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Abstract
In this paper, we develop a mathematical model that describes the spatiotemporal dynamics of business cycle under the

goods and services market as well as the money market. We first prove that the developed model is mathematically and
economically well-posed. The conditions for the existence of economic equilibrium are rigorously established. Moreover, the
stability analysis and the existence of Hopf bifurcation are carefully investigated. Finally, our theoretical results are illustrated
with some numerical simulations.
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1. Introduction

Recently, IS-LM models are used to describe the dynamics of business cycle by taking into account the
interest rate. The acronym IS stands for ”investment-savings” and LM for ”liquidity preference-money
supply”. The first formulation of this type of models was introduced by Hicks [12] based on Keynesian
theory. In this formulation, the curve of the equilibrium interest rates and incomes in the commodity
market is usually labeled by IS, and the curve of the equilibrium interest rates and incomes in the money
market is usually labeled by LM.

In the literature, several IS-LM macroeconomic models have been developed based on the idea of
Hicks [12] in order to better understand the dynamics of business cycle. For instance, Torre [21] proposed
a standard IS-LM model governed by two ordinary differential equations (ODEs) in order to study the
existence of limit cycles in the set of complete Keynesian systems by means of bifurcation theory. Gabisch
and Lorenz [3] considered an augmented IS-LM business cycle model with three ODEs. Based on the
ideas given in [3, 14], Cai [2] proposed a delayed IS-LM model by assuming that the investment, the
saving and the demand for money functions depend linearly on their arguments. The delay in [2] denotes
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the time lag between the decision of investment and his implementation. Abta et al. [1] extended the
model of Cai [2] to a nonlinear case of investment function of the form given in [17]. A recent IS-LM
model was introduced in [20] in order to improve and generalize the above models.

All the mathematical models cited above ignored the diffusion of macroeconomic aggregates. How-
ever, in this paper, we propose an IS-LM business cycle model involving time and space. This model is
expressed by the following nonlinear system of reaction-diffusion equations:

∂Y(t,x)
∂t = d1∆Y(t, x) +α[I(Y(t, x),K(t, x),R(t, x)) − s1Y(t, x) − s2R(t, x)],

∂K(t,x)
∂t = d2∆K(t, x) + I(Y(t− τ, x),K(t, x),R(t, x)) − δK(t, x),

∂R(t,x)
∂t = d3∆R(t, x) +β[L(Y(t, x),R(t, x)) −M],

(1.1)

where Y(t, x), K(t, x), and R(t, x) respectively represent the gross product, the capital stock and the interest
rate at time t, and location x. ∆ is the Laplacian operator as well as d1, d2, and d3 are the diffusion
coefficients of Y, K, and R, respectively. The parameter α is the adjustment coefficient in the goods
market while β is the coefficient of adjustment in the money market. The demand for money or liquidity
preference function is labeled by L(Y,R) while the investment is presented by I(Y,K,R). The constant
money supply is denoted by M. The delay τ is the time lag between the decision of investment and his
implementation. The positive constants s1 and s2 are the propensities to save. Finally, δ is the depreciation
rate of the capital stock. In addition, we consider model (1.1) with the initial conditions:

Y(t, x) = φ1(t, x), K(t, x) = φ2(t, x), R(t, x) = φ3(t, x), (t, x) ∈ [−τ, 0]×Ω, (1.2)

and Neumann boundary conditions:

∂Y

∂ν
=
∂K

∂ν
=
∂R

∂ν
= 0, on (0,+∞)× ∂Ω, (1.3)

where Ω is the market capacity and ∂
∂ν indicates the outward normal derivative on the smooth boundary

∂Ω.
It is important to note that our IS-LM model formulated by system (1.1) improves and generalizes

various economic models existing in the literature. For example, when we neglect the diffusion effect,
we get the model introduced in [20] that includes the temporal models proposed in [1, 2]. Further, the
spatiotemporal model presented by Hu et al. [13] is a special case of our model (1.1) when the interest
rate is absent and the investment function has a particular form.

The organization of the present paper is as follows. Section 2 deals with the existence of economic
equilibrium and the properties of solutions including the existence, uniqueness and uniform bounded-
ness. Section 3 establishes the local stability of the economic equilibrium and the existence of Hopf bifur-
cation. Section 4 presents some numerical simulations to illustrate our main theoretical results. Finally,
the paper ends with a conclusion presented in Section 5.

2. Existence of solutions and economic equilibrium

To establish the existence of the solutions of problem (1.1)-(1.3), we introduce some notations. Let
X = C

(
Ω, R3

)
be the Banach space of continuous functions from Ω into R3 and C = C ([−τ, 0],X) be the

Banach space of continuous functions of [−τ, 0] into X with standard uniform topology. For simplicity, we
identify an element φ ∈ C as a function from [−τ, 0]×Ω into R3 defined by φ (s, x) = φ(s)(x). For any
continuous function ω(.) : [−τ,b)→ X for b > 0, we set ωt ∈ C by ωt(s) = ω(t+ s) for s ∈ [−τ, 0].

As in [9, 19], we assume that the general investment function I(Y,K,R) satisfies the following hypoth-
esis:

(H1) there exist two constants A > 0 and q̄ > 0 such that |I(Y,K,R) + q̄K| 6 A for all Y, K, R ∈ R.
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As in [20], we assume that the liquidity preference function L(Y,R) is of the form L(Y,R) = L(Y) − γR,
where γ measures the variation of demand of liquidity related to interest rate and L(Y) satisfies the
following hypothesis:

(H2) There exists a constant B > 0 such that |L(Y)| 6 B for all Y ∈ R.

Based on these hypotheses, we have the following result.

Theorem 2.1. If (H1) and (H2) hold, then for any given initial φ ∈ C there exists a unique solution of problem
(1.1)-(1.3) defined on [0,+∞). Furthermore, this solution is uniformly bounded.

Proof. For each ϕ = (ϕ1,ϕ2,ϕ3)
T ∈ C and x ∈ Ω, we define F = (F1, F2, F3) : C→ X by

F1(ϕ)(x) = α[I(ϕ1(0, x),ϕ2(0, x),ϕ3(0, x)) − s1ϕ1(0, x) − s2ϕ3(0, x)],
F2(ϕ)(x) = I(ϕ1(−τ, x),ϕ2(0, x),ϕ3(0, x)) − δϕ2(0, x),

F3(ϕ)(x) = β[L(ϕ1(0, x)) − γϕ3(0, x) −M].

Then problem (1.1)-(1.3) can be rewritten as the following abstract functional differential equation{
u ′(t) = Eu(t) + F(ut), t > 0,
u(0) = φ ∈ C, (2.1)

where u = (Y,K,R)T and Eu = (d1∆Y,d2∆K,d3∆R)
T . It is obvious that F is locally Lipschitz in C, and as

in [10], we conclude that problem (2.1) has a unique local solution on [0, Tmax), where Tmax is the maximal
existence time for solution of system (2.1).

From the second equation of (1.1) and (H1), we get
∂K
∂t − d2∆K 6 A− (δ+ q̄)K,
∂K
∂ν = 0,
K(0, x) = φ2(0, x), x ∈ Ω̄,

According to Lemma 1 presented in [6], we have

K(t, x) 6 max
{

A

δ+ q
, max
x∈Ω

φ2(0, x)
}

, ∀(x, t) ∈ Ω× [0, Tmax).

This implies that K is bounded. From the third equation of (1.1) and (H2), we obtain
∂R
∂t − d3∆R 6 β(B−M) −βγR,
∂R
∂ν = 0,
R(0, x) = φ3(0, x), x ∈ Ω.

Similarly to above, we get

R(t, x) 6 max
{
B−M

γ
, max
x∈Ω

φ3(0, x)
}

, ∀(x, t) ∈ Ω× [0, Tmax).

This implies that R is bounded. According to the first equation of the system (1.1), we have
∂Y
∂t − d1∆Y 6 ρ−αs1Y,
∂Y
∂ν = 0,
Y(0, x) = φ1(0, x), x ∈ Ω,

where ρ = α(A+qn1 + s2n2) with n1 = max{ Aδ+q , max
x∈Ω

φ2(0, x)} and n2 = max{B−Mγ , max
x∈Ω

φ3(0, x)}. Hence,

Y(t, x) 6 max
{
ρ

αs1
, max
x∈Ω

φ1(0, x)
}

, ∀(x, t) ∈ Ω× [0, Tmax),

which implies that Y is bounded. It follows from the standard theory for semilinear parabolic systems
[11] that Tmax = +∞. This completes the proof.
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To study the existence of economical equilibrium of (1.1), we need the following hypotheses:

(H3) γI
(

0, s2(L(0)−M)
γδ , L(0)−M

γ

)
− s2

(
L(0) −M

)
> 0;

(H4) γ ∂I∂Y +
(
γs1
δ + s2

δ L
′(Y)

)
∂I
∂K +L′(Y) ∂I∂R < γs1 + s2L

′(Y), ∀(Y,K,R) ∈ R3.

Theorem 2.2. If (H1)-(H4) hold, then the system (1.1) has a unique economic equilibrium defined by
E∗
(
Y∗, γs1Y

∗+s2(L(Y∗)−M)
γδ , L(Y∗)−M

γ

)
such that Y∗ is the positive solution of the following equation

γI

(
Y,
γs1Y + s2(L(Y) −M)

γδ
,
L(Y) −M

γ

)
− γs1Y − s2(L(Y) −M) = 0.

Proof. Any equilibrium of (1.1) is a solution of the following equations:

I(Y,K,R) − s1Y − s2R = 0, (2.2)
I(Y,K,R) − δK = 0, (2.3)

L(Y) − γR−M = 0. (2.4)

From (2.2)-(2.4), we have

R =
L(Y) −M

γ
and K =

γs1Y + s2(L(Y) −M)

γδ
. (2.5)

By replacing (2.5) in (2.2), we get

γI

(
Y,
γs1Y + s2(L(Y) − M̄)

γδ
,
L(Y) −M

γ

)
− γs1Y − s2

(
L(Y) −M

)
= 0.

Therefore, we consider a function ψ defined on interval [0,+∞) as follows

ψ(Y) = γI

(
Y,
γs1Y + s2(L(Y) − M̄)

γδ
,
L(Y) −M

γ

)
− γs1Y − s2

(
L(Y) −M

)
.

From (H1)-(H4), we obtain ψ(0) > 0, lim
Y→+∞ψ(Y) = −∞, and

ψ′(Y) = γ
∂I

∂Y
+
[γs1

δ
+
s2

δ
L′(Y)

] ∂I
∂K

+L′(Y)
∂I

∂R
− γs1 − s2L

′(Y) < 0.

Consequently, there exists a unique Y∗ ∈ (0,+∞) such that Y∗ is the positive solution of the equation
ψ(Y) = 0. This completes the proof.

3. Stability analysis and Hopf bifurcation

In this section, we focus on local stability of the economic equilibrium E∗(Y∗,K∗,R∗) and the existence
of Hopf bifurcation analysis. Let y = Y − Y∗, k = K− K∗, and r = R− R∗. By substituting these new
variables into (1.1) and linearizing, we get following system:

∂y
∂t = d1∆y(t, x) +α[(a− s1)y(t, x) + bk(t, x) + (c− s2)r(t, x)],
∂k
∂t = d2∆k(t, x) + ay(t− τ, x) + (b− δ)k(t, x) + cr(t, x),
∂r
∂t = d3∆r(t, x) +β[l1y(t, x) − γr(t, x)],
∂y
∂ν = ∂k

∂ν = ∂r
∂ν = 0, t > 0, x ∈ ∂Ω,

(3.1)

where a = ∂I
∂Y (Y

∗,K∗,R∗), b = ∂I
∂K(Y

∗,K∗,R∗), c = ∂I
∂R(Y

∗,K∗,R∗), and l1 = L′(Y∗).
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Let ζ = C([−τ, 0], X) be the Banach space of continuous functions of [−τ, 0] into X, where X is defined
by

X =

{
y,k, r ∈W2,2(Ω) :

∂y(t, x)
∂ν

=
∂k(t, x)
∂ν

=
∂r(t, x)
∂ν

= 0, x ∈ ∂Ω
}

with the inner product 〈., .〉. Hence, system (3.1) can be rewritten as an abstract differential equation in
the phase space ζ as follows

U′(t) = D∆U+ L(Ut), (3.2)

where U = (y,k, r)T , D = diag(d1,d2,d3), and L : ζ→ X defined by

L(φ) = Aφ(0) +Bφ(−τ),

with

A =

α(a− s1) αb α(c− s2)
0 b− δ c

βl1 0 −βγ

 and B =

0 0 0
a 0 0
0 0 0

 .

Then the characteristic of system (3.2) is as follows

λy−D∆y− L
(
eλ.y

)
= 0, y ∈ dom(∆)\{0}. (3.3)

Let −k2 (k ∈N = {0, 1, 2, . . .}) be the eigenvalue of the operator ∆ under the Neumann boundary condi-
tions on X and the corresponding eigenvectors take the form:

β1
k = (γk, 0, 0)T ,β2

k = (0,γk, 0)T ,β3
k = (0, 0,γk)

T ,γk = cos(kx), k = 0, 1, 2, . . . ,

and
{
β1
k,β2

k,β3
k

}+∞
k=0 construct a basis of the phase space X. Hence, we can expand in the form of Fourier

on the phase space X, which is as follows:

y =

∞∑
k=0

YTk

 β1
k

β2
k

β3
k

 , Yk =

 〈
y,β1

k

〉〈
y,β2

k

〉〈
y,β3

k

〉
 . (3.4)

Then by calculation, we get

L

φT
 β1

k

β2
k

β3
k

 = L(φ)T

 β1
k

β2
k

β3
k

 , k ∈N. (3.5)

Substituting (3.5) and (3.4) into (3.3), we can have

∞∑
k=0

YTk

(λI3 +Dk2)−
 α(a− s1) αb α(c− s2)

ae−λτ b− δ c

βl1 0 −βγ

 β1
k

β2
k

β3
k

 = 0.

The characteristic equation of (3.5) is as follows:∣∣∣∣∣∣
λ+ d1k

2 −α(a− s1) −αb −α(c− s2)
−ae−λτ λ+ d2k

2 − b+ δ −c
−βl1 0 λ+ d3k

2 +βγ

∣∣∣∣∣∣ = 0,

which leads to
λ3 + p2,kλ

2 + p1,kλ+ p0,k + (q1λ+ q0,k)e
−λτ = 0, (3.6)
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where

p0,k = [d1k
2 −α(a− s1)](d2k

2 − b+ δ)(d3k
2 +βγ),

p1,k = −βl1α(c− s2) + (d3k
2 +βγ)(d2k

2 − b+ δ)

+ (d3k
2 +βγ)[d1k

2 −α(a− s1)] + [d1k
2 −α(a− s1)](d2k

2 − b+ δ),

p2,k = d1k
2 −α(a− s1) + d2k

2 − b+ δ+ d3k
2 +βγ,

q0,k = −(βγ+ d3k
2)αba,

q1 = −αab.

Clearly, for k ∈N, λ = 0 is not a solution of Eq. (3.6). When τ = 0, Eq. (3.6) reduces to

λ3 + p2,kλ
2 + (p1,k + q1)λ+ p0,k + q0,k = 0. (3.7)

If a < s1, then it not hard to see that the coefficients of the equation (3.7) satisfy:

p2,k > 0 and p2,k(p1,k + q1) − (p0,k + q0,k) > 0.

By the stability criterion of Routh-Hurwitz, we deduce that all the roots of (3.7) have negative real parts
and we have the following result.

Lemma 3.1. If a < s1, then the economic equilibrium E∗ is locally asymptotically stable in the absence of delay.

When τ 6= 0, let λ = iω (ω > 0) be a purely imaginary root of the equation (3.6). Then

−iω3 − p2,kω
2 + p1,kiω+ p0,k + (q1iω+ q0,k)e

−iωτ = 0.

Hence, {
p2,kω

2 − p0,k = q1ω sin(ωτ) + p0,k cos(ωτ),
ω3 − p1,kω = q1ω cos(ωτ) − q0,k sin(ωτ), (3.8)

which implies that

ω6 + (p2
2,k − 2p1,k)ω

4 + (p2
1,k − 2p0,kp2,k − q

2
1)ω

2 + p2
0,k − q

2
0,k = 0. (3.9)

Let z = ω2. Thus, the equation (3.9) becomes

h(z) = z3 + c2,kz
2 + c1,kz+ c0,k = 0, (3.10)

where
c2,k = p2

2,k − 2p1,k, c1,k = p2
1,k − 2p0,kp2,k − q

2
1, and c0,k = p2

0,k − q
2
0,k.

By calculations, we obtain

c0,k = [d1k
2 −α(a− s1)]

2(d2k
2 − b+ δ)2(d3k

2 +βγ)2 − [(d3k
2 +βγ)αab]2,

c1,k = (−βl1α(c− s2))
2 + 2[−βl1α(c− s2)][(d3k

2 +βγ)(d2k
2 − b+ δ)

+ (d3k
2 +βγ)(d1k

2 −α(a− s1)) + (d2k
2 − b+ δ)(d1k

2 −α(a− s1))]

+ (d3k
2 +βγ)2(d2k

2 − b+ δ)2 + (d3k
2 +βγ)2[d1k

2 −α(a− s1)]
2

+ [d1k
2 −α(a− s1)]

2(d2k
2 − b+ δ)2 − (αab)2,

c2,k = [d1k
2 −α(a− s1)]

2 + (d2k
2 − b+ δ)2 + (d3k

2 +βγ)2 +βl1α(c− s2).

When k = 0, it is easy to show that

c0,0 = [−βγα(a− s1)(−b+ δ)]
2 − (βγαab)2.

If the following condition:

(A1) |βγαab| > [−βγα(a− s1)(−b+ δ)]
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holds, then c0,0 < 0. In this case, Eq. (3.10) has a unique positive root z0, and thus Eq. (3.9) has a unique
positive root ω0 =

√
z0. By (3.8), we get

τ
(j)
0 =

1
ω0

arcsin
(p2,0q1 − q0,0)ω

3
0 + (p1,0q0,0 − p0,0q1)ω

q2
0,0 + q

2
1ω

2 +
2jπ
ω0

, j = 0, 1, 2, . . . ,

at which Eq. (3.6) with k = 0 has a pair of purely imaginary roots of the form ±iω0 and all roots of
Eq. (3.6), except ±iω0, have no zero real parts. Then, by the general theory on characteristic equations of
delay differential equations from [18, Theorem 4.1], we see that if a < s1 and (A1) hold, E∗ remains stable
for τ < τ0, where τ0 = τ

(0)
0 . Let λ(τ) = v(τ)+ iω(τ) be a root of Eq. (3.6) satisfying v (τ0) = 0, ω (τ0) = ω0.

We now verify that
d(Re λ)
dτ

∣∣∣∣
τ=τ0

> 0.

This will prove that there exists at least one eigenvalue with positive real part for τ > τ0. In addition, the
conditions for the existence of a Hopf bifurcation [5] are then satisfied yielding a periodic solution. To
this end, differentiating Eq. (3.6) with respect τ, we derive that(

dλ

dτ

)−1

= −
3λ2 + 2p2,kλ+ p1,k

λ (λ3 + p2,kλ2 + p1,kλ+ p0,k)
+

q1

λ (q1λ+ q0,k)
−
τ

λ
.

By direct calculations one obtains that

sign
{

d(Re λ)
dτ

}
λ=iω0

= sign

{
Re
(

dλ
dτ

)−1
}
λ=iω0

= sign

{
3ω4

0 + 2c2,kω
2
0 + c1,k

q2
1ω

2
0 + q

2
0,k

}
= sign

{
h′ (z0)

q2
1ω

2
0 + q

2
0,k

}
,

where z0 = ω2
0. Hence, the transversal condition holds and a Hopf bifurcation occurs at ω = ω0, τ = τ0.

Further, if iω1(ω1 > 0) is a solution of (3.6) with k > 1, by calculation, we get that

ω6
1 + (p2

2,k − 2p1,k)ω
4
1 + (p2

1,k − 2p0,kp2,k − q
2
1)ω

2
1 + p

2
0,k − q

2
0,k = 0.

Then, we get

c0,k > (d1 −α(a− s1))
2(d2 − b+ δ)

2(d3 +βγ)
2 − [(d3 +βγ)αab]

2,

c1,k > (−βl1α(c− s2))
2 + 2[−βl1α(c− s2)][(d3 +βγ)(d2 − b+ δ)

+ (d3 +βγ)(d1 −α(a− s1)) + (d2 − b+ δ)(d1 −α(a− s1))]

+ (d3 +βγ)
2(d2 − b+ δ)

2 + (d3 +βγ)
2(d1 −α(a− s1))

2

+ (d1 −α(a− s1))
2(d2 − b+ δ)

2 − (αab)2,

c2,k > (d1 −α(a− s1))
2 + (d2 − b+ δ)

2 + (d3 +βγ)
2 +βl1α(c− s2).

Clearly, if the following conditions:
(A2) (d1 −α(a− s1))(d2 − b+ δ)(d3 +βγ) > |(d3 +βγ)αab|;
(A3)

(−βl1α(c− s2))
2 + 2[−βl1α(c− s2)][(d3 +βγ)(d2 − b+ δ) + (d3 +βγ)(d1 −α(a− s1))

+ (d2 − b+ δ)(d1 −α(a− s1))] + (d3 +βγ)
2(d2 − b+ δ)

2 + (d3 +βγ)
2(d1 −α(a− s1))

2

+ (d1 −α(a− s1))
2(d2 − b+ δ)

2 > (αab)2;

(A4) (d1 −α(a− s1))
2 + (d2 − b+ δ)

2 + (d3 +βγ)
2 > −βl1α(c− s2),

hold, then Eq. (3.6) with k > 1 has no purely imaginary roots. In conclusion, we have the following
results.

Theorem 3.2. If a < s1 and (A1)-(A4) hold, then the economic equilibrium E∗ is locally asymptotically stable forall
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τ ∈ [0, τ0) and becomes unstable when τ > τ0. In addition, the system (1.1) undergoes a Hopf bifurcation at E∗

when τ = τ(j)0 , for j ∈N.

4. Numerical simulations

In this section, we present some numerical simulations to illustrate our theoretical results. Here, we
consider I(Y,K,R) = I(Y) + q1K√

1+εK2 + q2R, where q1,q2 < 0, ε > 0 and I(Y) is the Kaldor-type investment

function defined by eY

1+eY . The liquidity preference function is chosen as L(Y,R) = s3Y − s4R, where
s3, s4 > 0. We use the following parameter values: α = 3, δ = 0.2, q1 = −0.3, q2 = −0.2, ε = 0.01,
M = 0.05, s1 = 0.2, s2 = 0.1, s3 = 0.3, s4 = 0.2, β = 0.2, d1 = d2 = d3 = 0.1. In this case, our model has an
economic equilibrium E∗(0.65775, 1.02607, 0.73663). By a simple computation, we can obtain τ0 ≈ 1.8666.
First, we choose τ = 1.5 < τ0. According to the result of Theorem 3.2, we know that the economic
equilibrium E∗ is locally asymptotically stable for all τ ∈ [0, τ0), Figures 1 and 2 demonstrate this result.
Next, we choose τ = τ0. By Theorem 3.2, the system (1.1) undergoes a Hopf bifurcation at the economic
equilibrium E∗, Figures 3 and 4 illustrate this result. Finally, we choose τ = 1.92 > τ0. It follows from
Theorem 3.2 that E∗ is unstable, which is illustrated in Figures 5 and 6.

Figure 1: Spatiotemporel dynamics of system (1.1), when τ = 1.5.

Figure 2: The economic equilibrium E∗ is stable, when τ = 1.5 and x = 5.
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Figure 3: Spatiotemporel dynamics of system (1.1), when τ = τ0.

Figure 4: System (1.1) undergoes a Hopf bifurcation at the economic equilibrium E∗, when τ = τ0 and x = 5.

Figure 5: Spatiotemporel dynamics of system (1.1), when τ = 1.92.

5. Conclusion

In this paper, we have proposed a delayed IS-LM model with diffusion effect, interest rate and general
investment function under homogeneous Neumann boundary conditions. We have studied the existence,
the uniqueness, and the uniform boundedness of solutions as well as the existence of economic equilib-
rium. Using the Routh-Hurwitz criterion and the analysis of the roots of the characteristic equation of



M. Elkarmouchi, S. Lasfar, K. Hattaf, N. Yousfi, J. Math. Computer Sci., 31 (2023), 70–80 79

Figure 6: The economic equilibrium E∗ is unstable, when τ = 1.92 and x = 5.

the linearized system, we have established the local asymptotic stability of the economic equilibrium and
the existence of Hopf bifurcation. Furthermore, the business cycle models and the IS-LM macroeconomic
models presented in [1, 2, 13, 20] are improved and extended by considering other economic factors.

In economics, memory refers to the ability of economic agents to remember past events and use them
to make economic decisions in the present. In addition, most economic systems have long-term memories.
Therefore, the impact of memory effect on the dynamics of our model by using the new generalized Hattaf
fractional (GHF) derivative [7, 8] and other fractal-fractional derivatives as used in [4, 15, 16], will be the
main purpose of our future works.
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