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Abstract

In this paper, the existence and Ulam-Hyers stability of solutions for implicit second order fractional differential equations
are investigated via fractional-orders integral boundary conditions. Our results are based on Krasnoselskii’s fixed point Theorem
and Banach contraction principle. We provide examples at the end to clarify our acquired outcomes..
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1. Introduction

The topic of Fractional calculus is part of a classical analysis that includes integration and differen-
tiation of fractional-order. There has been a huge advancement in fractional derivatives with Riemann-
Liouville, Caputo, Hilfer, Hadamard, and others. Ongoing outcomes on fractional calculus and fractional
differential equations can be found in [7, 17-20, 29]. The Caputo fractional derivative has recently been
applied in different areas of the physical interpretation of initial conditionsand boundary conditions. For
additional details on their different applications, see the monographs of Abbas et al. [2], Baleanu et al.
[16], Kilbas et al. [24], Lakshmikantham et al. [26], Agarwal et al. [4, 5], Babakhani and Daftardar-Gejji
[10], Belmekki and Benchohra [11], Benchohra et al. [12-14], Kilbas and Marzan [23], and the references
therein.

The principle of impulsive fractional differential equations has received a lot of attention, and sev-
eral researchers have documented some very useful results in this field [21, 27]. It has been discovered
that impulsive fractional differential equations can provide ideal models to describe real processes that
deviate from their states at random times and cannot be interpreted using conventional fractional differ-
ential equations. Several mathematicians have recently looked into boundary value problems for frac-
tional differential equations with fractional derivatives. More specifically Chasreechai and Tariboon in
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[15] demonstrated existence theorems for the positive solutions of the following types of problems with
integral boundary condition

n n

u(o) do, um:oczj u(o) do.

W (e) +xg(t) h(u(®) =0, e (0,1), u(O):oqj O

0
Hu and Wang [21] proved the existence of solution for the nonlinear fractional differential equation
with integral boundary condition

1
Du(r) = g(v, u(r), D%u(r)), te(0,1),1<(<2,0<8<], ) =p, w1 = J h(o)u(o)) do,
0
where D% is the Riemann-Liouville fractional derivative. Murad and Hadid et al. [27] studied the bound-
ary value problem of the fractional differential equations given by

Du(t) = g(t, u(x), Dou(v)), te(0,1),1<<2,0<8<1, w0)=0, p(1)=In),

where D¢ is the Riemann-Liouville fractional derivative.

On the other hand, the stability analysis of integral and differential equations is critical in many
applications, a great interest has been shown in the study of Ulam-Hyers stability of non-linear functional
differential equations with different type of boundary conditions, we mean by Ulam-Hyers stability that
functional differential equation has an exact solution that is very close to its approximative solution
and that the error can be determined. Ulam introduced a novel concept of stability analysis on the
topic of stability theory in 1940, and Hyers advanced it in 1941. Later, Rassias in 1997 expanded on the
aforementioned concept, for essential results and new additions on Ulam-Hyers stability of f integro-
differential equations, we suggest the references [1, 22, 28].

Fractional derivatives of a function with respect to function ¢ have been considered in the classical
articles as a generalization of Riemann-Liouville derivative. This fractional derivative is called the ¢-
fractional derivative and it differs from the classical one as the kernel appears in terms of ¢. Recently, this
derivative has been reassessed by Almeida in [8], where the Caputo-type regularization of the existing
definition and some interesting properties are provided. Several properties of this operator could be
found in [3, 25, 30].

Motivated by the results in the shown above articles, here we develop existence and stability theorem
for implicit fractional order differential problem (ISDP).

2 v
%y(t) =f(r,y(v),¢ DB""’y(t),J0 k(r, 0)°D¥%y(0)do), (1.1)
_ 1y B 4
y(0) = y) L ¢'(0)(d(1) = ()Y hi(o,y(0)) do, (1.2)
/ — L ' / _ v—1
y'(1) = ) L ¢'(0)($(1) = $(0))Y " ha(o,y(0)) do, (1.3)

where 1 < B < a<2and0 < vy <1, here ¢ (r) is non decreasing function with ¢’ (vr) #0, Ve e I =[0,1],
and °*D*? is the ¢p-Caputo fractional derivative.

The paper contents are separated into four sections. Section 2 contains the main results and is divided
into two parts. The equivalence between ISDP (1.1)-(1.3) and the integral equation was discussed in part
one. Part two includes two existence results of the problem (1.1)-(1.3), one of which is proven using the
principle of Banach contraction and the other uses the fixed point theorem of Krasnosel’skii. We will also
discuss Ulam-Hyers Russian stability of our problem in Section 3. Also, in Section 4 we present some
particular cases and examples that demonstrate our findings.

Now, we state the definition of fractional integral and fractional derivative used in developing our
results throughout this paper.
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Definition 1.1 ([8]). For any real number « > 0, the ¢-Riemann-Liouville fractional integral of order «
for an integrable function u : I — R with respect to another function ¢ : I — R, which is an increasing
differentiable function such that ¢’ (¢v) # 0 for all v € I is defined by:

1y () = r(lodjwc)(w) — (0))* Mu(0) do,
0

where I is the classical Euler Gamma function.

Definition 1.2 ([8]). If n € N and ¢, u € C™(I, R) are two functions such that ¢ is increasing and ¢’ (v) # 0
for all v € I, then the ¢-Capato fractional derivative of a function u of order « is defined by:

DWufr) = 1 (1) i) = o [ b)Y (@) o
0

where ul™ (v) = (q),l(t)%)nu(t) andn=[a]+1forx ¢ N,and n = « for x € N.

Remark 1.3. Let o« > 0, then the differential equation (CDfl‘f h)(x) = 0 has solution

h(t) = co+c1 ((r) — d(0)) +ca (b(r) = d(0)* + - +cn1 (d(r) — O™,

wherec; € R, i=0,1,2,...,n—1, n=[o]+1.

2. Existence and uniqueness

We show the existence of solution for ISDP (1.1)-(1.3), by assuming the following conditions.

(H1) Fi:IxR — R,i=1,2 are continuous and there exist constants k; € [0,1) such that
IFilt,u) — File,v)] < kiu—vl.
(Hp) 0:1 xR®> = R is continuous and there exists \p € C(I, R ), with norm |||, such that:
10(x, w1, up, uz) — O(x, v, v2,v3)| < () (lug —val + [up — va| + luz — v3),
Veel, u,vieR, i=1,2,3).
(Hsz) k(t, o) is continuous for all (v, 0) € I x I, and there is a positive constant K such that

max k(t, 0)| = K.
t,0€l

Remark 2.1. From assumptions (H;) and (Hz), we have

[Fi(e,u)l < Hi+kilu, where Fi =suphi(r,0)], i=1,2
vel
and
10(t, w1, uz, us)| < [ (fua] + fuzl + [us]) +©, where © = sup[f(x,0,0,0)|.
vel
Lemma 2.2. The mild solution of ISDP (1.1)-(1.3) is the solution of the integral equation

1

yle) = F (e y(0) + JO G(r, o}u(o)do,

here w is the solution of integral equation



Sh. M Al-Issa, I. H. Kaddoura, N. J. Rifai, ]. Math. Computer Sci., 31 (2023), 15-29 18

1

u(t) =0(x, F (v) +J

G(r, o)u(o)do, 7 PPy (v), Jt k(t, 0)I*~%%u(0)do),
0

0

G(t, 0) is the Green function described by
(2.1)

Go :=max{|G(x,0)|,(xr,0) € I x I}, and

1 4/ _ —1
e :L ¢ (a)(<1>(1r)md>(o))y Fl(wm))dgﬂjo -

ﬁroof. We i<r1tf)w t}}aics‘gDP"‘;‘;;igt)th— 12’“;4)(%22 y(r) and cDP:Py(v) = IZ*B"“’% y(r) for v € I. Consequently,
lylsaSOUIOno 1), en

F2(o,y(0)) do. (2.2)

u(r) = 0(r,y(v), 2 Bidqy(v), Jt k(t, 0) >~ %% u(o)do)
0

and
T

yt)=ac+ayt +J (1—o)u(o)do. (2.3)
0

We can get the following from (1.2) and (1.3),

. r '(0)(9(1) — (o))"
"o ()

F1(o,y(o))do.

Differentiating (2.3) we receive
T

y'(v)=a; + L u(o)do.

So, L - 1
@ = | (@00 - o) Fa(oy(e)) do | ulolao

Then the solution of (1.1)-(1.3) is as follows:

o - Jl o' (0)($(1) — d(0))Y !
U= ry)

1
-t L u(cr)ch—J (1—o0)u(o)do.

Fi(o,y(o))do+t L ")

Lemma 2.3. / : I x R — R, is Lipschitzian function with a Lipschitz constant c,

”F(EX)—F(EU)H Sc HX_yH/

(¢ (1= (0))Y k1 +ko]

where ¢ = Ty D) .

Proof. For all u,v € X and ¢ € I, we obtain

| (6, x(v) = F (v, y(v)]

Jl ¢’ (0)(Pp(1) — d(o))¥ !
0 I'(y)

N

F2(0,x(0)) do
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1 / _ —1
m(cr,y(o))dorj PO Z S (5 4(0)) do

0 I'(y)

Filo,x(0)) = Fi(o,y(o))|do

Jl ¢’(0) (¢ (1) —¢(0))V*1‘(

‘(FZ(G/X) _FZ(Gry))’dO_

) My +1)
(¢(1 ) $(0))¥[k1 + ko]

< —y|.
e 1

IR
+1

Then
[F (e,x) = F (v, y)]| <c x—yl.

2.1. Main results
The first existence result for ISDP (1.1)-(1.3) is depending on the fixed point Theorem of Krasnoselskii
[9].

Theorem 2.4. Let assumptions (Hy)-(Hs) hold. If
($(1) = $(0))Vk1 +t(dp(1) =(0) ko Go il _

ry) tiom <L

where

_Wl(d(1) — $(0)27F  [p]l(b(1) — (0))2 K
=" NEEE) ’

then the ISDP (1.1)-(1.3) has at least one mild solution on 1.
Proof. Set the operator A : C(I, R) — C(I, R) by:

1

Amazfmmm+LGumwwm@ 2.4)

with f is the functions defined by (2.2),

v(t) =0(r,y(v), Izﬁ;d)v(t),Jt k(t, o) 2~ %%v(0)do).
0

Define the set
By ={y e C(LR): ly|| <

with
(S ()= (0)) it (b()=b(0))'F> | G, ©
S T(y+1) T—on
P=1" (P8O & e -60"le | G, [V])°
r(y+1) 1-90n

Moreover, we characterize the operators A; and A, on B, by

1

AwM—mem,Awm—LGmmwmm.

Consider that A; and A; are defined on B, and for any y € C(I, R),
Ay(r) = Apy(r) + Axy(r), rvel

The proof will be decomposed into 3 steps.
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Step 1: Lety;,y2 € B, and ¢t € I, we have
1
|A1y1(t) + A2y (t)] < [A1y1 ()| + [A2y2 (t)] < [F (v, y1(v))] +L |G(x, o)|lv(o)ldo, (2.5)

where v(r) = 0(t,ya(v), P BPy(x), [ k(r, 0) - %Pv(0)do),

v(e)| = |0(v,y2(x), 12 PPy(x), J k(x, 0) 2~%%v(0)do)|

0
FP'(0)(d(r) — (o) P!

7= p) v(o)| do

< 0+ Y(©)ly2(e)] + (©) j

0

I
7¢'M)(plo)— ¢

t 2—ax—1
(0 [ e ol S ) an do
0 2—f3 _ 0 2—x
<0 [yl + o L P o+ o = O e,
0 2—f3 _ 0 2—x
IVl < 0+ 1l el + 1o P PR o+ e PO .
Then
0+ ] o
VE o v
1_(H1P||(¢I£g_g>)(0 B _|_||1PH I"(B—d)o(c?)) K)
and

0 r'y)
“E d)’((f)(d)(lr)(y)d)(ﬁ) " (o (o)ldo
< E q)/(g)(q)(lr)(;)d)(d))y_l|[F1+k1|y1(0)|]d6
o[ SO e, 4 ptolao
< D) =i +kiflyrl] | (6(1) = (0)Y [IFa +Kallyal]|
My+1) My+1)

Hence (2.5) implies that, for each v € 1,

IA1y1(t) + Agya ()] <

(@) — bON'IF +affyall | (1) = d(0) [P +iaflyal] | Go O+ W] p)

For v € I, we have

[A1y1 + A2y2|| < p

This proves that Ajy; + Axys € By, for every yi,ys € By

Iy+1) My+1) 1-9m

~X

Step 2: The operator A; is a contraction mapping on B,. Itis clear that from Lemma 2.3, A; is a contration

mapping for ¢ < 1.
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Step 3: The operator A; is completely continuous (compact and continuous) on B,. First, we prove that
the operator A; is continuous. Let {yn}nen be a sequence such that y, — y as n — oo in C(I, R). Then
for each v € I, we have
1
Ay — A2yl < | 16(5,0)llvn (@) ~v(@)ido, 26)
0

where v;,,v € C(II,R), such that
T
v 6) = 0 (r,yn(t), SLONEANTe 12“;¢vn(c)do> ,
0
T
v(t) =0 <t,y2(t),12_6;¢v(t),J k(t, 0) IZ_“;¢V(G)dG> ,
0

and by (Hz), we have

T

vn(t) —v(e)| = |9(t/yn(t),12B;‘I’vn(t),rk(t, o)vn(0)do) — e(t/y(t)flzﬁ"d’V(t),J k(r, 0)v(0)do)|

0
V. — 2=p-1
< P(v) (Iyn(t) —U(t)|+JO u (G)(d)(lf()z—d)ﬁ()g))

: 7' (b(0) —Ppm)> >
" Jo )l Jo M2 -«

vn(0) —v(o)ldo

va(m) —v(n)l dn dG)

n V(D1 = $(0))2 P K [l —v][((1) — (0)>*
BT I S P ) TP B T
Thus
Ivn =il < (¢(1)—¢(01J‘E)6H K o —gr =y 1Yn ~ Yl
R L e vy + - )

Since yn — y, then we get vy (t) — v(r) as n — oo for each v € I. And let ¢ > 0 be such that, for each
v € I, we have [v,(v)] < ¢, and |[v(t)| < €. Then, we have

IG(x, o)[vn(0) —=v(0)] < [G(x, 0)lllvn (o) + v(0]l] < 2¢[G(x, o).

For each v € I, the function 0 — 2¢|G(v,0)| is integrable on I. Then applying Lebesgue dominated
convergence theorem, and (2.6) imply that

|A2yn — Ayl — 0 as n — oco.

Consequently, A; is continuous.
Next, it is easy to verify that
O+ (vl e
1-m
due to definitions of 9t and p. This proves that A, is uniformly bounded on B,,.
Finally, we show that A; maps bounded sets into equicontinuous sets of C(I, R), i.e., B, is equicontin-
uous. Now,Ve>0,30>0and ty,rp €1, v1 <13, [to —11] < ), then we have

IA2y]l < Go ( ) <o,

1

A2y(r2) — Agy(er)] < L G(t2, 0) — G(x1, 0)| v(0)ldo

1 1

O+

< HvIIJ Gz, 0) — Gley, o) do < O ¥le pj Glts, 0) — Glr1, )| do.
0 1—9,m 0



Sh. M Al-Issa, I. H. Kaddoura, N. J. Rifai, ]. Math. Computer Sci., 31 (2023), 15-29 22

As vy — 1y, the right-hand side of the above inequality is not dependent on y and tends to zero. Conse-
quently,
[A2y(t2) — Agy(v1)[ = 0, V |z —r1] = 0.

Thus, {Ay} is equi-continuous on B, and A is compact operator by the Arzela-Ascoli Theorem [6], we
conclude that A : C(I,R) — C(I,R) is continuous and compact. Hence, hypotheses of Krasnoselskii’s
fixed point theorem are hold and shows that A; 4+ A, has a fixed point on B,. Therefore, the ISDP
(1.1)-(1.3) has a mild solution, and the proof is complete. O

Our second finding establishes the existence of a unique solution to the ISDP (1.1)-(1.3) using Banach’s
fixed point theorem.

Theorem 2.5. Assume that assumptions of Theorem 2.4 hold. If

Go [l

c+
D—¢0)2PF | K ($p(1)—d(0))2«
11— [ (L0200 (G- 07

<1, (2.7)

then the ISDP (1.1)-(1.3) has a unique solution on 1.

Proof. 1t follows, from Theorem 2.4, that ISDP (1.1)-(1.3) has at least one solution. Therefore, we only need
to show that the operator A described in (2.4) is a contraction.
Now, we take x,y € C(I,IR). Then for ¢t € I, we have

1 1

G(r,0)u(o)do —h(r,y(r)) — J G(t,0)v(o)do,

Ax(t) — Ay(t) = F (r,x(t)) +J 0

0

where u,v € C(I,R) be such that
u(r) = 0(r, x(v), IZ_B;d’u(t),J k(r,0) * %% u(o)do),
0
v(t) = 0(x,y(v), IZ_B;d’v(t),J k(t, o) I*~%% v(0)do).

Then, fort e I

1
[AX(t) — Ay(v)| < [F (v, x(v)) — F (v, y(v))] +L G(r, 0) [u(o) —v(o)ldo, (2.8)

but by condition (Hz), we have
[u(r) —v(v)]
= IS(t,x(t), Iz_ﬁ;‘bu(t),J k(r, o) 2% u(c)da) - G(t,y(t), >k v(t),J k(r, o) 2% v(cr)dcr)l
0

0
v — 2—p-1
<P(v) (Ix(r)—y(dHL u (G)(d)(rf()z _¢B(;f))

‘ 7' (M) (dp(0) — p(n))* 1
+J0 (e, G”Jo M2—o)

u(o) —v(o)| do

() —v(m)] dn dc)

$(1) — $(0)> Pllu—v| L Klu=vifo) - c|>(0))2—“)

(

for v € I, we have

(1) —(0)> Bllu—v| n K {lu—v[[($p(1) — ¢(0))2‘“)
r3—p) r3—« '

=il < Il (I =yl +
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e ol
lu—v[| < = —Ix—yl.
(@(1)—$(0)>F | K (p(1)—¢(0))2=
1= WISt — + ras )
Return to (2.8) and by Lemma 2.3, we have
Go [0
[Ax = Ayl < cllx—yl + - —Ix—yl
(¢ (1)—(0))2—F K (¢ (1)—¢(0))>—=
1= Wl ("5 + ey )

s (C+ (¢(1)—¢(§;JL¢H K (@)—¢(0)7 = >|X_y”'
1= [l (—* + )

3—B) I(3—oa)
By <c + (¢(1)7¢(Oi§_|[|5¢|‘ PP > < 1, then this proves contraction of operator A. Hence, by
1—||1l’\|( T3=B) + TB—o) )
Banach’s contraction principle, A has a unique fixed point which is a mild solution of the ISDP (1.1)-(1.3)
on I. O

3. Ulam-Hyers stability

Now, we examine the Ulam stability for ISDP (1.1)-(1.3). Let € > 0 and @ : I — R be a continuous
function. Inequalities such as these are taken into account:

d? . v .

I@y(t) — 6(t,y(t),° DB'¢y(t), . k(t, G)CD“'¢y(G)d0)\< e, vel, (3.1)
d? . v .

I@y(t) —0(t,y(r),c DPFPy(v), . k(r,0)°D¥Py(0)do)| < @(x), v T, (3.2)
d? . * .

|@y(t) — G(t,y(t),c Dﬁ'q)y(t), . k(x, G)CD“'¢y(G)dG)\ <ed(r), tel (3.3)

Definition 3.1 ([28]). The ISDP (1.1)-(1.3) is Ulam-Hyers stable if there exists a real number cf > 0 such
that for each € > 0 and for each solution y € C(I,R) of the inequality (3.1) there exists a solution
z € C(I, R) of (1.1)-(1.3) with

ly(t) —z(v)[ < ecq, vel

Definition 3.2 ([28]). The problem ISDP (1.1)-(1.3) is generalized Ulam-Hyers stable if there exists c¢ €
C(R4,R4) with c¢(0) = 0 such that for each e > 0 and for each solution y € C(I,R) of the inequality
(3.1) there exists a solution z € C(II, R) of (1.1)-(1.3) with

y(t) —z(v)| < ce(e), tel

Definition 3.3 ([28]). The problem ISDP (1.1)-(1.3) is Ulam-Hyers-Rassias stable with respect to @ if there
exists a real number c¢,¢ > 0 such that for each € > 0 and for each solution y € C(I, R) of the inequality
(3.2) there exists a solution z € C(II, R) of (1.1)-(1.3) with

y(t) —z(v)| < e cr0@(r), vel

Definition 3.4 ([28]). The problem ISDP (1.1)-(1.3) is generalized Ulam-Hyers-Rassias stable with respect
to @ if there exists a real number c¢,¢ > 0 such that for each solution y € C(II, R) of the inequality (3.3)
there exists a solution z € C(II, R) of (1.1)-(1.3) with

y(r) —z(r) > | < crpP(r), vel

Next, we present the following Ulam-Hyers stablity result.
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Theorem 3.5. Assume that the assumptions of Theorem 2.5 hold. Then ISDP (1.1)-(1.3) is Ulam-Hyers stable.

Proof. Let € > 0 and let z € C(I, R) be a function that meets inequality (3.1), i.e.,

(v) —0(r, z(x),° DB"d’z(t),J't k(t,0)’D%®z(0)ds)| <€, tel,
0

d2
3e*
and allow a unique solution of ISDP (1.1)-(1.3) be y € C(I,R), which is by Lemma 2.2, the ISDP (1.1)-(1.3)

equivalence to fractional order integral equation

1
wazfmmm+LGmmmmm,

where u is the solution of the functional integral equation

1 v

G(t, 0)u(o)do, Iz_ﬁ;‘bu(t),J k(r, 0) >~ %% u(o)do).

u(t) =0(x, F (v,y(v)) —I—J
0

0
Operating by I? on both sides of (3.1), and then integrating, we get
1

z(t) — F (v, z(v)) — L G(r,0)v(o)do

<

€
2 7
where v is the solution of the functional integral equation

1 T

G(r, o)v(o)do, 125;¢v(t),J k(t, o) *~%% v(0)do).

v(t) =0(r, F (v,z(r)) —i—J
0

0

For each v € I, we have
1
lz(v) —y(v)| = |z(v) = F (t,y(x) — J G(t,0)u(o)do]

< |z(v) = F (v, z(x) +J G(r, 0)v(0)do]

1 1
+ ‘F(t,Z(t) + L G(v,0)v(o)ds — F (v, y(v) — L G(x, O')u(O')dO‘|

1

<Z+V®JM%4R&M”+LGm®M®_M®MG
1

< %+c z(t) —y(t)I—FJ G(v,0)lv(0o) —u(o)ldo
0

< %—i—c lz—yll + Gol[u—v]| .

In fact, the proof of Theorem 2.5 provides us with

fu—v] < Ll lz—yl
ST GD—60)F | K(bD)—0)z = I#7 I
— I~ Fats + TG« )
Then, for each v € 1,
€ Go [l
lz—yll < 5 +clz—y|+ = ——llz—yll.
G- 0)2F |, K(&—b0)==
2 1= I~ F5s + =) )
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Thus

e Go [ -

lz—yl| < 5 {1—(c+ - —) =0e¢,
(p(1)—¢(0))> 8 K (¢(1)—¢(0))>=
2 R G v emecy + e )
Go ||| B
Leto= |[1—(c + T T o (¢(1)7¢(0]]2,“)) . So, the ISDP (1.1)-(1.3) is Ulam-Hyers stable.
G5—p) Gy

O
It is revealed that the ISDP (1.1)-(1.3) is generalized Ulam-Hyers stable by setting
De)=0¢, OO)=0.
3.1. Ulam-Hyers-Rassias stability.
Now, we state the following Ulam-Hyers-Rassias stable result under the following assumption.

(Hs) The function ® € C(I, R, ) is increasing and there exists Ap > 0 such that, for each t € I, we have

2 O(tr) < Ao O().

Theorem 3.6. Assume that assumptions (H1)-(Ha) and are satisfied. Then ISDP (1.1)-(1.3) is Ulam-Hyers-Rassias
stable with respect to ©.

Proof. Let z € C(I,R) be a solution of the inequation (3.3), i.e.,

T
() —f(t,z(t),c DB;¢Z(t),J k(t, O')CD(X;(bZ(O')dO')‘ <e, tel,
0

d2
\@Z

and take y as a solution of the problem (1.1)-(1.3). Consequently, we get

1

yle) = F (5, y(0)) +J0 G(r, o)u(o)do,

where u € C(II, R) such that

u(r) = 0(r, x(v), 12[5;"’11(t),Jt k(r,0) I*~ %% u(0)do).
0

Using 12 on both sides of the inequality (3.3) and integrating after that, we obtain

1

z(t) — F(t,z(v)) — JO G(t,0)v(o)do

<

4

N[ m

where v € C(II, R) with
v(t) = G(t,y(t),12ﬁ"¢v(t),J k(tr, o) *~%% v(0)do).
For each t € I, we obtain

1
z(v) —y(e)l = |z(v) = F (v, y(x) + L G(r,0)u(o)do]

1

< |2(0) = F (5, 2()) +J0 G(x, 0)v(0)do|
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1 1

G(v,0)v(o)ds — F (v,y(r)) — J Glr, G)u(c)dcr‘

+ !F(t,z(t)) JrJ
0

0
1

€
S5t |F(r,z(x) = F (t,y(v))] +J G(r,0)lv(o) —u(o)ldo
0
1
€
Syt |z(v)) —y(t)l+J G(r,0)lv(o) —u(o)ldo
0
€
< 5 +cllz—y||+ Gollv—].
Indeed, from proof of Theorem 2.5, we have
[l
[u—v]| < = ——llz—yll-
(d(D)—(0))2F K (¢(1)—¢(0))2~=
1- HIPH( r3—p) + I'3—o) )
Then, for each v € 1,
€ Go [[W]]
lz—yll <35 +elz—yl+ - —llz—yll.
(p(1)—¢(0))> B K (¢(1)—¢(0))>—«
2 1= I~ + =) )
Thus
Go [l
o=yl < 1= (e | Y] €20 01 = coc 011,
(d(D—¢(0))2F K (¢(1)—¢(0))2—=
1- H‘b”( réG—p) + IN3—«) )
here G ]
C@—|:1—<C+ c;, - >:| Ae-
(p(1)—¢(0))>—F K (¢(1)—¢(0))>=
1= Wl (525 + NE=) )
So, the ISDP (1.1)-(1.3) is Ulam-Hyers-Rassias stable with respect to ©. O

4. Discussion and examples

As special examples of our main result, we present certain existence results for some boundary value
problems in this section.

e Setting Yi(0) = d),(c)(?((;l;)d)(c))A, Ys(o) = d)/(c)(?((;lid)(c))A, then using Riemann-Stieltjes integrals,

we construct implicit ¢p-Caputo fractional differential equation with nonlocal boundary conditions:
d2 T

@y(t) =0(ry(x)° DB;‘by(t),JO k(tr,0)°D%%y(0)do), te€ (0,1).

Given the boundary conditions

1 1

o1(0,y(0))dT1(0), y'(1) =L 02(0,y(0)) d¥2(0).

y(0) :J

0
Many studies, for example [31], have investigated into this form of such boundary conditions.

i Letting Y — 1, d)(t) =t e(t/y(t)/u(t)rv(t)) = -0 m(t)e(y(t))/ Fl(G/U(U)) = FZ(O-IU(O-)) = U(U)/ we
get a nonlocal value problem including integral condition

1

1
;;y(t) +0om(r)0(y(r)) =0, ve(0,1), y(0)= Jo y(o)do and y'(1) = Jo y(o)do,

which this kind of problem is investigated in [15]. Furthermore, some examples are provided to support
the main findings.
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Example 4.1. Consider the following ISDP:

dZ y( ) et ( |y(t)| |CD4 ;In(14v) y(t)| B ‘J‘é 11’1(t+ G)CD%;1“(1+t)y(t)dG| ) (4 1)
dr? e +8\1+y(¥) 14 DINy()| 14| [Min(r+ 0)eD I +y(r)do] ) '
1 1 1 siny(0)
y(0) = @ L (In(2) —In(1 + 0)) 2001+ o] 4% (4.2)
, - 1 1 % e y(o)

Set

e(tlulvlw) =

e’ ( u@l e ()l )
et +8\1+u(r)) 1+pME)] 1+w)/)

Obviously, the function 6 is mutually continuous. Currently, for any u;.vi, wi, up, vo,wo € Rand ¢ € [0,1],

—T
10(t, ug, vi, wi) — 0(t, U, vo, Wo)| <

U3 — U] + vy — vol + Wy —w
et+8(| 1—up| + v — Vo + Wy — wy)

< §(|u1 — Wl + [v1 — Vol + Wy —wol).

Hence the condition (H;) holds with || U] = %. On the other hand, we have

1 1 1|sinx(0) —siny(o)]

I 6%(6) = F (5, ()] < 777 | (In(2) —In1-+ o) 5 0SS dg
1 1 : |e—><(cr)_e—y(0)\

1772453 L (In2) =In(1+0)) T

Also, we meet Lemma 2.3, then [ is lipschitz with constant ¢ = 0.031348808.
We shall check condition 2.7.

Go [l
c+ ~ 0.4297118717 < 1.
¢(0))276 K (¢(1)—¢(0))>—=
1— ]| (-2 ey + G )

Indeed & = %, B = 4, c =0.03134, ||| = % =1In(2) and Gp < 3. Theorem 2.5 guarantees a unique mild
solution on I for ISDP (4.1)-(4.3).

Example 4.2. Consider the following ISDP:

a2 2+ Iy (1) + DIy (v)| + | [y e~ *D3*y(o)do]
o) = 2t ylell+1Jo e “Dy| , e, @)
dv 2e 1 (14 [y(v)[+ D3 y ()| + [, e*—° ¢D2*y(o)dol)
(0) = 1f (1—0)? Y do (4.5)
YT 20e— o 2(1+y) '
1 1 1 COsy
‘(1 :J 1—0)2 ——2 _ do. 46

Set

2+ u| + [v] + W]

O(t,u,v,w
( )= 2t (1 + ul + vl + Iwl)
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The function 6 is clearly jointly continuous, for any u;.v{, wi, up.vo,wp € Rand v € [0,1],

— (Jug —ua| + v — Vol + Iwy —wy).

|e(tlullvllwl) _e(tluZIVZIWZN < Je

Therefore, condition (Hj) is hold with P (t) = et . Moreover, we have

00t 1, v, W)l = 5 (24 [l + vl + wi),
where 0(t,0,0,0) = t+1/ and [[P|| = 55. Setting f 1(¢,x(v)) = S(ery and £t x(v)) = m,

cos x(t) cosy(t) ‘ < 1

Fa(ex(6)) = F1(e y(0)] < [ 352 55 = 580 < 5 Ix(e) — (o),

30

and

x(t) y(r) 1 Ix(t) —y(r)l.

20e—t+2(14+x) 20e—t+2(1+y) ‘\ 20e

IFa(e,x(v) = Falt,y(e) < |

Hence, the condition (H;) is satisfied with k| = 0 and k, = é s0e- From (2.1) clearly for o = %, then Gy < 1.
Thus condition

k k Go
1k | Go [l

~ 0.4103216862 < 1,
Fy+1)  1—m <

where M = /52l 4+ LK — 02568803025 is satisfied with « = 3, B = 3,0 = 1, [0 = £ ki = &,

ko = ﬁ, and K = e. It follows that from Theorem 2.4, the ISDP (4.4)-(4.6) has at least one mild solution
on L.

5. Conclusion

Our purpose in this paper is to study the existence and uniqueness of mild solutions for boundary
value problems of implicit second-order differential equation (1.1)-(1.3) based on Krasnoselskii’s fixed
point theorem and Banach contraction principle. In addition, stability analysis in the Ulam-Hyers sense
of a given implicit differential equation of ¢-fractional order, supplemented with fractional integral type
boundary conditions was considered. Finally, we end the article with illustrations were provided to
confirm the results applicability.
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