is given by,

0 < αl <
1

λmax

[(
A(l)

)T
A(l)

] .

FGIM is applied to FFSTME in Eq. (1.4) as follows: for 1 6 l 6 4 and by modifying the solution in Eq.
(4.15) and Definition 1.4, we have

X̂(l) (K) = X̂(l) (k− 1) +
αl
2

((
E(l) − X̂(l) (k− 1) −C(l)X̂

(l)
(k− 1)D(l)

)
+
(
C(l)

)T (
E(l) − X̂(l) (k− 1) −C(l)X̂

(l)
(k− 1)D(l)

)(
D(l)

)T)
,

where the convergence factor (step size) is given by,

0 < αl <
2

λmax

[(
C(l)

)T
C(l)

]
λmax

[
D(l)

(
D(l)

)T] .

In the following method, the FLSIM for GTrFFSME is applied to the fuzzy systems in (1.2), (1.3), and (1.4).

Fuzzy least-square iterative method (FLSIM)
The FLSIM method is reduced to solve different fuzzy systems.
FLSIM is applied to FFSME in Eq. (1.2) as follows: for 1 6 l 6 4 and by applying Eqs. (4.11)-(4.14)

and Definition 1.2, we have

X̂(l) (K) = X̂(l) (k− 1) +
αl
2

(((
A(l)

)T
•A(l)

)−1

•
(
A(l)

)T (
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)D(l)

)
+
(
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)D(l)

)(
D(l)

)T
((D(l)

(
D(l)

)T
)
−1)

,

where the convergence factor (step size) is given by,

0 < αl < 2.

FLSIM is applied to FFCTLME in Eq. (1.3) as follows: for 1 6 l 6 4 and by modifying the solution in
Eq. (4.22) and Definition 1.3, we have

X̂(l) (K)= X̂(l) (k− 1) +
αl
2

(((
A(l)

)T
•A(l)

)−1

•
(
A(l)

)T (
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)

(
A(l)

)T)
+

(
E(l) −A(l)X̂(l) (k− 1) − X̂(l) (k− 1)

(
A(l)

)T)
A(l)

((
A(l)

)T
•A(l)

)−1)
,

where the convergence factor (step size) is given by,

0 < αl < 2.

FLSIM is applied to FFSTME in Eq. (1.4) as follows: for 1 6 l 6 4 and by modifying the solution in Eq.
(4.22) and Definition 1.4, we have

X̂(l) (K) = X̂(l) (k− 1) +
αl
2

((
E(l) − X̂(l) (k− 1) −C(l)X̂

(l)
(k− 1)D(l)

)
+

((
C(l)

)T
•C(l)

)−1 (
C(l)

)T
×
(
E(l) − X̂(l) (k− 1) −C(l)X̂

(l)
(k− 1)D(l)

)(
D(l)

)T
((D(l)

(
D(l)

)T
)
−1)

,

where the convergence factor (step size) is given by,

0 < αl < 2.
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The next remark shows that the proposed methods can also be applied to different fuzzy systems with
triangular fuzzy numbers.

Remark 4.15. The proposed methods for the GTrFFSME in Eq. (1.1) and their special cases in (1.2)-(1.4) can
be applied to the same systems with TFNs whenever the mean values in the TrFNs used in the previous
systems are equal.

5. Numerical examples

To illustrate the accuracy and effectiveness of the proposed methods for solving the GTrFFSME in Eq.
(1.1), we consider GTrFFSME with (2× 2) and (100× 100). Analytical solutions are found by Algorithm
4.10 for FMVM, and then we compare the performance of Algorithm 4.13 and 4.14 for FGIM and FLSIM
for approximating that solution by calculating the number of iterations (k), convergence factor (α), er-
ror bound (ε), convergence rate, CPU time, real-time and memory usage. In addition to the graphical
representation of the error δl (k) when k increases.

In the following example, the proposed methods are applied to small GTrFFSME (2× 2).

Example 5.1. Solve the following 2× 2 GTrFFSME:

ÃX̃B̃+ C̃X̃D̃ = Ẽ,

given that

Ã =

(
(4, 6, 7, 8) (1, 3, 4, 5)
(1, 2, 3, 4) (3, 5, 6, 7)

)
, B̃ =

(
(4, 6, 7, 9) (2, 3, 4, 6)
(1, 3, 4, 5) (3, 5, 6, 7)

)
,

C̃ =

(
(5, 6, 7, 8) (1, 3, 4, 5)
(2, 4, 5, 6) (4, 6, 7, 9)

)
, D̃ =

(
(4, 5, 6, 8) (1, 2, 3, 4)
(1, 3, 4, 5) (2, 5, 6, 7)

)
,

Ẽ =

(
(95, 474, 952, 1890) (66, 390, 828, 1680)
(76, 504, 980, 1960) (76, 430, 867, 1730)

)
.

To solve the given positive GTrFFSME, the necessary and sufficient conditions in Corollary 4.7 and
Theorem 4.8 for having a unique positive fuzzy solution must be examined first.

The uniqueness of the positive fuzzy solutions

By Corollary 4.7, the given positive GTrFFSME has a unique fuzzy solution if and only if: det (r1) 6=
0, det (r2) 6= 0, det (r3) 6= 0, and det (r4) 6= 0 i.e r1, r2, r3 and r4 are invertible matrices. The determinants of
r1, r2, r3, and r4 can be calculated as follows:

r1 = (b
(1)
ij )

T⊗
a
(1)

ij
+ (d

(1)
ij )

T⊗
c
(1)
ij =


36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17

 and det (r1) = 224694 6= 0,

r2 = (b
(2)
ij )

T⊗
a
(2)

ij
+ (d

(2)
ij )

T⊗
c
(2)
ij =


66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60

 and det (r2) = 3686400 6= 0,

r3 = (b
(3)
ij )

T⊗
a
(3)

ij
+ (d

(3)
ij )

T⊗
c
(3)
ij =


91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78

 and det (r3) = 8708400 6= 0,
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r4 = (b
(4)
ij )

T⊗
a
(4)

ij
+ (d

(4)
ij )

T⊗
c
(4)
ij =


136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112

 and det (r4) = 29062800 6= 0.

Thus, the given positive GTrFFSME has a unique solution.

Existence of the positive fuzzy solution of positive GTrFFSME
By Theorem 4.8, the given positive GTrFFSME has a positive fuzzy solution if and only if:

1. r1
−1t1 > 0, r2

−1t2 > 0, r3
−1t3 > 0, and r4

−1t4 > 0,

r1
−1t1 =


36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17


−1

95
76
66
76

 =


2
1
1
3

 > 0,

r2
−1t2 =


66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60


−1

474
504
390
430

 =


3
4
2
4

 > 0,

r3
−1t3 =


91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78


−1

952
828
980
867

 =


4
5
3
5

 > 0,

r4
−1t4 =


136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112


−1

1890
1960
1680
1730

 =


5
6
5
6

 > 0;

2. r1
−1t1 6 r2

−1t2 6 r3
−1t3 6 r4

−1t4,
2
1
1
3

 <


3
4
2
4

 <


4
5
3
5

 <


5
6
5
6

 .

Since the first and second conditions hold for each corresponding element, the positive fuzzy solution to
the given positive GTrFFSME exists. Therefore, the developed FMVM in Section 4.1.1 can now be applied
to obtain the positive fuzzy solution to the given positive GTrFFSME. The details of the illustration of the
FMVM are as follows.

Step 1: Decompose Ã, X̃, B̃, C̃, D̃, and Ẽ into a(1)
ij =

(
4 1
1 3

)
,b(1)
ij =

(
4 2
1 3

)
, c(1)
ij =

(
5 1
2 4

)
,d(1)
ij =(

4 1
1 2

)
, e(1)
ij =

(
95 66
76 76

)
,a(2)
ij =

(
6 3
2 5

)
,b(2)
ij =

(
6 4
3 6

)
, c(2)
ij =

(
6 3
4 6

)
,d(2)
ij =

(
5 2
3 5

)
,

e
(2)
ij =

(
474 390
504 430

)
, a(3)

ij =

(
7 4
3 6

)
,b(3)
ij =

(
7 4
4 6

)
, c(3)
ij =

(
7 4
5 7

)
,d(3)
ij =

(
6 3
4 6

)
, e(3)
ij =(

952 828
980 867

)
, a(4)

ij =

(
8 5
4 7

)
,b(4)
ij =

(
9 6
5 7

)
, c(4)
ij =

(
8 5
6 9

)
,d(4)
ij =

(
8 4
5 7

)
, and e

(4)
ij =(

1890 1680
1960 1730

)
.
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Step 2: Applying the vec-operator and Kronecker product on Eq. (4.1) gives:


36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17



x
(1)
11
x
(1)
21
x
(1)
12
x
(1)
22

 =


95
76
66
76

 ,


66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60



x
(2)
11
x
(2)
21
x
(2)
12
x
(2)
22

 =


474
504
390
430

 ,


91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78



x
(3)
11
x
(3)
21
x
(3)
12
x
(3)
22

 =


952
828
980
867

 ,


136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112



x
(4)
11
x
(4)
21
x
(4)
12
x
(4)
22

 =


1890
1960
1680
1730

 .

(5.1)

Step 3: Multiply the system of linear matrix equation in Eq. (5.1) by multiplicative matrix inverse as
follows: 


x
(1)
11
x
(1)
21
x
(1)
12
x
(1)
22

 =


36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17


−1

95
76
66
76

 ,


x
(2)
11
x
(2)
21
x
(2)
12
x
(2)
22

 =


66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60


−1

474
504
390
430

 ,


x
(3)
11
x
(3)
21
x
(3)
12
x
(3)
22

 =


91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78


−1

952
828
980
867

 ,


x
(4)
11
x
(4)
21
x
(4)
12
x
(4)
22

 =


136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112


−1

1890
1960
1680
1730

 .

(5.2)

Step 4: Using matrix multiplication on the system in Eq. (5.2), the positive fuzzy solution to the given
positive GTrFFSME is as follows:


x
(1)
11
x
(1)
21
x
(1)
12
x
(1)
22

 =


2
1
1
3

 ,


x
(2)
11
x
(2)
21
x
(2)
12
x
(2)
22

 =


3
4
2
4

 ,


x
(3)
11
x
(3)
21
x
(3)
12
x
(3)
22

 =


4
5
3
5

 ,


x
(4)
11
x
(4)
21
x
(4)
12
x
(4)
22

 =


5
6
5
6

 .
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By Definition 2.8, the obtained fuzzy solution can be written as:(
x
(1)
11 x

(1)
12

x
(1)
21 x

(1)
22

)
=

(
2 1
1 3

)
,

(
x
(2)
11 x

(2)
12

x
(2)
21 x

(2)
22

)
=

(
3 2
4 4

)
,(

x
(3)
11 x

(3)
12

x
(3)
21 x

(3)
22

)
=

(
4 3
5 5

)
,

(
x
(4)
11 x

(4)
12

x
(4)
21 x

(4)
22

)
=

(
5 5
6 6

)
.

Step 5: By combining the obtained positive fuzzy solution in Step 4, the positive fuzzy solution to Example
5.1 is

X̂ =

 (
x
(1)
11 , x(2)

11 , x(3)
11 , x(4)

11

) (
x
(1)
12 , x(2)

12 , x(3)
12 , x(4)

12

)(
x
(1)
21 , x(2)

21 , x(3)
21 , x(4)

21

) (
x
(1)
22 , x(2)

22 , x(3)
22 , x(4)

22

)  =

(
(2, 3, 4, 5) (1, 2, 3, 5)
(1, 4, 5, 6) (3, 4, 5, 6)

)
. (5.3)

The solution for the given GTrFFSME is obtained by the proposed methods as follows.
This solution is approximated using Algorithms 4.13 and 4.14 as follows.

Fuzzy gradient-iterative method (FGIM) and Fuzzy least-square iterative method (FLSIM)

Algorithms 4.13 and 4.14 for FGIM and FLSIM are applied to compute the approximated solution

X̂(l) (k) for the given GTrFFSME using the following initial value for 1 6 l 6 4, X̂(l) =

(
0 0
0 0

)
. The

approximated fuzzy solution X̃ is shown in Table 1 with the convergence factor (α), error bound (ε), and a
total number of iterations (k). While Table 2 shows the computational time and memory usage for FGIM
and FLSIM.

Table 1: Comparison between FMVM, FGIM, and FLSIM, for Example 5.1.
Method Analytical solution-approximated solution α ε k

X̂(1) FMVM
(

2 1
1 3

)
NA 0 NA

FGIM
(

1.99949855017298 1.00098875551005
1.00079141255138 2.99843234122586

)
0.0005 10−4 147

FLSIM
(

1.99985414539036 0.999963165192173
1.00002909178272 2.99966344885767

)
0.2 10−4 7

X̂(2) FMVM
(

3 4
3 4

)
NA 0 NA

FGIM
(

2.99974677876014 4.00031607313094
3.00032352010653 3.99970338494345

)
0.0001 10−4 244

FLSIM
(

2.99999955606239 3.99999959009359
2.99999667934673 3.99999527502009

)
0.2 10−4 8

X̂(3) FMVM
(

4 5
4 5

)
NA 0 NA

FGIM
(

3.98757299663079 5.01285881972725
4.01339431585115 4.98608683548303

)
0.00002 10−4 144

FLSIM
(

3.99999941493081 4.999999571129046
3.99999570858620 4.999994185596878

)
0.2 10−4 8

X̂(4) FMVM
(

5 6
5 6

)
NA 0 NA

FGIM
(

5.00156518405719 5.99802708526725
5.00018074252759 5.99996176085665

)
0.00001 10−4 133

FLSIM
(

4.99999460351041 5.99999962240993
5.00018074252759 5.99999085571824

)
0.2 10−4 8
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Table 2: Computational time and memory usage.
Method k CPU time Real-time Memory usage

X̂(1) FGIM 147 21.59 ms 20.45 ms 3.70 MiB
FLSIM 7 17.50 ms 19.38 ms 4.01 MiB

X̂(2) FGIM 244 12.23 ms 11.93 ms 2.17 MiB
FLSIM 8 11.75 ms 11.62 ms 2.43 MiB

X̂(3) FGIM 144 12.26 ms 12.40 ms 2.17 MiB
FLSIM 8 13.75 ms 11.88 ms 2.43 MiB

X̂(4) FGIM 133 12.10 ms 12.24 ms 2.17 MiB
FLSIM 8 17.62 ms 19.62 ms 2.43 MiB

Figure 3 shows the change in the error δl (k), when k increases up to k = 20.

Figure 3: Comparison between δl (k) of FGIM and FLSIM for the first 20 iterations.

From Tables 1 and 2 and Figure 3, it is obvious that the error δl (k) is reducing as k increases. This
indicates that the proposed algorithm is effective and convergent for the given GTrFFSME. In addition, the
FLSIM takes more computational time and more memory compared to FGIM. However, in terms of accu-
racy, error, and number of iterations, FLSIM is superb compared to FGIM. The analyses of the obtained
positive solution in Eq. (5.3) for the positive GTrFFSME in Example 5.1 are discussed. The analysis of
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the obtained positive fuzzy solution in Eq. (5.3) for the given positive GTrFFSME in Example 5.1 includes
verification of the solution, representation of the solution and checking the feasibility conditions for the
solution, details of explanation are given as follows.

Verification of positive fuzzy solution to positive GTrFFSME
To verify the obtained positive fuzzy solution in Eq. (5.3) for the positive GTrFFSME in Example 5.1,

we first multiply ÃX̃B̃ as follows:

ÃX̃B̃ =

(
(4, 6, 7, 8) (1, 3, 4, 5)
(1, 2, 3, 4) (3, 5, 6, 7)

)(
(2, 3, 4, 5) (1, 2, 3, 5)
(1, 4, 5, 6) (3, 4, 5, 6)

)(
(4, 6, 7, 9) (2, 3, 4, 6)
(1, 3, 4, 5) (3, 5, 6, 7)

)
=

(
(43, 252, 500, 980) (39, 210, 438, 910)
(30, 228, 450, 868) (40, 198, 402, 806)

)
,

and

C̃X̃D̃ =

(
(5, 6, 7, 8) (1, 3, 4, 5)
(2, 4, 5, 6) (4, 6, 7, 9)

)(
(2, 3, 4, 5) (1, 2, 3, 5)
(1, 4, 5, 6) (3, 4, 5, 6)

)(
(4, 5, 6, 8) (1, 2, 3, 4)
(1, 3, 4, 5) (2, 5, 6, 7)

)
=

(
(52, 222, 452, 910) (27, 180, 390, 770)
(46, 276, 530, 1092) (36, 232, 465, 924)

)
.

Therefore,

ÃX̃B̃+ C̃X̃D̃ =

(
(95, 474, 952, 1890) (66, 390, 828, 1680)
(76, 504, 980, 1960) (76, 430, 867, 1730)

)
= Ẽ.

This means the obtained positive fuzzy solution in Eq. (5.3) satisfies the positive GTrFFSME in Example
5.1.

Representation of positive fuzzy solution to positive GTrFFSME
The positive fuzzy solution, for Example 5.1, is represented in Figure 4.

Figure 4: Positive Fuzzy Solution for Example 5.1.

Figure 4 shows that each fuzzy number in the obtained fuzzy solution in Eq. (5.3) is positive TrFN.
This means that the FMVM can provide an exact unique positive fuzzy solution to the given GTrFFSME.

Feasibility of positive fuzzy solution to positive GTrFFSME
Based on (4.8), the feasibility conditions are checked as follows:

1. x(l)ij > 0, ∀ {1 6 i, j 6 p,n} , x(1)
ij =

(
2 1
1 3

)
> 0,

x
(2)
ij =

(
3 2
4 4

)
> 0, x

(3)
ij =

(
4 3
5 5

)
> 0, x

(4)
ij =

(
5 5
6 6

)
> 0;
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2. x
(4)
ij > x(3)

ij > x
(2)
ij > x

(1)
ij , ∀ {1 6 i, j 6 p,n} ,(

5 5
6 6

)
>

(
4 3
5 5

)
>

(
3 2
4 4

)
>

(
2 1
1 3

)
.

The feasibility conditions are satisfied, and therefore, the obtained positive fuzzy solution is feasible.
The verification, representation, and feasibility of the obtained positive solution satisfy the given posi-

tive GTrFFSME, and it is a strong positive fuzzy solution. In the following example, the method is applied
to 5× 5 positive GTrFFSME.

In the following example, we tested the proposed method on 100 × 100 GTrFFSME, obtaining the
following results.

Example 5.2. Solve the following 100× 100 GTrFFSME:

ÃX̃B̃+ C̃X̃D̃ = Ẽ,

where

A(1) = LinearAlgebra : −RandomMatrix (100, 100, generator = 1 · · · 2) ,

B(1) = LinearAlgebra : −RandomMatrix (100, 100, generator = 1 · · · 2) ,

C(1) = LinearAlgebra : −RandomMatrix (100, 100, generator = 1 · · · 2) ,

D(1) = LinearAlgebra : −RandomMatrix (100, 100, generator = 1 · · · 2) ,

E(1) = LinearAlgebra : −RandomMatrix
(
100, 100, generator = 2× 105 · · · 3× 105) ,

A(2) = LinearAlgebra : −RandomMatrix (100, 100, generator = 3 · · · 4) ,

B(2) = LinearAlgebra : −RandomMatrix (100, 100, generator = 3 · · · 4) ,

C(2) = LinearAlgebra : −RandomMatrix (100, 100, generator = 3 · · · 4) ,

D(2) = LinearAlgebra : −RandomMatrix (100, 100, generator = 3 · · · 4) ,

E(2) = LinearAlgebra : −RandomMatrix
(
100, 100, generator = 3× 106 · · · 4× 106) ,

A(3) = LinearAlgebra : −RandomMatrix (100, 100, generator = 5 · · · 6) ,

B(3) = LinearAlgebra : −RandomMatrix (100, 100, generator = 5 · · · 6) ,

C(3) = LinearAlgebra : −RandomMatrix (100, 100, generator = 5 · · · 6) ,

D(3) = LinearAlgebra : −RandomMatrix (100, 100, generator = 5 · · · 6) ,

E(3) = LinearAlgebra : −RandomMatrix
(
100, 100, generator = 1× 108 · · · 2× 108) ,

A(4) = LinearAlgebra : −RandomMatrix (100, 100, generator = 7 · · · 8) ,

B(4) = LinearAlgebra : −RandomMatrix (100, 100, generator = 7 · · · 8) ,

C(4) = LinearAlgebra : −RandomMatrix (100, 100, generator = 7 · · · 8) ,

D(4) = LinearAlgebra : −RandomMatrix (100, 100, generator = 7 · · · 8) ,

E(4) = LinearAlgebra : −RandomMatrix
(
100, 100, generator = 3× 108 · · · 4× 108) .

The fuzzy solution to the given GTrFFSME is obtained by the proposed methods as follows.

Fuzzy matrix vectorization method (FMVM)
To apply the FMVM, we need to find the inverse of the 10000× 10000 matrix, which requires long

computational timing and huge memory. Thus, FMVM is not a practical approach for such a large
dimensional system. However, FGIM and FLSIM can be used to obtain an approximated solution as
follows.
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Fuzzy gradient-iterative method (FGIM) and fuzzy least-square iterative method (FLSIM)

Algorithms 4.13 and 4.14 for FGIM and FLSIM are applied to compute the approximated solution
X̂(l) (k), using the following initial value for 1 6 l 6 4,

X̂(l) (0) = LinearAlgebra : −RandomMatrix (100, 100, generator = 0) .

FLSIM can get the solution in just 4 iterations with (α1 = α2 = α3 = α4 = 0.25). However, FGIM needs
thousands of iterations to give the approximated solution using (α1 = 10−12,α2 = 10−13,α3 = 10−14,α4 =
10−15). In the following Table 3, the step size, computational time and memory usage for the first 20
iterations for FLSIM and FGIM are compared.

Table 3: Comparison between FGIM and FLSIM, for Example 5.2.
Method Step size α Number of iteration CPU time Real-time Memory usage

X̂(1) FGIM 10−12 20 14.22 s 11.40 s 2.57 GiB
FLSIM 0.25 4 116.49 s 107.21 s 15.80 GiB

X̂(2) FGIM 10−13 20 15.99 s 12.97 s 2.84 GiB
FLSIM 0.25 3 119.12 s 108.52 s 16.01 GiB

X̂(3) FGIM 10−14 20 16.82 s 13.61 s 3.17 GiB
FLSIM 0.25 3 120.03 s 111.34 s 16.30 GiB

X̂(4) FGIM 10−15 20 18.01 s 16.35 s 4.12 GiB
FLSIM 0.25 3 121.18 s 112.45 s 16.52 GiB

The following Figure 5 shows the change in the error δl (k), when k increases up to k = 20.

Figure 5: Comparison between δl (k) of FGIM and FLSIM for the first 20 iterations.
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From Table 3 and Figure 5, it is obvious that FLSIM converges to the solution in 4 steps, and the
error is reduced to almost zero. However, FGIM requires very long computational time and memory to
converge to the solution.

Remark 5.3. The construction and solution to the positive GTrFFSME in Examples 5.1 and 5.2 are done by
Maple 2019.0.

Comparison between the methods for solving positive GTrFFSME

In the following Table 4, a complete comparison between the advantages and disadvantages of FMVM,
FGIM, and FLSIM are discussed.

Table 4: Comparison between the advantages and disadvantages of FMVM, FGIM and FLSIM.
Method Advantages Disadvantages
FMVM An exact fuzzy solution can be found. Does

not require initial values.
It required getting the inverse of mn×mn
matrices for a system of size m × n and
therefore limited to small systems.

FGIM Gives an accurate fuzzy approximation. It can
be applied to large GTrFFSME. It takes any
initial value.

It is limited to GTrFFSME with square coef-
ficients. The convergence rate is very small
(α < 10−5) which means it takes many itera-
tions to give the desired fuzzy solution.

FLSIM It is applied to large GTrFFSME. Takes any ini-
tial value. Gives an accurate fuzzy approxima-
tion. It can be applied to systems with square
and non-square coefficients.

The convergence rate is big (α > 10−1) com-
pared to the FGIM. It requires getting the in-
verse of the least square term, which means
it takes longer computational time and mem-
ory usage compared to the FGIM

6. Conclusion

In this paper, three different methods are proposed for solving positive GTrFFSME and its special
cases. The FMVM aims to find the analytical positive fuzzy solution to the positive GTrFFSME with
square and non-square coefficients. However, it is limited for small-sized systems, while FGIM and
FLSIM aim to approximate the positive fuzzy solution numerically for large GTrFFSME. The numerical
examples analysis indicates that the iterative fuzzy solutions obtained by both FGIM and FLSIM algo-
rithms converge to the exact fuzzy solution for any initial value and any size of the matrix system (up
to 100× 100). However, FLSIM requires getting the inverse of the least square term, which takes longer
computational time and memory usage than the FGIM. The major differences between our methods from
other methods are following.

1. For the first time, unified analytical and numerical methods are developed for solving a family of
large fully fuzzy systems with TrFNs and TFNs, based on new reduced arithmetic fuzzy multiplica-
tion operations.

2. The necessary and sufficient theorems for the GTrFFSME to have a unique positive fuzzy solution
are checked before applying the proposed methods.

3. The feasibility conditions to have strong positive fuzzy solutions are derived.
4. The obtained positive fuzzy solution analyses are presented, including verification and graphical

representation of the obtained fuzzy solution and the feasibility conditions.

For future works, the proposed methods will be applied to GTrFFSME with arbitrary coefficients.
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