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Abstract

This work presents an approximate solution method for the linear time-varying multi-delay sys-
tems and time delay logistic equation using variational iteration method. The method is based on
the use of Lagrange multiplier for identification of optimal value of a parameter in a functional. This
procedure is a powerful tool for solving large amount of problems. Also, it provides a sequence which
converges to the solution of the problem without discretization of the variables. In this study, an idea
is proposed that accelerates the convergence of the sequence which results from the variational iter-
ation formula for solving systems of delay differential equations. Illustrative examples are included
to demonstrate the validity and applicability of the technique. c©2016 All rights reserved.

Keywords: Delay system, time varying, logistic equation, variational iteration method.
2010 MSC: 93C05, 30C70.

1. Introduction

Analysis, identification and optimal control of systems with time-delay has been a considerable
concern. Time delay systems arise from an inherent time delay in the components of the system or
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a deliberate introduction of time delay into the system for control purposes. Delays occur frequently
in biological, chemical, transportation, electronic, communication, manufacturing, traffic models,
epidemiology, neuroscience, power systems, and control systems. Therefore, time-delay and multi-
delay systems are very important classes of systems whose control and optimization have been of
interest to many investigators [14].

Many different methods have recently been introduced to solve time-delay systems, for example,
orthogonal functions have received considerable attention in dealing with various problems of dynamic
systems. Much progress has been made towards the solution of delay systems by using orthogonal
functions. The approach is to convert the delay-differential equation to an algebraic through the
use of operational matrices of integration and delay. In general, the computation of the delay
systems via orthogonal functions is not in good agreement with the exact response of the system
[19]. Special attention has been given to such applications as Walsh functions [3], hybrid functions
[4] and Triangular functions [11]. Special attention has been given to applications of wavelets [6],
Adomian decomposition method (ADM) [2], homotopy perturbation method (HPM) [15], recurrent
neural networks (RNN) [33] and others.

For these situations, variational iteration method (VIM), will be more effective. The VIM is
strongly and simply capable of solving a large class of linear or nonlinear delay differential equations
without the tangible restriction of sensitivity to the degree of the nonlinear term and it reduces the
size of calculations as well. Its interactions are direct and straightforward.

On the other hand, in the context of numerical analysis, the VIM, which was proposed originally
by He [8–10], has been proved by many authors to be a powerful mathematical tool for various
kinds of linear and nonlinear ODEs or PDEs. In particular, He [11] demonstrated an application of
VIM to a first order delay differential equation (DDE) modeling a population growth model. Other
researches have also demonstrated the power of this method. There are some papers in the class of
DDEs [1, 5, 7, 20, 22, 25]. Unlike the traditional numerical methods, VIM needs no discretization,
linearization, transformation, or perturbation. The VIM has been applied in a wide range of problems
successfully, such as partial differential equations [22], fractional differential equations [23], integro-
differential equations [31] and nonlinear problems [26, 28]. The main aim in this study is to effectively
employ VIM to establish exact solutions and numerical results of linear and non-linear time-varying
multi-delay systems and study the convergence of the method. To do so, we assume the delay term
as restricted variations in VIM. This assumption is made in an effort to make it easier to find the
Lagrange multipliers necessary for identifying the correction functional; imposing this assumption has
noticeable effects on the ease with which VIM can be used for solving such equations. Furthermore,
in this paper, we provide a derivation for an iteration form from a logistic nonlinear time-delay
differential equation [29] model in which the rate of change of the population depends on three
components: growth, death, and intra specific competition with the delay in the growth component.
In our formulation, we incorporate the delay in the growth term in a manner consistent with the rate
of instantaneous decline in the population given by the model. Some illustrative examples are given
to demonstrate the accuracy and efficiency of the proposed method.

The paper is organized as follows. Section 2 is devoted to the formulation of linear time-varying
multi-delay systems. A brief description of the VIM is given in Section 3. The sufficient conditions are
presented to guarantee the convergence of VIM, in this section. We review the main results concerning
the dynamics of the classical logistic ODE and DDE equations and describe the VIM related model
is Section 4. In Section 5, the numerical examples are simulated to show the reasonableness of our
theory and demonstrate the performance of our network. Finally, we end this paper with conclusions
in Section 6.
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2. Problem statement

Consider the following linear time-varying multi-delay system:

ẋ(t) = E(t)x(t) +
r∑
j=1

Fj(t)x(t− τj) +G(t)u(t), t0 6 t 6 tf , (2.1)

x(t0) = x0, (2.2)

x(t) = φ(t), t0 − τj 6 t < t0, (2.3)

where x(t) ∈ Rn, u(t) ∈ Rm, and x0 is a constant specified vector at t0. Moreover, E(t), Fj(t), j =
1, ..., r andG(t) are matrices of appropriate dimensions, and φ(t) ∈ C([t0−τj, t0],Rn) is the continuous
initial state function. The problem is to find x(t), t0 6 t 6 tf , satisfying Eqs. (2.1)-(2.3).

Delay differential Eqs.(2.1)-(2.3) are often solved using numerical methods, asymptotic solutions
and graphical tools. In the next section we propose another analytic approximate method based on
VIM for this purpose.

3. Variational iteration method

In this method, the problems are initially approximated with possible unknowns. To illustrate
the basic concepts of the VIM we consider the following general equation with a multi-delay term:

L[x(t)] +N [x(t), x(t− τ1), . . . , x(t− τr)] = g(t), (3.1)

where L is linear operator and N is nonlinear operator, τj, j = 1, . . . , r is the delay term, and g(t)
is an nonhomogeneous term.

The general Lagrange multiplier method was proposed by Inokuti et al. [13]. He [10] modified
the general Lagrange multiplier method to an iteration method using a correction functional which
can be written as follows:

xn+1(t) = xn(t) +

∫ t

t0

Λ(s) [L[xn(s)] +N [x̃n(s), x̃n(s− τ1), . . . , x̃n(s− τr)]− g(s)] ds, (3.2)

where Λ is a general Lagrange multiplier, which can be identified optimally via variational theory,
the subscript n indexes the order of approximation and x̃n is considered as restricted variations [16],
that is, δx̃n(t) = 0, δx̃n(t− τj) = 0, j = 1, . . . , r.

With this assumption, the Lagrange multipliers can be easily and precisely obtained for linear
problems. However, for nonlinear problems, they are not easy to obtain. In VIM, nonlinear terms
x̃n are considered as restricted variations, a notion drawn from variational theory that allows the
Lagrange multiplier can be more readily determined.

Since this method avoids discretization [8] of the problem, it is possible to find a closed from
solution without any round-off error. The use of symbolic computation is necessary for finding the
iterations. Therefore, we can successively approximate or even reach the exact solution by using

x(t) = lim
n→∞

xn(t). (3.3)

In what follows, we apply VIM to some examples of linear and nonlinear multi-delay differential
equations to illustrate the strength of the method and to establish exact solutions for these problems.
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For solving problem (2.1) by means of the VIM, the matrix E = (eij) is decomposed into two
matrices D and B such that E = D +B, where D = diag(e11, e22, · · · , enn) and B = E −D. Let us
define the operators L and N as follows:

L[x(t)] = ẋ(t)−D(t)x(t), (3.4)

N [x̃(t), x̃(t− τ1), . . . , x̃(t− τr)] = −B(t)x̃(t)−
r∑
j=1

Fj(t)x̃(t− τj). (3.5)

Then we construct the following correction functional for x

xn+1(t) = xn(t) +

∫ t

t0

Λ(s)

[
ẋn(s)−D(s)xn(s)−B(s)x̃n(s)−

r∑
j=1

Fj(s)x̃n(s− τj)− g(s)

]
ds,

where g(s) = G(s)u(s), Λ = diag(λ1, λ2, · · · , λn), in which λi, i = 1, 2, · · · , n are the Lagrange
multipliers and x̃n denotes the restrictive variation, that is, δx̃n = 0. Note that although B(s)x̃n(s)
is not a nonlinear term, we consider it as a nonlinear term.

By taking variation respect to xn and considering the restricted variation, we have

δxn+1(t) = δxn(t) + Λ(s)δxn(s)|s=t −
∫ t

t0

(Λ̇(s) +D(s)Λ(s))δxn(s)ds = 0, (3.6)

the stationary conditions would be as follows

I + Λ(s)|s=t = 0,

Λ̇(s) +D(s)Λ(s) = 0.

Here, the prime stands for differentiation with respect to the s. The latter equations can be written
as follows:

1 + λi(s)|s=t = 0,

λ̇i(s) + eii(s)λi(s) = 0.

For a fixed i = 1, 2, · · · , n we consider two cases. It can be readily identified that

Λ(s) = −exp
{∫ t

t0

eii(ξ)dξ −
∫ s

t0

eii(ξ)dξ

}
= −exp

{∫ t

s

eii(ξ)dξ

}
. (3.7)

Hence we have

Λ(s) = diag

(
−exp

{∫ t

s

e11(ξ)dξ

}
, ...,−exp

{∫ t

s

enn(ξ)dξ

})
= −exp

{∫ t

s

diag(e11(ξ), ..., enn(ξ))dξ

}
= −exp

{∫ t

s

D(ξ)dξ

}
.

Then, the Lagrange multiplier can be obtain in the form

Λ(s) = −exp
{∫ t

s

D(ξ)dξ

}
, (3.8)
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substituting the identified Lagrange multiplier, we obtain the following variational iteration formu-
lation.

xn+1(t) = xn(t)−
∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}[
ẋn(s)− E(s)xn(s)−

r∑
j=1

Fj(s)xn(s− τj)− g(s)

]
ds (3.9)

with x0 and x(t) = φ(t) for t ∈ [t0 − τj, t0), j = 1, . . . , r.
Beginning with an initial approximation x0(t), we obtain the successive approximations, and the

exact solution can be obtained using

x(t) = lim
n→∞

xn(t).

Now, we show that the sequence {xn(t)}∞n=1 defined by VIM with x0(t) convergence to the solution
of (2.1). To do this it was stated in the following theorem.

The sufficient conditions are presented to guarantee the convergence of VIM when applied to solve
time-varying multi-delay, where the main point is that we prove the convergence of the recurrent
sequence, which is generated by using VIM.

Theorem 3.1. Suppose that E(t), Fj(t)(j = 1, . . . , r) and g(t) belong to C[t0, tf ], then sequence
{xn(t)} is convergent for t ∈ [t0, tf ].

Proof. Consider {xn(t)} as a sequence of (3.9), therefore, the exact solution x(t) of (3.9) verifies

x(t) = x(t)−
∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}[
ẋ(s)− E(s)x(s)−

r∑
j=1

Fj(s)x(s− τj)− g(s)

]
ds. (3.10)

Introduce the error function

en+1(t) = xn+1(t)− x(t). (3.11)

Hence from (3.9)-(3.11) it follows that

en+1(t) = en(t)−
∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}[
ėn(s)− E(s)en(s)−

r∑
j=1

Fj(s)en(s− τj)

]
ds,

and

en+1(t) =en(t)−
∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}
ėn(s)ds

+

∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}[
E(s)en(s) +

r∑
j=1

Fj(s)en(s− τj)

]
ds.

(3.12)

By using part integration and E = D +B, we get

en+1(t) =en(t)−
[
exp

{∫ t

s

D(ξ)dξ

}
en(s)|s=ts=t0

+

∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}
D(s)en(s)ds

]
+

∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}
[D(s) +B(s)] en(s)ds
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+

∫ t

t0

exp

{∫ t

s

D(ξ)dξ

} r∑
j=1

Fj(s)en(s− τj)ds.

Now, as the initialization of VIM is x0(t) = x(t0), thus xn(t0) = x(t0), that is, en(t0) = 0, therefore

en+1(t) =

∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}
B(s)en(s)ds

+

∫ t

t0

exp

{∫ t

s

D(ξ)dξ

} r∑
j=1

Fj(s)en(s− τj)ds,

and

‖en+1‖ ≤‖B‖‖
∫ t

t0

exp

{∫ t

s

D(ξ)dξ

}
‖‖en(s)‖ds

+

∫ t

t0

‖exp
{∫ t

s

D(ξ)dξ

}
‖

r∑
j=1

‖Fj‖‖en(s− τj)‖ds.
(3.13)

Let sup‖D‖ = L, for t0 ≤ s ≤ r ≤ tf , we have

‖exp
{∫ t

s

D(ξ)dξ

}
‖ 6 exp‖

{∫ t

s

D(ξ)dξ

}
‖

6 exp

{∫ t

s

‖D(ξ)‖dξ
}

6 exp

{∫ t

s

Ldξ

}
6 exp(tfL),

(3.14)

hence, from (3.13) and (3.14), we obtain

‖en+1(t)‖ 6M

∫ t

t0

‖en(s)‖ds,

where M = exp(tfL)(‖B‖+
∑r

j=1 ‖Fj‖). Therefore

‖e1(t)‖ 6M

∫ t

t0

‖e0(s)‖ds 6Mmax‖e0(s0)‖
∫ t

t0

ds 6Mmax‖e0(s0)‖(t− t0),

‖e2(t)‖ 6M

∫ t

t0

‖e1(s)‖ds 6M2max‖e0(s0)‖
∫ t

t0

(s− t0)ds 6M2max‖e0(s0)‖
(t− t0)2

2!
,

‖e3(t)‖ 6M

∫ t

t0

‖e2(s)‖ds 6M3max‖e0(s0)‖
∫ t

t0

(s− t0)2

2!
ds 6M3max‖e0(s0)‖

(t− t0)3

3!
.

From this development, it follows that

‖en(t)‖ 6 max‖e0(s0)‖
(M(t− t0))n

n!
6 max‖e0(s0)‖

(Mh)n

n!
, s0 ∈ [t0, tf ], (3.15)

where h = tf − t0. As limn→∞
hn

n!
= 0 with fixed h > 0, it follows that, as n→∞, ‖en(t)‖ → 0, that

is, the sequence {xn} convergence to the exact solution x(t). The proof is complete.
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4. Application of the VIM for nonlinear time-delay system

In this section, we shall introduce a new reliable way for choosing the initial approximations in
VIM to solve non-linear time-delay system in biology, which is reduced to a recurrent sequence.

The delay logistic equations have been extensively used as models in biology an other sciences,
with particular emphasis on population dynamics. The logistic equation of population growth was
proposed in the first half of the 19th century by the Belgian mathematician Pierre-Francois Verhulst
(1838) [29] as a potential solution to the dilemma of Malthusian exponential growth:

ẋ(t) = rx(t)

(
1− x(t)

k

)
, (4.1)

where r > 0 is the intrinsic growth rate and k > 0 is the carrying capacity of the population.
Logistic equation (4.1) only assumes that the growth rate of a population at any time t depends

on the relative number of individuals at that time. In practice, the process of reproduction is not
instantaneous. Hutchinson [12] assumed egg formation to occur τ units of time before hatching and
proposed the following delayed logistic equation

ẋ(t) = rx(t)

(
1− x(t− τ)

k

)
, (4.2)

subject to the initial condition:

x(t) = α, −τ 6 t 6 0, (4.3)

where r and k have the same biological meaning as (4.1) and τ > 0 is the time delay. Here Eqs.
(4.2)-(4.3) is a special case of Eqs. (2.1)-(2.3), such that u(t) = 0.

When τ = 0, the solution can be expressed in a closed form:

x(t) =
k

1 + ( k
α
− 1)exp(−rt)

,

which tends to k as t→ +∞, it holds x(t− τ) = α, and then the original becomes:

ẋ(t) = rx(t)
(

1− α

k

)
, x(0) = α,

which has the solution:

x(t) = αexp
[
−r
(α
k
− 1
)
t
]
,

with the property:

lim
t→+∞

x(t)→


0, when α > k > 0,

α, when α = k,

+∞, when 0 < α < k.

Using the properties of Eq. (4.2), the initial condition was proposed as follows [16]:

x(0)→

{
α, when −τ 6 t 6 0,

x∞ + (α− x∞)exp(−βt), when t 6 0.
(4.4)
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Delayed biological systems have received much attention from biologists and mathematicians. The
applications of delay equations to biomodeling in many cases is associated which studies of dynamic
phenomena like oscillations, bifurcation and chaotic behavior. Time delay represents an additional
level of complexity that can be incorporated in a more detailed analysis of particular system. Prop-
erties of Eq. (4.2) were studied very extensively by various authors [12, 16].

Now, according to the VIM (3.6), its correction functional of Eq. (4.2) can be written in the form

xn+1(t) = xn(t) +

∫ t

0

Λ(s)
[
ẋn(s)− rxn(s) +

r

k
x̃n(s)x̃n(s− τ)

]
ds. (4.5)

According to the Eq. (3.8), the Lagrange multiplier, therefore, can be obtained in the form

Λ(s) = −exp(r(t− s)), (4.6)

substituting the identified Lagrange multiplier into (4.5), we obtain the following variational iteration
formula

xn+1(t) = xn(t)−
∫ t

0

exp(r(t− s))
[
ẋn(s)− rxn(s) +

r

k
x̃n(s)x̃n(s− τ)

]
ds. (4.7)

Therefore, starting with x(0), the approximation solution is given as x(t) = limn→∞ xn(t). The
convergence of this system is similar to convergence of the VIM discussed in Section 3.

5. Illustrative examples

The following various examples are given to illustrate the simplicity and efficiency of the pro-
posed method. The codes are developed using symbolic computation software MATLAB and the
calculations are implemented on a machine with Intel core 2 Due processor 2.50 Ghz and 4 GB RAM.

Example 5.1. Consider the following multi-delay system:

ẋ(t) = tx(t− 0.4) + x(t− 0.8) + 1, 0 6 t 6 1, (5.1)

x(t) = 0, t 6 0. (5.2)

The exact solution of this example is [18]

x(t) =


t, 0 6 t < 0.4,
2
5

+ (t− 0.4) + 1
5
(t− 0.4)2 + 1

3
(t− 0.4)3, 0.4 6 t < 0.8,

64
75

+ 33
25

(t− 0.8) + 11
10

(t− 0.8)2 + 29
75

(t− 0.8)3 + 7
60

(t− 0.8)4 + 1
15

(t− 0.8)5, 0.8 6 t 6 1.

To solve Eq. (5.1) and (5.2) by means of VIM, we can obtain the Lagrange multiplier by using Eq.
(3.8), λ(s) = −1.

Now, the following variational iteration formula can be obtained

xn+1(t) = xn(t)−
∫ t

0

[ẋn(s)− sxn(s− 0.4)− xn(s− 0.8)− 1] ds. (5.3)
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We start with an initial approximation x0(t) = 0, and by using the above iteration formula (5.3), we
can obtain directly the components of the solution x(t). This in turn yields the components:

x1(t) =0−
∫ t

0

(−1)ds = t, 0 6 t < 0.4,

x1(t) =t−
∫ t

0.4

[1− s(s− 0.4)− 1] ds

=
2

5
+ (t− 0.4) +

1

5
(t− 0.4)2 +

1

3
(t− 0.4)3, 0.4 6 t < 0.8.

Similarly

x1(t) =
64

75
+

33

25
(t− 0.8) +

11

10
(t− 0.8)2 +

29

75
(t− 0.8)3 +

7

60
(t− 0.8)4

+
1

15
(t− 0.8)5, 0.8 6 t 6 1.

Consequently, the exact solution may be obtained by using one order iteration, that is, x(t) = x1(t).
Also, the exact solution for the delay system obtained by the presented method is compared with
other methods, since hybrid of block pulse functions and Taylor series (bnm(t), n = 1, · · · , N,m =
0, 1, · · · ,M − 1) [18], where n and m are the order of block pulse functions and Taylor polynomials,
respectively. Here the solution of this example is obtained with hybrid functions by choosing N = 3
and M = 6. It to be noted that exact solutions obtained in the example cannot be obtained either
with orthogonal functions (see, e.g., [3]). In general, the computation of the delay systems via
orthogonal functions is not in good agreement with the exact response of the system.

Example 5.2. Consider the following delay system with delay in both control and state:

ẋ(t) = −x(t)− 2x(t− 1

4
) + 2u(t− 1

4
), 0 6 t 6 1, (5.4)

x(t) = u(t) = 0, −1

4
6 t 6 0. (5.5)

u(t) = 1, t > 0. (5.6)

Although the above system has a delay in control, the method described here, can be used.
The exact solution is [4]

x(t) =



0, 0 6 t <
1

4
,

2− 2exp(1
4
− t), 1

4
6 t <

1

2
,

−2− 2exp(1
4
− t) + (2 + 4t)exp(1

2
− t), 1

2
6 t <

3

4
,

6− 2exp(1
4
− t) + (2 + 4t)exp(1

2
− t)− (17

4
+ 2t+ 4t2)exp(3

4
− t), 3

4
6 t 6 1.

The Lagrange multiplier can be readily identified as follows

λ(s) = −exp
{∫ t

0

(−1)dξ −
∫ s

0

(−1)dξ

}
= −exp(s− t).
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We obtain the iteration formula

xn+1(t) = xn(t)−
∫ t

1
4

exp(s− t)
[
ẋn(s) + xn(s) + 2xn(s− 1

4
)− 2u(s− 1

4
)

]
ds.

Starting with x0(t) = 0 and using the iteration formula, we find

x1(t) = 0, 0 6 t <
1

4
,

x1(t) = 0−
∫ t

1
4

exp(s− t)[−2]ds = 2− 2exp(
1

4
− t), 1

4
6 t <

1

2
,

x1(t) = 2− 2exp(
1

4
− t)−

∫ t

1
2

exp(s− t)
[
4− 4exp(

1

2
− s)

]
ds

= −2− 2exp(
1

4
− t) + (2 + 4t)exp(

1

2
− t), 1

2
6 t <

3

4
.

Similarly in
3

4
6 t 6 1, we obtained

x1(t) = 6− 2exp(
1

4
− t) + (2 + 4t)exp(

1

2
− t)− (

17

4
+ 2t+ 4t2)exp(

3

4
− t).

Therefore, the exact solution may be obtained by using x(t) = x1(t). In Table 1 a comparison is
made between the exact solution and the approximate solution of x(t) for one order iteration, that is,
n = 1. The approximate value of x(t) on [0, 1] is the same as the exact solution. The optimal state
x(t) is depicted in Fig. 1. The results obtained via Lagrange polynomials [4], Triangular function
[11] and adaptive Legendre-Gauss-Radau collocation method [17] are to that shown in Table 1. We
mention in [17], N is the number of subintervals of the adaptive collocation method. Here, the
solution of this example is obtained by choosing N = 7.

Table 1: Comparison of the VIM for Example 5.2, and estimated an exact value of x(t).

t LaP [4] TFs [11] LeGR [17] Present method Exact

0 0 0 0 0 0
0.125 0 0 0 0 0
0.25 0 0 0 0 0
0.375 0.2348581 0.2350106 0.2350061 0.2350061 0.2350061
0.5 0.4082723 0.4424063 0.4423984 0.4423984 0.4423984
0.625 0.5485504 0.5966848 0.5966575 0.5966575 0.5966575
0.75 0.6591615 0.6809826 0.6809425 0.6809425 0.6809425
0.875 0.7433335 0.7120013 0.7119399 0.7119399 0.7119399
1.0 0.8041378 0.7118111 0.7117428 0.7117428 0.7117428
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Figure 1: The state, when n = 1 for Example 5.2

Example 5.3. Consider the time-varying multi-delay system described by(
ẋ1(t)
ẋ2(t)

)
=

(
t 1
t 2t

)(
x1(t− 1

3
)

x2(t− 1
3
)

)
+

(
2 t
t2 0

)(
x1(t− 2

3
)

x2(t− 2
3
)

)
+

(
0
1

)
u(t), (5.7)

with

x1(t) = x2(t) = u(t) = 0, −2

3
6 t 6 0, (5.8)

and

u(t) = 2t+ 1, t > 0. (5.9)

The exact solutions are [4]

x1(t) =


0, 0 6 t < 1

3
,

7
162
− 2

9
t+ 1

6
t2 + 1

3
t3, 1

3
6 t < 2

3
,

11
162
− 58

243
t+ 31

162
t2 + 1

9
t3 + 7

72
t4 + 1

6
t5, 2

3
6 t 6 1

and

x2(t) =


t+ t2, 0 6 t < 1

3
,

5
486

+ t+ 7
9
t2 + 2

9
t3 + 1

2
t4, 1

3
6 t < 2

3
,

1
486

+ t+ 200
243
t2 + 20

81
t3 + 29

72
t4 + 1

9
t5 + 1

6
t6, 2

3
6 t 6 1.

The Lagrange multiplier can be readily identified λ(s) = (−1,−1). The corresponding variational
iteration formula reads

x1n+1(t) = x1n(t)−
∫ t

0

[
ẋ1n(s)− sx1n(s− 1

3
)− x2n(s− 1

3
)− 2x1n(s− 2

3
)− sx2n(s− 2

3
)

]
ds,

and

x2n+1(t) = x2n(t)−
∫ t

0

[
ẋ2n(s)− sx1n(s− 1

3
)− 2sx2n(s− 1

3
)− s2x1n(s− 2

3
)− u(s)

]
ds.
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Here, we apply the proposed method described in Section 3, for obtaining x1(t) and x2(t). By choosing
x0(t) = (0, 0), the above iteration formula yields exact solutions. That is, x(t) = (x1(t), x2(t))

T .
Consequently, the exact solution may be obtained by using one order iteration. The optimal states
x1(t) and x2(t) are depicted in Figs. 2 and 3. Also, the exact solution for the delay system obtained
by the presented method is compared with other methods since hybrid of block pulse functions and
Taylor series (bnm(t), n = 1, · · · , N,m = 0, 1, · · · ,M − 1) [18], where n and m are the order of block
pulse functions and Taylor polynomials, respectively. Here is the solution of this example obtained
with hybrid functions by choosing N = 3 and M = 7.
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Figure 2: The state x1(t), when n = 1 for Example 5.3
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Figure 3: The state x2(t), when n = 1 for Example 5.3

Example 5.4. Consider the delay system [30] described by(
ẋ1(t)
ẋ2(t)

)
=

(
t2 + 1 −t2

0 −9

)(
x1(t)
x2(t)

)
+

(
1 −1
9 0

)(
x1(t− 1

2
)

x2(t− 1
2
)

)
+

(
4t+ 3
8t+ 15

)
u(t), (5.10)
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with

x(t) =

(
t2 − 1
t2 + 1

)
, −1

2
6 t 6 0, (5.11)

and

u(t) = 1, t ≥ 0. (5.12)

According to the VIM, to solve this example, we can construct a correction functional as follows:

x1n+1(t) =x1n(t) +

∫ t

0

λ1(s)
[
ẋ1n(s)− (s2 + 1)x1n(s) + s2x2n(s)

−x1n(s− 1

2
) + x2n(s− 1

2
)− (4s+ 3)u(s)

]
]ds,

(5.13)

and

x2n+1(t) = x2n(t) +

∫ t

0

λ2(s)

[
ẋ2n(s) + 9x2n(s)− 9x1n(s− 1

2
)− (8s+ 15)u(s)

]
ds. (5.14)

Thus, using the stationary conditions lead to Lagrange multiplier λ1(s) = −exp(t− s) and λ2(s) =
−exp(9(s− t)). Substitution of this value of the Lagrange multiplier into the functional (5.13) yields
the iteration formula for n ≥ 0.

Selection of x10(t) = t2 − 1 and x20(t) = t2 + 1 from the given initial condition and using the
iteration formula (5.13) and (5.14) yields the successive approximations of x(t) = (x1(t), x2(t))

T

0 ≤ t <
1

2
:

x11(t) = t2 − 1−
∫ t

0

exp(t− s)
[
−2s+ s4

]
ds

= 21 + 22t+ 13t2 + 4t3 + t4 − 22exp(t)

and

x21(t) = t2 + 1−
∫ t

0

exp(9(s− t))
[
−1941

16
− 219

2
s− 135

2
s2 − 18s3 − 9s4 + 198exp(s− 1

2
)

]
ds

=
465383

34992
+

5167

486
t+

427

54
t2 +

14

9
t3 + t4 +

99

5
exp(−9t− 1

2
)

− 99

5
exp(t− 1

2
)− 430391

34992
exp(−9t).

1

2
≤ t ≤ 1 :

x12(t) =
40283583

34992
+

20256383

17946
t+

20458343

34992
t2 +

92791

486
t3 +

2467

54
t4

+
68

9
t5 + t6 +

99

50
exp(−9t+ 4) +

99

50
(t2 +

1

5
t+

1

50
)exp(−9t− 1

2
)

+
99

5
texp(t− 1) +

33

5
t3exp(t− 1

2
)− 430391

34992
exp(−9t+

9

2
)− 22exp(t)
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+
430391

349920
(t2 +

1

5
t+

1

50
)exp(−9t)− 79611513

43740
exp(t− 1

2
)

− 297

25
exp(t− 1)− 3663

5000
exp(t− 11

2
) +

15924467

34992000
exp(t− 5),

and

x22(t) =
465511

34992
− 5159

486
t+

431

54
t2 +

14

9
t3 + t4 − 99

5
exp(t− 1

2
)

− 430391

34992
exp(−9t) + (

539

5
− 176t)exp(−9t− 1

2
)− 61

4374
exp(

9

2
− 9t).

It can be checked that the VIM (one order iteration) solutions are equal to the exact solutions.

Example 5.5. In this example we consider the following non-linear delay differential equation which
is a well-known equation from biology.

ẋ(t) = 4x(t) (1− 3x(t− 0.1)) ,

x(0) =
1

2
+

1

2
e−2t, t ≥ 0,

x(t) = 1, −0.3 6 t < 0.

According to Eq. (4.5), we obtain the iteration formula

xn+1(t) = xn(t)−
∫ t

0

exp(4(t− s)) [ẋn(s)− 4xn(s) + 12xn(s)xn(s− 0.3)] ds.

Starting with x0(t) and using the iteration formula, we find x1, x2 and x3.

Table 2: The numerical results for example 5.5 using the VIM.

t VIM VIM dde
x(iteration 2) x(iteration 3) x

0 1 1 1
0.5 0.58965802 0.60735112 0.60735110
1 0.17082620 0.19054234 0.19054339
1.5 0.19839652 0.19901523 0.19901825
2 0.22546785 0.22681425 0.22680423
2.5 0.23685240 0.23615016 0.23615016
3 0.25386117 0.25360017 0.25360017
3.5 0.25609911 0.25600903 0.25600903
4 0.25746020 0.25700010 0.25700010
4.5 0.25753215 0.25700032 0.25700032
5 0.25763145 0.25700046 0.25700046

In Table 2 a comparison is made between the numerical results obtained by Matlab toolbox for
solving DDE [27] which used the Runge-Kutta triple BS (2,3) method and the approximate solution
of x(t) for n = 2 (iteration 2) and n = 3 (iteration 3). The approximate value of x(t) on [2,∞) is
the same as the numerical results.
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6. Conclusions

This article deals with VIM for solving a linear and nonlinear time-varying multi-delay systems
and nonlinear delay differential equation namely delay logistic equation. We described the method
and used it in some test examples in order to show its applicability and validity in comparison with
other methods and exact solutions. We achieved satisfactory approximations with a few number of
iterations, which reveals the efficiency of the method. Moreover, since this method do not need the
discretization of the variables, there is no computation round off errors and one is not faced with
necessity of large computer memory and time.
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