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Abstract

In this paper, we propose a dynamic system model representing the interaction between smokers in mixed populations of
beginners and regular/heavy smokers and incorporate a smoking cessation program. Since not all smokers acquire treatments,
we divide each subclass, beginners and smokers, into untreated and treated groups. From the mathematical analysis, we obtained
the basic reproduction number, which is the condition for the smoking-free and endemic equilibriums. This study focuses on
two intervention programs as control variables to reduce the smoking habit of smokers, namely educational campaigns for the
subclass of beginners and counselling with nicotine therapy for the second subclass of regular/heavy smokers. The objective
of the control strategy is to minimize the number of individuals in both subclasses of smokers and maximize the number of
quitters with minimum cost. The existence of a solution to the optimal control problem is derived using Pontryagin’s maximum
principle. The numerical simulations are conducted to visualise and confirm the analytical results, which show the effectiveness
of the treatments in reducing the number of smokers. Compared to mono-therapy, the combination therapy of educational
campaigns and counselling with nicotine replacement is more effective in reducing the number of smokers.
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1. Introduction

The effects on health conditions of smoking cigarettes and tobacco remain the leading cause of death
and deadly illnesses worldwide. According to the Tobacco Atlas report [21], nearly five trillion cigarettes
are consumed each year worldwide; and this contribute to about eight million deaths and nearly US$
2 trillion in economic losses. Meanwhile, data from the Ministry of Health of the Republic of Indone-
sia in 2019 shows that the number of non-communicable cases related to tobacco consumption, such as
heart disease, stroke, and cancer, is 17.5 million cases at the cost of more than IDR 16.3 trillion. Chronic
obstructive pulmonary disease (COPD), mainly affected by tobacco smoking, remains the main problem
of mortality and was estimated to rank fifth worldwide in 2020, as reported by the World Health Orga-
nization (WHO) [24]. Thus, it is a very critical public health issue to date. Repeated use of nicotine or
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tobacco makes an increased tolerance to nicotine doses, and if nicotine levels fall it will produce with-
drawal symptoms. Physicians and other professionals have recommended interventions and strategies to
promote tobacco dependence treatment.

Smoking cessation strategies consist of effective programs preventing COPD progression. Some stud-
ies have revealed that smoking cessation in COPD patients can preserve or improve lung function in
the first year and reduce the natural development of chronic diseases [2, 5, 15, 16]. Cessation programs
can be divided into two categories: pharmacological and non-pharmacological interventions. Pharmaco-
logical interventions are those in which smokers take prescribed drugs to help with their nicotine with-
drawal syndromes. Nicotine replacement therapy (NRT) reduces nicotine withdrawal symptoms to help
a smoker stop smoking [15]. Non-pharmacological interventions include cognitive behavioural therapy,
motivational interviews, and counselling. These interventions can increase the quit-smoking rates over
the self-initiated strategies. Few studies examine the combined impact of multiple interventions targeting
initiation and cessation. The right combination of interventions could accelerate the reduction of smoking
prevalence [20].

A number of mathematical models have been proposed and theoretical analyses were performed to
capture the dynamical behaviour of the smoking epidemic. Analysis of well-posed model, basic re-
production number and stability of equilibrium points are important. These analyses are discussed in
Castillo-Garsow et al. [4], where the population is classified into three groups: potential smokers, smok-
ers, and individuals who have ceased smoking permanently. Sharomi and Gumel [18] introduced a model
incorporating variability in smoking habits to study the impact of illnesses caused by the smoking habit.
The model by Zaman [26] assumed that smokers who quit smoking may become potential smokers again.
Effective cessation programs, mentioned earlier, are considered as controls in [26], two types of optimal
control strategies were studied: the educational strategy and the campaign treatment strategy. The ex-
istence of the optimal control is obtained using optimal control theory. Meanwhile, a dynamic smoking
model by Pang et al. [13] addresses the effect of treatment on smoking cessation by incorporating the
smoking area and the price of cigarettes as controls to reduce the number of smokers. Yadav et al. [25]
studied a model incorporating the implication of educational program and determination. Other models
describing the dynamic behaviour of smoking are also discussed in [1, 6, 8, 10, 17, 19].

In this study, we propose a model of the smoker population consisting of treated and untreated classes
for both beginner (early) smokers and regular/heavy smokers, respectively. In a developing country, it
is not financially sufficient for the population of all smokers immediately to be treated by intervention
programs for smoking cessation. Hence, the contribution of this study is the modification of the smoking
model [26] where we assume that only a portion of beginners and heavy smokers acquire the cessation
program and the remaining portion is considered an untreated sub-population of beginners and smokers.
Thus, the population is classified into six sub-populations: potential smokers, untreated and treated
beginners, untreated and treated smokers and quitters. We provide the dynamic of each sub-population
in constructing the model of ordinary differential equations and prove the positive invariant of the feasible
region for the model. A closed form of the basic reproduction number is also obtained using the next-
generation matrix method [13, 22].

The model is then extended to focus on treatment interventions for the sub-populations of treated
beginners and smokers. Here, we devote two treatment strategies: the educational campaign treatment
for the sub-population of beginners and counselling with nicotine replacement therapy for heavy smok-
ers. Optimal control strategies are known to be quite effective in controlling many diseases. A feasible
strategy of a bounded time-varying controls is needed to balance the cost and control goal. We prove the
existence of optimal control and derive the optimality system, and further apply the Pontryagin’s maxi-
mum principle [14], also used in [12, 13, 26], to find the pair of optimal control strategies that minimise
the cost function.

The rest of this paper is organised as follows. In Section 2, we present the model in detail and derive
the closed form of the basic reproduction number used to obtain the equilibrium points. In Section 3,
we discuss the existence of optimal controls. The theorem which guarantees the solution to the optimal
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control problem is discussed in Section 4. Then, Section 5 discusses the numerical simulations conducted
to visualise and confirm the analytical results. Finally, a concluding remark is given in Section 6.

2. Mathematical Model of Smoking Cessation with Control

We introduce a smoking cessation model, taking into account the treatment efforts towards begin-
ner and (heavy) smoker individuals to curtail smoking habits. The treatment interventions for smok-
ing cessation include educational campaign treatment for subclass of beginners and counselling with
nicotine replacement for subclass of smoker. In the model, populations of beginners and smokers are
separated into two classes, namely untreated and treated. The population at time t, N(t), comprises
of six sub-populations. These are P(t): non-smokers that are the potential to become smokers; BU(t):
untreated beginners; BT (t): treated beginners (beginners who acquire the first type treatment/therapy);
SU(t): untreated smokers; ST (t): treated smoker (smoker individuals who acquire the second type treat-
ment/therapy); and Q(t): sub-population of permanent quitters. In the treated beginner individuals,
the educational campaign program, denoted as control variable v1(t), may be given in the form of mo-
tivational interviews, psychosocial, cognitive behavioural therapy and counselling. While the treatment
of counselling with nicotine replacement (as the second type of treatment) is provided for the smoker
population, ST (t), to reduce the frequency of smoking habit leading to stop smoking. A variable control
v2(t) represents this treatment level. Nicotine replacement therapy by giving drugs is used to block the
brain’s nicotine receptors, reducing the urge to smoke. A schematic diagram of the proposed smoking
epidemic is given in the compartment model Figure 1.

Figure 1: Flow diagram of smoking epidemic

We assumed that the non-smokers population (P(t)) increased with a constant rate Λ. The population
increases when the untreated beginners begin to stop smoking temporarily due to self-control influence
at a constant rate σ. Fractions ϕv1(t) and θv2(t) are the rates of effective treatments in which the classes
of the treated beginners and the treated smokers, respectively, return to the potential-smokers class.
The remaining (1−ϕ)v1(t) and (1− θ)v2(t) of the treated beginner and smokers individuals, respectively,
become permanent quitters. Non-smokers (potential) population can acquire the attitude toward smoking
(as beginners) via effective interaction with both untreated beginners and untreated smokers at constant
rates α and β, respectively. The population diminishes due to natural death at a rate µ. The growth rate
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of potential population P(t) is:

dP

dt
= Λ− (αBU +βSU)P− µP+ σBU +ϕv1(t)BT + θv2(t)ST . (2.1)

Once potential individuals start to smoke, they are called the class of untreated beginners BU(t). A
part of untreated beginners continues smoking at a constant rate δ, when he/she contacts effectively with
untreated smokers. Other parts of this population quit smoking temporarily due to self-willingness (at
the rate σ). Some beginner individuals respond to following the first type of treatment, and move to the
treated beginners class at a rate r1. Thus, the growth rate of untreated beginner smokers is:

dBU
dt

= (αBU +βSU)P− δBUSU − (σ+ r1 + µ)BU. (2.2)

The population of treated beginners BT (t) increases through untreated beginners (at a rate r1) when
they acquire the first type of treatment and as the source. Due to the efficacy of the first type treatment,
a fraction of this population, ϕv1(t)BT , returns to the potential-smoker class, and another fraction, (1 −
ϕv1(t))BT , moves to the permanent quitter class. Thus, the change rate of the treated beginners is

dBT
dt

= r1BU − v1(t)BT − µBT . (2.3)

The population of untreated smokers is generated by untreated beginners at the rate δ when they
begin to smoke permanently through effective contact with untreated smokers. Some smoker individuals
respond and follow the second type treatment at a rate r2, and they move to the treated smoker class.
Thus, the growth rate of untreated smokers is:

dSU
dt

= δBUSU − (r2 + µ)SU. (2.4)

The population of treated smokers is recruited by untreated smokers (at a rate r2), when the second
type of treatment has been acquired. Due to the efficacy of the second type of treatment, a fraction of this
population, θv2(t)ST , returns to the potential-smoker class, and the remaining fraction of (1 − θ)v2(t)ST )
moves to the permanent quitter class. Thus,

dST
dt

= r2SU − v2(t)ST − µST . (2.5)

The population of quitters is generated by treated beginners and smokers individuals who permanently
quit smoking, at rates (1 −ϕ)v1(t)BT , and (1 − θ)v2(t)ST , respectively. Therefore,

dQ

dt
= (1 −ϕ)v1(t)BT + (1 − θ) v2(t)ST − µQ. (2.6)

In the case of control variables vi(t) = 0, i = 1, 2, then we have the model without control and the
equations (2.1) - (2.6) are reduced into the following system of equations

dP

dt
= Λ− (αBU +βSU)P− µP+ σBU,

dBU
dt

= (αBU +βSU)P− δBUSU − (σ+ r1 + µ)BU,

dBT
dt

= r1BU − µBT , (2.7)

dSU
dt

= δBUSU − (r2 + µ)SU,
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dST
dt

= r2SU − µST ,

dQ

dt
= −µQ.

where N(t) = P(t) +BU(t) +BT (t) + SU(t) + ST (t) +Q(t) and initial conditions:

P(0) > 0,BU(0) > 0,BT (0) > 0,SU(0) > 0,ST (0) > 0,Q(0) > 0. (2.8)

In the next section, we establish the existence of a solution for (2.7) in which the system satisfies the
properties of non-negativeness and well-posedness.

2.1. Wellposed model without control

To guarantee the system of ordinary differential equations (2.7) with initial conditions (2.8) is well-
posed mathematically and biologically, we prove the following theorem

Theorem 2.1. Let (P,Bu,BT ,Su,St,Q) be the solution of the smoking model without the controls (2.7) with the
given initial condition (2.8). Then the biological feasible closed region

Ω = {(P(t),BU(t),BT (t),SU(t),ST (t),Q(t)) ∈ R6
+ : 0 < P(t) +BU(t) +BT (t) + SU(t) + ST (t) +Q(t) 6

Λ

µ
}

(2.9)
is positively invariant and well-posed for the system (2.7-2.8).

Proof. Firstly, using the initial conditions, we can easily obtain that all rates are non-negative as follows:

dP

dt
|(P = 0,BU,BT ,SU,ST ,Q) = Λ+ σBU > 0,

dBU
dt

|(P,BU = 0,BT ,SU,ST ,Q) = βSUP > 0,

dBT
dt

|(P,BU,BT = 0,SU,ST ,Q) = r1BU > 0, (2.10)

dSU
dt

|(P,BU,BT ,SU = 0,ST ,Q) = 0 > 0,

dST
dt

|(P,BU,BT ,SU,ST = 0,Q) = r2SU > 0,

dQ

dt
|(P,BU,BT ,SU,ST ,Q = 0) = 0 > 0.

This proves all variables are positive over the boundary planes of the cone R6
+. Furthermore, since the

total population at all time, t > 0, is N(t) = P(t) + BU(t) + BT (t) + SU(t) + ST (t) +Q(t), by adding the
equations in (2.7) we have the total population dynamic

dN(t)

dt
= Λ− µN(t), with N(0) = N0 > 0 (2.11)

which yields non-negative value N (t) = Λ
µ + e−µt

(
N0 −

Λ
µ

)
> 0, for t > 0. It concludes that N(t) 6 Λ

µ , if

N0 6 Λ
µ , and limt→∞ supN(t) = Λ

µ . Therefore, the model (2.7-2.8) is well-posed, and the feasible region
Ω is positively invariant and attracting the system.

Note that the population size is a variable. The population is constant when N(0) = Λ
µ . The system

(2.7) has a smoking-free equilibrium which is given by, E = (P,BU,BT ,SU,ST ,Q) = (Λµ , 0, 0, 0, 0, 0).
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2.2. The basic reproduction number
The basic reproduction number <0 characterises the ability of the smoking epidemic to spread; it is

usually assumed that an epidemic occurs if <0 > 1. Otherwise, when <0 < 1, the smoking habit will
disappears without any control treatment strategy. We apply the next-generation-matrix (NGM) method
[22] to find <0 for system (2.7), where <0 is the spectral radius of the NGM matrix and obtain (see also
[23])

<0 =
Λα

µ (σ+ r1 + µ)
. (2.12)

It represents the number of secondary new cases of smoking habits that are affected by a smoker
when he/she introduces to a potential population during the period of smoking habits. By letting the
right-hand side of ( 2.7) equal to zero, we also obtain the smoking equilibrium point of the model denoted
by (P∗,B∗U,B∗T ,S∗U,S∗T ,Q∗) where:

P∗ =
Λδ+ µσ+ r2 σ

βδSU
∗ +αµ+α r2 + δµ

B∗U =
r2 + µ

δ

B∗T =
r1 (r2 + µ)

δµ

S∗T =
r2 SU

∗

µ
,

Q∗ = 0,

and S∗U is a solution of a quadratic polynomial, a2S
2
U + a1S

1
U + a0 = 0, where

a2 = −βδ2 (r2 + µ)

a1 = δ
(
Λδ− µ2 − µ r1 − µ r2 − r1 r2

)
β− δ (r2 + µ) (αµ+α r2 + δµ)

a0 = (r2 + µ) ((r2 + µ) (µ+ r1)α+ δµ (σ+ r1 + µ)) (<0 − 1) .

It shows that this quadratic polynomial of SU has only one positive root if a0
a2
< 0, and due to a2 is always

negative. It must be a0 > 0 to fulfil the condition of uniqueness of endemic equilibrium. So, the existence
and uniqueness of the smoking endemic equilibrium is guaranteed if <0 > 1.

3. Existence of solution for the controlled model

Let P(t),BU(t),BT (t),SU(t),ST (t) and Q(t) be state variables with control v1(t), v2(t) in (4.1). We now
present the existence of solution for the controlled model (2.1)- (2.6) with initial condition (2.8). The
controlled system model can be written in matrix form:

X
′
= BX + F (X) (3.1)

where X =
[
P (t) BU (t) BT (t) SU (t) ST (t) Q (t)

]>,

B =



−µ σ ϕv1 (t) 0 θv2(t) 0

0 −(σ+ r1 + µ) 0 0 0 0

0 r1 −(v1 (t) + µ) 0 0 0

0 0 0 −(r2 + µ) 0 0

0 0 0 r2 −(v2 (t) + µ) 0

0 0 (1 −ϕ)v1(t) 0 (1 − θ)v2 (t) −µ


,
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F(X) =



Λ− (αBU +βSU)P

(αBU +βSU)P− δBU SU

0

δBU SU

0

0


and X

′
denotes derivative of vector X with respect to time t. Equation (3.1) is a non-linear system with

bounded coefficients. We can rewrite (3.1) as follows:

D(X) = BX + F(X)

where D = d
dt . For, Xi = [Pi, BUi , BTi , SUi , STi , Qi], i = 1, 2 , we have

‖ F(X1) − F(X2) ‖ = |α (−BU1P1 +BU2P2) +β (−P1SU1 + P2SU2)|+ |δ (BU1SU1 − SU2BU2)|

+ |(−BU2P2 +BU1P1)α+ (P1SU1 − P2SU2)β− δ (BU1SU1 − SU2BU2)|

6 2α |BU1P1 −BU2P2|+ 2β |P1SU1 − P2SU2 |+ 2 δ |BU1SU1 − SU2BU2 |

6 |P1 − P2| (2α |BU1 |+ 2β |SU1 |) + |SU1 − SU2 | (2β |P2|+ 2 δ |BU1 |) +

|BU1 −BU2 | (2α |P2|+ 2 δ |SU2 |)

6 |P1 − P2|

(
2α

Λ

µ
+ 2β

Λ

µ

)
+ |SU1 − SU2 |

(
2β

Λ

µ
+ 2δ

Λ

µ

)
+

|BU1 −BU2 |

(
2α

Λ

µ
+ 2δ

Λ

µ

)
6 K (|P1 − P2|+ |BU1 −BU2 |+ |SU1 − SU2 |)

where
K = 2

Λ

µ
max (α+β,α+ δ,β+ δ) .

Furthermore, we obtain ‖ D(X1) − D(X2) ‖ 6 M ‖ X1 − X2 ‖, where M = K+ ‖ B ‖<∞. Thus, operator D
is uniformly Lipschitz continuous. Using restrictions on P(t),BU(t),BT (t),SU(t),ST (t),Q(t) > 0, and the
definition of V given in (4.1) we can conclude that there is a solution for the system in (3.1) (see [3]).

4. The Optimal Control Problem

The control function v1(t) indicates the treatment effectiveness level of the educational campaign in
which beginner individuals stop smoking, thus prevent beginners to become heavy smokers. The control
variable v2(t) represents the effectiveness level of counselling and nicotine replacement therapy (NRT) to
help smoker individuals quit smoking permanently or temporarily. In terms of optimal control, we take
into account the control functions v1(t), v2(t) ∈ V where

V = {(v1(t), v2(t))|vi(t) is measurable, 0 6 vi(t) 6 vimax 6 1, t ∈ [0, tf], i = 1, 2} (4.1)

is an admissible control function set. The values of v1max and v2max are the maximum effectiveness level
of the first and the second type of treatments, respectively.

The optimal control problem is to find solutions of treatment strategies for the combination of educa-
tional campaign v1(t) and counselling with nicotine replacement therapy v2(t) in the interval from t = 0
through t = tf which reduce the number of both beginner and smoker individuals at minimum cost. In
this case, we seek

(
v∗1(t), v

∗
2(t)

)
that minimise the objective cost functional given by

J(v1, v2) =

∫tf
0

[
ωBTB

2
T +ωSTS

2
T +ωv1v

2
1(t) +ωv2v

2
2(t)

]
dt (4.2)
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subject to the control system (2.1)- (2.6) with initial condition (2.8). We set coefficients ωv1 and ωv2 as
positive weight constants associated with controls v1(t) and v2(t), respectively. Since higher values of
controls v1(t), v2(t), elevate the cessation program costs, quadratic functional ωv1v

2
1(t) and ωv2v

2
2(t) are

chosen to represent the costs incurred by the smoking cessation program that reflect the side effect of the
first type and second type treatments, respectively. Furthermore, we penalize if the amount of control
is too large. Such costs are commonly used as found in [12], [13], [26]. The coefficients ωBT ,ωST , are
positive constant to keep balancing in the size of BT (t) and ST (t), respectively, that represent costs rising
from resource consumptions for treating beginners and smokers due to the negative effects of smoking
that we want to also minimise.

4.1. Existence of optimal control
Theorem 4.1. There exists an optimal control v∗(t) = (v∗1(t), v

∗
2(t)) such that J(v∗) = minv(t)∈V J(v) subject to

control system (2.1)- (2.6) with initial condition (2.8).

Proof. We shall present a proof based on the result in [7]. (1) In Section 3 we have showed that for any
v(t) ∈ V and initial variables (2.8) in Ω, the solution of the controlled system exists. (2) Also, we showed
the RHS of the state system is bounded by a linear function which determines compactness. (3) The
control space V in (4.1) is obviously closed and convex. (4) The integrand in J(v) is also convex in V . (5)
We will show there exist constants k1 > 0 and k2 > 1 such that J(v) > k1 ‖ v ‖k2 . We have J(v) > 1

2 ‖ v ‖
2.

So k1 = 1
2 , k2 = 2. Thus, we have verified the five conditions in [7]. Therefore, an optimal control

exists.

4.2. Solution of the optimal control problem
We defined the Hamiltonian (H) associated with the optimisation problem by

H = ωBTB
2
T +ωSTS

2
T +ωv1v

2
1 +ωv2v

2
2 + λP

dP

dt
+ λBU

dBU
dt

+ λBT
dBT
dt

+

λSU
dSU
dt

+ λST
dST
dt

+ λQ
dQ

dt
. (4.3)

The Hamiltonian consist of the sum of the integrand of the objective function and the inner product the
state equations with the adjoint variables . The conditions in the Pontryagin’s maximum principle [14]
must hold by the optimal trajectory. Thus, we provide Theorem 4.2 to help find the solution of the optimal
control problem.

Theorem 4.2. Consider optimal control of variables v∗1 , v∗1 and solutions P∗,B∗U,B∗T ,S∗U,S∗T ,Q∗ of the system (2.1)
- (2.6) for minimising J(v1, v2) over V . Then there exists adjoint variables λP, λBU , λBT , λSU , λST , λQ satisfying

dλP
dt

= λP (αBU +βSU + µ) − λBU (αBU +βSU) ,

dλBU
dt

= −λP (+σ−αP) − λBU (αP− δ SU − µ− r1 − σ) − λBT r1 − λSUδ SU,

dλBT
dt

= −2ωBTBT − λPϕv1 + λBT (µ+ v1) − λQ (1 −ϕ) v1,

dλSU
dt

= λPβP− λBU (βP− δBU ) − λSU (δBU − µ− r2) − λST r2,

dλST
dt

= −2ωSTST − λPθ v2 + λST (µ+ v2) − λQ (1 − θ) v2,

dλQ

dt
= λQµ, (4.4)

with transversality conditions

λP(tf) = λBU(tf) = λBT (tf) = λSU(tf) = λST (tf) = λQ(tf) = 0, (4.5)
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and the controls v∗1 and v∗2 satisfy the optimality condition

v∗1 =
1
2
B∗T
(
λBT −ϕλP − (1 −ϕ) λQ

)
ωv1

,

v∗2 =
1
2
S∗T
(
λST − θ λP − (1 − θ) λQ

)
ωv2

. (4.6)

Proof. Differentiating the Hamiltonian in (4.3) with respect to each state variable, we obtain the differential
equation for the corresponding adjoint variables:

dλP
dt

= −∂H∂P = λP (αBU +βSU + µ) − λBU (αBU +βSU) ,

dλBU
dt

= − ∂H
∂BU

= −λP (+σ−αP) − λBU (αP− δ SU − µ− r1 − σ) − λBT r1 − λSUδ SU,

dλBT
dt

= − ∂H
∂BT

= −2ωBTBT − λPϕv1 + λBT (µ+ v1) − λQ (1 −ϕ) v1,

dλSU
dt

= − ∂H
∂SU

= λPβP− λBU (βP− δBU ) − λSU (δBU − µ− r2) − λST r2,

dλST
dt

= − ∂H
∂ST

= −2ωSTST − λPθ v2 + λST (µ+ v2) − λQ (1 − θ) v2,

dλQ

dt
= −∂H∂Q = λQµ, (4.7)

with conditions

λP(tf) = λBU(tf) = λBT (tf) = λSU(tf) = λST (tf) = λQ(tf) = 0. (4.8)

Using optimality conditions, we differentiate the Hamiltonian function (4.3) with respect to each v1, v2
and evaluating at the optimal control variables, we have

0 = ∂H
∂v1

= 2ωv1v
∗
1 + λPϕB

∗
T − λBTB

∗
T + λQ (1 −ϕ)B∗T ,

0 = ∂H
∂v2

= 2ωv2v
∗
2 + λPθS

∗
T − λSTS

∗
T + λQ (1 − θ)S∗T . (4.9)

Thus, we obtain

v∗1 =
1
2
B∗T
(
λBT −ϕλP − (1 −ϕ) λQ

)
ωv1

v∗2 =
1
2
S∗T
(
λST − θ λP − (1 − θ) λQ

)
ωv2

. (4.10)

By using the property of the control space (4.1), we have the following conditions. If ∂H∂vi < 0, at t, then
v∗i (t) = 0 , for i = 1, 2, conversely, if ∂H∂vi > 0, at t, we take v∗i (t) = 1. Therefore, we can rewrite in compact
form the optimal control variables v∗1 and v∗2 by

v∗1 = max

{
0,min

(
1,

1
2
B∗T
(
λBT −ϕλP − (1 −ϕ) λQ

)
ωv1

)}

v∗2 = max

{
0,min

(
1,

1
2
S∗T
(
λST − θ λP − (1 − θ) λQ

)
ωv2

)}
. (4.11)

This exhibits the uniqueness of the optimal control of the system (2.1) - (2.6), (4.7), and (4.8) with
characterization (4.11).
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5. Numerical Simulations

In this section numerical simulations are performed. The parameter values used are listed in Table
1. The mortality rate is assumed by a life expectancy of 70 years; hence µ = 1

(70×365) = 4× 10−5. Firstly,
we simulate the smoke-free or non-endemic equilibrium stability result by assuming α = 0.000014 , thus
the basic reproduction number is <0 = 0.43074 < 1. The initial condition of the state variables is chosen
within the feasible region (2.9) with P(0) = 5000,Q(0) = 50, and we assume that BU(0) = 60, BT (0) =
60, SU(0) = 800, and ST (0) = 280, so the total N(0) = Λ

µ = 0.25
4×10−5 based on [13]. The dynamic of the state

variables is depicted in Figure 2; the time tf = 10× 104 is chosen in order to capture the dynamics until
the equilibrium state is achieved at E(P,BU,BT ,SU,ST ,Q) = (Λµ , 0, 0, 0, 0, 0) as t → ∞. This shows that
the smoke-free equilibrium is stable (globally asymptotically stable).

Table 1: Table of parameters and descriptions
Parameter Description Value References

Λ Recruitment rate 0.25 [13]
µ Natural death rate 4× 10−5 [13]
α The infection rate of smoking P−BU 0.00014 [26]
β The infection rate of smoking P− SU 8× 10−4 [18]
δ The infection rate of smoking BU − SU 0.0024 assumed
σ The rate of the desire to stop smoking 0.0031 [26]
r1 Constant prevention rate 0.2 assumed
r2 Constant treatment rate 0.4 assumed
ωBT Weight factor for the treated beginner 0.091 [26]
ωST Weight factor for the treated smoker 0.001 [26]
ωv1 Campaign level of acceptance for beginner 0.02 [26]
ωv2 Therapy level of acceptance for smoker 0.1 [26]

Figure 2: Smoke free, non-endemic equilibrium state, asymptotically stable.

Figure 3: Variations of Potentials (P) smokers and Quitters populations for system with and without controls.
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To illustrate the effect of the cessation program, we performed numerical simulations of the optimal
control problem by applying the forward-backward sweep Runge-Kutta iterative method [11], [9]. The
results are compared with the case when the treatments are ineffective, i.e. v1(t) = v2(t) = 0. We assumed
that the weight factor ωv2 associated with control v2(t) is greater than ωv1 . This assumption is based on
the fact that education counselling (campaign) is also included in the counselling with nicotine therapy
v2(t). Using the parameter values in Table 1, the basic reproduction number obtained is <0 = 4.3074 > 1;
hence an endemic occurs. The simulations are carried out until time tf = 30 × 103days in order to
visualize the asymptotic global stability of the endemic equilibrium point.

The numerical simulations are conducted in two situations, ϕ < θ and ϕ > θ. For the first scenario we
set: ϕ = 0.2, and θ = 0.4. In other words, the number of treated beginners who quit permanently is higher
than the number of treated smokers, which means the educational campaign is more effective. Results
on changes in the number of potential (P) and permanent quitter (Q) are shown in Figure 3. Clearly the
combined optimal control can significantly reduce the number of smokers (S) and beginners (B) as shown
in Figure 4. The state variables values at the end are P∗ = 262, B∗U = 17, B∗T = 4, S∗U = 2, S∗T = 10 ,
Q∗ = 5954. In this case the cost is J = 341.239.

Figure 4: Variations of untreated and treated Beginners (B) and untreated and treated Smoker (S) populations

Figure 5 depicts the total population in the beginners (BU +BT ) and smokers group, (SU + ST ). Here
the beginner subclass decreases faster than the smoker subclass, since the portion of untreated-smokers
who acquire the treatment (r2 = 0.5) is higher than those from untreated-beginners (r1 = 0.2). In addition,
it clearly shows the effectiveness of the cessation program where the number of individuals both the
beginner and smoker groups increases rapidly in the beginning; then, it decreases sharply going to its
stable state. While without the cessation programs, the number of smokers rise continuously to 5941 and
beginners reached 267. The corresponding control variables, v1(t) and v2(t), both take maximum values,
are shown in Figure 6.

Figure 5: Variations of Total Beginners and Smokers for Case 1.
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Figure 6: Corresponding Optimal Control. Case 1.

In the second scenario, the portion of treated-beginners returning to a potential smoker is set higher
(ϕ = 0.6) or those who transfer to permanent quitter are less compared to the effectiveness of the treat-
ment in the treated-smokers group with θ = 0.4. The result shows slightly less achievement, where the
total number of beginners and smoker at the end of the program is 28 and 14, respectively. The result
from the two cases is summarised in Table 2. It shows that the program is more effective in Case 1 where
ϕ < θ.

Table 2: Group size at end of program

Population Case 1 Case 2 Case 3
Group ϕ = 0.2 ϕ = 0.6 r1 = 0.4, r2 = 0.5

θ = 0.4 θ = 0.4 ϕ = 0.2, θ = 0.4

Potential (P) 262 317 375
Beginners (B) 22 28 2
Smokers (S) 12 14 8
Quitters (Q) 5954 5891 5865

We further observe the Case 1 when we increase the portion of beginners who acquire treatment to
r1 = 0.4, and <0 is now reduced to 2.1705. The result is given in column 4 in Table 2, namely Case 3.
We obtained better results; the number of beginners and smokers was reduced to 2 and 8, respectively.
However, this incurs more cost with J = 455.969. Illustration of the numerical results of Case 3 are shown
in Figure 7.

Figure 7 shows the total population of smokers first increases rapidly, then decays significantly com-
pared to when the treatments are ineffective or without control. Hence, we observe the control strategy’s
efficiency in successfully eliminating the number of beginners and smokers. We obtained that both inter-
ventions must be at the highest possible effort from the beginning of the program.
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Figure 7: Case 3. Top: Total B and total S, with control and without control. Bottom: the corresponding optimal controls.

Figure 8: The effect of mono-therapy and combination treatments on the number of quitters.

To visualise which combination of treatments is most effective, we compare the mono-therapy of edu-
cational campaign treatment, the therapy of counselling with nicotine replacement, and the combination
treatment of educational campaign and counselling with nicotine replacement. For this, we define the
overall efficacy which equals to ε̄ = 1 − (1 − v1)(1 − v2) with ε̄ = 0.51. The result exhibited in Figure 8
confirms that the therapy of counselling with nicotine replacement is effective compared to educational
campaign. However, combined therapies of educational campaign and nicotine replacement are the most
effective for smoking cessation programs.

Figure 9: Decreasing number of BT and ST (v1 = v2 = 1).

In Figure 9, we provide an illustration of decreasing BT (t) and ST (t) where the initial value of the
variables are from the Ministry of Health, Indonesia, 2019. Namely, P(0) = 120× 106, the number of
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smokers is 70.4 million, of which 9.1% (≈ 6.4 million) are beginners under the age of 18 years. We assume
BU(0) = 3.4× 106, then BT (0) = 3× 106, SU(0) = 51.2× 106, ST (0) = 12.8× 106 and Q(0) = 9.6× 106.
We apply control treatments at maximum level v1 = v2 = 1 for approximately 27.4 years. ST increases
in the beginning due to transfer from SU, then declines to 10 million or 78%. The smoking behaviour of
beginners are eliminated within 6000 days.

6. Conclusion

This work proposed a dynamic model for smoking control strategies. We analysed the responses of
two subclasses, beginners and smokers, in acquiring therapy programs that combine educational cam-
paigns and counselling with nicotine replacement therapy. In offering the programs, only some beginners
and smokers were willing to participate in the treatment. We considered those individuals from beginner
and smoker groups that did not acquire the treatments. The existence of equilibrium for the smoking
individuals and the optimal control to reach the equilibrium were obtained. Numerical results show that
the combined cessation program is sufficient to achieve the minimum of both beginner and smoker pop-
ulations and a maximum number of non-smokers and quitters in a community. We concluded that the
control program following this strategy could effectively reduce the population of both treated beginners
and treated smokers. By putting maximum effectiveness in treating the beginner and smoker groups
continuously for a long period, we obtained high efficiency in reducing the total number of smokers and
thus increase the number of quitters. Conversely, if control is not applied, the number of smokers will
not decrease.
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