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Abstract

In this paper, we use the classical Lie group method, to investigate the symmetries of the heat transfer flow of a third-grade
fluid. This approach allows one to reduce the coupled partial differential equations governing the problem, to a system of
nonlinear ordinary differential equations. Point symmetries of such systems are used to construct some classes of solutions. By
using travelling wave solutions, we studied the influence of third-grade fluid parameters on the flow.
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1. Introduction

Non-Newtonian fluid flows have been the subject of many investigations, whether theoretical or ex-
perimental, because they are present in nature and different industrial activities alike, such as cosmetic
industries, bioengineering and nuclear industries etc. Several models have been developed to investigate
the complex behaviour of this class of fluids. Among these models are the well-known differential type
fluids [19], which were first proposed by Rivlin and Ericksen in 1955. In particular, the subclass of flu-
ids of the third-grade model is adequate for describing both the effect of shear thinning and thickening
phenomena. Due to its importance in engineering applications and physical sciences, several authors
have been interested in the study of third-grade fluid flows in various configurations and subject to di-
verse physical hypotheses. In what follows, we will give a brief overview of some of the previous works
concerning this topic concerning both numerical and analytical approaches.

Szeri and Rajagopal [22] was the first to study the flow of a third-grade fluid between heated parallel
plates by considering thermal effects. They particularly studied the case of constant heat flux at the
walls, and through a similarity transformation and with a purely numerical approach, they calculated the
Nusselt number as a function of the three physical parameters mentioned in their model.
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Akyildiz [6] resumed the same problem addressed by the previous authors. He found a similar
solution in good agreement with the numerical solution obtained by Szeri and Rajagopal. Siddiqui et al.
[20] developed approximate analytical solutions for the fluid velocity and the temperature distribution
by using the homotopy perturbation method. The effect of the third-grade fluid parameters on this heat
transfer flow has been reported. The heat transfer flow of a third-grade fluid with the porous medium
through parallel plates considering Vogel’s temperature dependent model based viscosity was reported
in the study by Akinshilo [5]. He developed an analytical solution through the Adomian decomposition
method, which allowed him to examine the effects of thermal fluidic parameters such as the pressure
gradient, the heat generation parameter and the porosity term on the flow and the heat transfer.

The heat transfer flow of a third-grade fluid past an infinite porous plate embedded in a porous
medium is investigated by Khani et al. [15]. These authors employed an analytical approach to solve,
momentum and energy equations. From there, they studied the influence of thermophysical and hy-
dromechanical parameters on velocity and heat transfer. Akgul and Pakdemirli [3] have considered the
electro-osmotic flow of a third-grade fluid between micro-parallel plates. Approximate analytical solu-
tions are obtained by perturbation techniques. Effects of physical parameters, such as electro-kinetic
parameter, Joule heating parameter and viscosity index on the velocity and temperature profiles are de-
picted. Hayat et al. [14] have examined the problem of the rotating flow and heat transfer analysis of a
third-grade fluid between two stationary porous plates. They have found an analytical solution for ve-
locity and temperature. The significant contributions of the parameters of the model to the heat transfer
flow have been pointed out.

Hayat et al. [13] considered the peristaltic flow of third-grade fluid in a curved channel with heat
and mass transfer. An analytical solution has been found under the assumption of a small Deborah
number. This study allowed them to describe the behaviour of the various parameters on the velocity
field, temperature distribution, concentration and heat transfer coefficient. Adesanya and Falade [2] have
analyzed the flow and heat transfer of hydromagnetic third-grade fluid between horizontal parallel plates
saturated with porous materials. The governing equations of momentum and energy balance have been
treated analytically using the regular perturbation method. The effect of various physical parameters
on velocity and temperature profiles is investigated. Makinde and Chinyoka [16] examined the effects
of a transverse magnetic field and variable viscosity on the unsteady heat transfer flow of a reactive
third-grade electrically conductive fluid placed between two parallel plates.

In the present work, analysis has been carried out to study the heat flow of a third-grade fluid between
two parallel plates using an analytical method. In this kind of problem, two analytical approaches are
often used, namely those that can be assimilated to a perturbation method, or those derived from Lie
group methods. For our part, we have applied the latter procedure to approach the problem. Indeed,
in the last decade, much interest has been devoted to the application of Lie transformation group theory
to study various non-Newtonian fluid flows. A non-exhaustive list dealing with this type of problem
can be found in references [8–23]. Lie group analysis also called the Lie symmetry method is based
on symmetry and invariance principles. The method consists in finding transformations which leave a
given problem invariant. By applying this theory, we came to a set of determining equations whose
resolution leads to the determination of the symmetry groups often generated by translations, scaling,
Galilean transformations, etc. Once these groups are defined, we have reduced the given system to a
lower system involving fewer dependent or independent variables, and further find a general solution
in quadrature. Furthermore, in some cases, by combining groups of translations in space and time, we
looked for so-called travelling wave solutions. This theory has received particular attention from authors
such as Ovsiannikov [18], Bluman [10], Olver [17], and Stephani [21] who have contributed to building
the foundation as well by applying this theory in various fields, from mathematics to biology.

The objective of this work is to study the heat transfer of a third-grade fluid between two parallel
plates by the Lie group analysis. Exact solutions are investigated using symmetry reductions; the case of
a travelling wave solution is also obtained. Finally, based on the Newton-Raphson technique, a numerical
resolution of these reduced equations has been carried out. The velocity profiles and temperature dis-
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tribution are given and the influence of some physical parameters on these flows has been studied and
shown graphically.

This paper is organized as follows. Section 2 contains the basic equations for heat transfer in the flow
of a third-grade fluid. Section 3 deals with the unsteady flow of a third-grade fluid over the heated parallel
plate. We reformulated the problem as a system of partial differential equations of order three. Next, in
Section 4, we determined the symmetry groups that leave the system invariant giving rise to the so-called
similarity solutions. In Section 5, the numerical solution and the influence of physical parameters are
given for the case of travelling wave solutions. In the last Section 6, we gave some conclusions about the
Lie symmetry group method.

2. Governing equations

Assuming incompressible laminar flow, the equations of motion are the continuity, the conservation
of momentum, and energy equations:

div(u) = 0, (2.1)

ρ
Du
Dt

= ρf + div(σ), (2.2)

ρcp
Dθ

Dt
= k∆θ+σ : L, (2.3)

where u is the velocity vector, f is the body force per unit mass, σ is the Cauchy stress tensor, θ is the
temperature, ρ is the density of the fluid, k is the thermal conductivity, cp is the specific heat at constant
pressure, L is the gradient of u, σ : L is the double dot product of σ by L, and D

Dt denotes the material
derivative.

The Cauchy stress tensor σ for in incompressible homogeneous third-grade fluid is given by:

σ = −pI + µA1 +α1A2 +α2A2
1 +β1A3 +β2(A1A2 + A2A1) +β3(trA2)A1, (2.4)

where p is the scalar pressure, µ is the coefficient of viscosity, tr denotes the trace of a second-order
tensor, α1, α2 are the normal stress moduli, β1, β2, β3 are the material constants, A1, A2, A3 are the three
Rivlin-Ericksen tensors [19] defined by

A1 = LT + L, An =
DAn−1

Dt
+ An−1L + LTAn−1, n = 2, 3,

where LT is the transpose of L. Furthermore, a complete thermodynamic analysis of the third-grade
fluid was developed by Fosdick and Rajagopal [12]. These authors performed that equation (2.4) to be
compatible with thermodynamics, then the following restrictions must hold:

µ > 0, α1 > 0, |α1 +α2| 6
√

24µβ3, β1 = β2 = 0, β3 > 0.

Thus equation (2.4) takes the simplified form:

σ = −pI + (µ+β3 (trA2))A1 +α1A2 +α2A2
1.

3. Formulation of the problem

Consider the unsteady and laminar flow of a third-grade fluid between two infinite horizontal parallel
plates located at y = ±a planes (see Figure 1). The plates are stationary and the flow is driven by a
constant non zero pressure gradient in the streamwise direction. Assuming that the plates are kept at two
constant temperatures θ1 and θ2, θ2 > θ1.
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Figure 1: Configuration of the problem.

We shall seek the velocity and temperature as:

u = (v (y, t) , 0, 0) , θ = θ(y, t).

This ensures that the equation of continuity (2.1) is identically satisfied. In the absence of body forces, the
momentum and the energy equations (2.2) and (2.3) take the form

ρ
∂v

∂t
= −

∂p

∂x
+ µ

∂2v

∂y2 + 6β3

(
∂v

∂y

)2
∂2v

∂y2 +α1
∂3v

∂t∂y2 , −
∂p

∂y
+ (4α1 + 2α2)

∂v

∂y

∂2v

∂y2 = 0, (3.1)

−
∂p

∂z
= 0,

ρcp
∂θ

∂t
= k

∂2θ

∂y2 + µ

(
∂v

∂y

)2

+ 2β3

(
∂v

∂y

)4

+α1
∂v

∂y

∂2v

∂t∂y
. (3.2)

From (3.1) we can write

ρ
∂v

∂t
= −

∂p̄1

∂x
+ µ

∂2v

∂y2 + 6β3

(
∂v

∂y

)2
∂2v

∂y2 +α1
∂3v

∂t∂y2 , (3.3)

−
∂p̄1

∂y
= 0, (3.4)

where

p̄1 = p− (2α1 +α2)

(
∂v

∂y

)2

.

Eliminating the pressure gradient between equations (3.3) and (3.4) finally yields

ρ
∂v

∂t
= µ

∂2v

∂y2 + 6β3

(
∂v

∂y

)2
∂2v

∂y2 +α1
∂3v

∂t∂y2 . (3.5)

Let us introduce the following variables:

α∗ =
α1

ρ
, β∗ =

6β3

ρ
, µ∗ =

µ

ρ
, α̃ =

α1

ρcp
, β̃ =

2β3

ρcp
, k̃ =

k

ρcp
,µ̃ =

µ

ρcp
.

Then equation (3.5) becomes:

∂v

∂t
= µ∗

∂2v

∂y2 +β∗
(
∂v

∂y

)2
∂2v

∂y2 +α∗
∂3v

∂t∂y2 , (3.6)

and equation (3.2) reduces to:

∂θ

∂t
= k̃

∂2θ

∂y2 + µ̃

(
∂v

∂y

)2

+ β̃

(
∂v

∂y

)4

+ α̃

(
∂v

∂y

)(
∂2v

∂t∂y

)
. (3.7)
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4. Lie group analysis of equations (3.6) and (3.7)

4.1. Lie algebra and symmetry groups
In this section, we performed a Lie group analysis for equations (3.6)-(3.7) and we obtained its in-

finitesimal generator and commutation table of Lie algebra.
First of all, let us consider a one parameter Lie group infinitesimal transformation:

ȳ = y+ εξ(y, t, v, θ) +O(ε2), t̄ = t+ ετ(y, t, v, θ) +O(ε2),

v̄ = v+ εφ(y, t, v, θ) +O(ε2), θ̄ = θ+ εγ(y, t, v, θ) +O(ε2),

where ε is a small parameter. The infinitesimal vector associated with the above group of transformations
can be written as

V = ξ(y, t, v, θ)
∂

∂y
+ τ(y, t, v, θ)

∂

∂t
+φ(y, t, v, θ)

∂

∂v
+ γ(y, t, v, θ)

∂

∂θ
, (4.1)

where ξ(y, t, v, θ), τ(y, t, v, θ), φ(y, t, v, θ), and γ(y, t, v, θ) are coefficient functions of the infinitesimal
generator to be determined.

The equations (3.6)-(3.7) can be written in an equivalent form:

∆1 =
∂v

∂t
− µ∗

∂2v

∂y2 −β∗
(
∂v

∂y

)2
∂2v

∂y2 −α∗
∂3v

∂t∂y2 = 0,

∆2 =
∂θ

∂t
− k̃

∂2θ

∂y2 − µ̃

(
∂v

∂y

)2

− β̃

(
∂v

∂y

)4

− α̃

(
∂v

∂y

)(
∂2v

∂t∂y

)
= 0.

The vector field (4.1) generates a one-parameter symmetry group of the equations (3.6)-(3.7), if and only
if the invariance conditions holds,

Pr(3)V (∆i) |∆i=0 = 0; for i = 1, 2,

where Pr(3)V is the third order prolonged infinitesimal generator V given by the formula:

Pr(3) (V) = V + σy1
∂

∂vy
+ σt1

∂

∂vt
+ σy2

∂

∂θy
+ σt2

∂

∂θt
+ σyy1

∂

∂vyy
+ σyy2

∂

∂θyy
+ σty1

∂

∂vty
+ σtyy1

∂

∂vtyy
,

The coefficient functions of the extended infinitesimals σij, i = y, t; j = 1, 2, are explicitly given by

σ
y
1 = Dy (φ) − vyDy (ξ) − vtDy (τ) , σt1 = Dt (φ) − vyDt (ξ) − vtDt (τ) ,

σ
y
2 = Dy (γ) − θyDy (ξ) − θtDy (τ) , σt1 = Dt (γ) − θyDt (ξ) − θtDt (τ) ,

σ
yy
1 = Dy

(
σ
y
1

)
− vyyDy (ξ) − vytDy (τ) , σ

yy
2 = Dy

(
σ
y
2

)
− θyyDy (ξ) − θytDy (τ) ,

σ
ty
1 = Dt

(
σ
y
1

)
− vtyDt (ξ) − vttDt (τ) , σ

tyy
2 = Dt

(
σ
yy
1

)
− vtyyDt (ξ) − vttDt (τ) .

The total derivatives Dt and Dy operators are defined as

Dt =
∂

∂t
+ vt

∂

∂v
+ vtt

∂

∂vt
+ θt

∂

∂θ
+ θtt

∂

∂θt
+ vty

∂

∂vy
+ θty

∂

∂θy
+ · · · ,

Dy =
∂

∂y
+ vy

∂

∂v
+ vyy

∂

∂vy
+ θy

∂

∂θ
+ θyy

∂

∂θy
+ vty

∂

∂vt
+ θty

∂

∂θt
+ · · · .

The invariance condition yields the following equations:

σt1 −
(
µ∗ +β∗(vy)

2)σyy1 − 2β∗vyvyyσ
y
1 −α∗σtyy1 = 0,

σt2 −
(
α̃vty + 4β̃(vy)3 + 2µ̃vy

)
σ
y
1 − α̃vyσ

ty
1 − k̃σyy2 = 0.

(4.2)
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After the substitution of σij, i = y, t; j = 1, 2, in (4.2), and with the help of a symbolic software, we get
the following determining equations

ξy = ξt = ξv = ξθ = 0, τy = τt = τv = τθ = 0,
φy = φt = φv = φθ = 0, γyy − 1

k̃
γt = 0,

γv = γθ = 0.
(4.3)

By solving above equations (4.3), we find

ξ = C1, τ = C2, φ = C3, γ = α (y, t)C4,

where C1, C2, C3 and C4 are arbitrary constants and α (y, t) is an arbitrary solution satisfying the following
equation:

∂2α (y, t)
∂y2 −

1
k̃

∂α (y, t)
∂t

= 0. (4.4)

Hence the Lie algebra of infinitesimal symmetries of equations (3.6)-(3.7) is spanned by the following
vector generators:

V1 =
∂

∂y
, V2 =

∂

∂t
, V3 =

∂

∂v
, V4 = α (y, t)

∂

∂θ
.

Then all of the infinitesimal generators of equations (3.6)-(3.7) can be expressed as follows

V = C1V1 +C2V2 +C3V3 +C4V4,

with C1, C2, C3, C4 being arbitrary constants.
It is easy to verify that L = {V1, V1, V3} is closed under the Lie bracket operation. We observed that

the three dimensional Lie algebra L is Abelian. Furthermore, we can compute the adjoint representations
of the vector fields. We have Ad(exp(εVi))Vi = Vi , for i = 1, 2, 3.

Based on these representations of the vector fields, we obtained the optimal system of order one, two
and three as Table 1.

Table 1: Optimal system of dimensions 1, 2, and 3.
Dimension Subalgebra

1
V1 + aV2 + bV3, a, b ∈ R

V2 + aV3, a ∈ R

V3

2
〈V1 + bV3, V2 + bV3〉, a, b ∈ R

〈V1 + aV2, V3〉, a ∈ R

〈V2, V3〉,
3 〈V1, V2, V3〉,

To get the one parameter group, we should solve the Lie equations:

dȳ

dε
= ξ

(
ȳ, t̄, v̄, θ̄

)
,
dt̄

dε
= τ

(
ȳ, t̄, v̄, θ̄

)
,
dv̄

dε
= φ

(
ȳ, t̄, v̄, θ̄

)
,
dθ̄

dε
= γ

(
t̄, ȳ, v̄, θ̄

)
,

subject to the initial conditions

ȳ|ε=0 = y, t̄|ε=0 = t, v̄|ε=0 = v, θ̄|ε=0 = θ.

By solving this system of ordinary differential equations, we obtained the following groups of symmetry
generated by Vi for i = 1, 2, 3, 4:

G1 : (y, t, v, θ)→ (y+ ε, t, v, θ) , G2 : (y, t, v, θ)→ (y, t+ ε, v, θ) ,
G3 : (y, t, v, θ)→ (y, t, v+ ε, θ) , G4 : (y, t, v, θ)→ (y, t, v, θ+α (y, t) ε) ,

where ε is any real number and α(y, t) is an arbitrary solution of equation (4.4).
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We can see that G1 is a space translation, G2 is a time translation and G3 is a dependent variable
translation. The last group G4 denotes an infinite dimensional system.

In the preceding, we obtained the symmetry groups of equations (3.6)-(3.7). Now we will consider the
exact solutions of equations (3.6)-(3.7) based on the symmetry group analysis. Since each Gi (i = 1, . . . , 4)
is a symmetry group, it implies that if v = f (y, t) and θ = g (y, t) are the known solution of equations
(3.6)-(3.7), then by using the above groups Gi (i = 1, . . . , 4), the corresponding new solutions vi and θi

(i = 1, . . . , 4) can be obtained respectively as follows:

v(1) = f (y− ε, t) , θ(1) = g (y− ε, t) , v(2) = f (y, t− ε) , θ(2) = g (y, t− ε) ,

v(3) = f (y, t) + ε, θ(3) = g (y, t) , v(4) = f (y, t) , θ(4) = g (y, t) +α (y, t) ε.

4.2. Exact solutions
Travelling wave solutions form a special class of solutions that are invariant under a linear combination

of time-translation and space-translation symmetry generators, i.e., of the form V1 + cV2 with constant
wave speed c.

In the following, we will seek an exact travelling wave solution using the symmetry approach. In the
previous, we obtained the infinitesimal generators Vi (i = 1, 2, 3, 4). In the following, we will get similarity
variables and their reduction equations, and obtain travelling wave solutions or similarity solutions. We
will consider the following cases.

Case 1: For the infinitesimal generator V1 + aV2 + bV3, the similarity variables are r = t− ya, F (r) =
v− by, G (r) = θ and the group invariant solution is v = F (r) + by, θ = G (r). Substituting the group
invariant solutions into equations (3.6)-(3.7), we obtained the following reduction equation:

d3F
dr3 = 1

a2α∗

(
dF
dr − a

2µ∗d
2F
dr2 − a

4β∗d
2F
dr2

(
dF
dr

)2

+2a3bβ∗d
2F
dr2

dF
dr − a

2b2β∗d
2F
dr2

)
,

d2G
dr2 = 1

a2k̃


dG
dr − a2µ̃

(
dG
dr

)2
+ 2abµ̃dFdr

−b2µ̃− a4β̃
(
dF
dr

)4
+ 4a3bβ̃

(
dF
dr

)3

−6a2b2β̃
(
dF
dr

)2
+ 4ab3β̃dFdr

−b4β̃− a2α̃d
2F
dr2

dF
dr + abα̃

d2F
dr2

 .

It may be impossible to find the exact solutions to such problems. But, one can find its travelling wave
solutions, by putting a = c and b = 0,

d3F
dr3 = 1

c2α∗

(
dF
dr − c

2µ∗d
2F
dr2 − c

4β∗d
2F
dr2

(
dF
dr

)2
)

,
d2G
dr2 = 1

c2k̃

(
dG
dr − c2µ̃

(
dG
dr

)2
− c2α̃d

2F
dr2

dF
dr

)
.

(4.5)

In Section 5, these systems will be solved by using the Newton-Raphson technique.

Case 2: For the infinitesimal generator V2 +aV3, the similarity variables are r = y, F (r) = v−at, G (r) = θ
and the group invariant solution is v = F (r) + at, θ = G (r).

Substituting these expressions into equations (3.6)-(3.7), we get the following reduction equation:{
µ∗d

2F
dr2 +β

∗ (dF
dr

)2 d2F
dr2 = a,

k̃d
2G
dr2 + µ̃

(
dF
dr

)2
+ β̃

(
dF
dr

)4
= 0.

(4.6)

We can solve (4.6), to get the exact solutions by putting a=0, we have two different solutions. From
reduction equations (4.5), we have two different solutions. The first is{

F (r) = c1r+ c2,

G (r) = −1
2
(c2

1µ̃+β̃c
4
1)r

2

k̃
+ c3r+ c4,

or

{
v(y, t) = c1y+ at+ c2,

θ(t,y) = −1
2
(c2

1µ̃+β̃c
4
1)y

2

k̃
+ c3y+ c4,
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and the second is
F (r) = ±

√
−β∗µ∗r
β∗ + c1r,

G (r) = 1
2

(
µ̃µ∗
β∗ −

β̃(µ∗)2

(β∗)2

)
r2

k̃
+ c2r+ c3,

or


v(y, t) = ±

√
−β∗µ∗y
β∗ + at+ c1,

θ(y, t) = 1
2

(
µ̃µ∗
β∗ −

β̃(µ∗)2

(β∗)2

)
y2

k̃
+ c2y+ c3,

where c1, c2, c3, and c4 are arbitrary constants.

Case 3: For the infinitesimal generator of the dependent variable translation V3, we can see obviously that
if v = v (y, t) is a solution of equations (3.6)-(3.7), then v = v (y, t) +C1 and θ = C2 (C1, C2 are arbitrary
constants), are a trivial solution of equations (3.6)-(3.7).

5. Results and discussion

In this section, we will give a numerical solution to case 1. The reduced equations (4.5) is a system of
coupled nonlinear ordinary differential equations. To solve this system, we adopted the Newton-Raphson
method. The third-order differential system (4.5) can be reformulated as a system of five first-order
equations by using the substitution:

F = y1,
dF

dr
= y2,

d2F

dr2 = y3, G = y4,
dG

dr
= y5.

Then the system (4.5) is transformed as follows:

dy1
dr = y2,
dy2
dr = y3,
dy3
dr = 1

α∗c2

(
−µ∗c2y3 −β

∗c4(y2)
2y3 + y2

)
,

dy4
dr = y5,
dy5
dr = 1

k̃

(
−µ̃c2(y2)

2 − β̃c4(y2)
4 + y(5) − α̃c2y2y3

)
.

Subject to the following conditions:

y1(−1) = 0, y1(1) = 1, y4(−1) = 0, y4(1) = 1.

These four conditions correspond to the following boundary conditions imposed on the two parallel
plates: v(−1) = 0, v(1) = 1, θ(−1) = 0, and θ(1) = 1.
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Figure 2: Travelling wave solutions of a velocity profile for various values of wave speed c.
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Figure 3: Travelling wave solutions of temperature profile for various values of wave speed c.

In Figure 2, we observed that increasing the values of c leads to a rapid decrease in the velocity profile.
This is due to the inertia forces, i.e., the resistance of the fluid in motion. Figure 3, illustrates the same
behaviour on the temperature distribution.
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Figure 4: Travelling wave solutions of a velocity profile for various values of viscosity µ.
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Figure 5: Travelling wave solutions of temperature profile for various values of viscosity µ.
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In Figures 4-5, we showed that an increase in the viscosity parameter increases both the velocity and
the temperature profiles.
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Figure 6: Travelling wave solutions of a velocity profile for various values of third-grade parameter α1.
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Figure 7: Travelling wave solutions of temperature profile for various values of third-grade parameter α1.

In Figure 6, we have seen that the velocity decreases with increasing values of the parameter α1. In
Figure 7, it is observed that an increase in the parameter α1 leads to a rapid increase in temperature.
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Figure 8: Travelling wave solutions of a velocity profile for various values of third-grade parameter β3.
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Figure 9: Travelling wave solutions of temperature profile for various values of third-grade parameter β3.

In Figure 8, we have seen that the velocity profile increases as the third-grade parameter β3 increases
in magnitude. Given that, it is clear that β3 reflects the property of shear thinning. On the other hand,
we observed a rapid decrease of the temperature with decreasing values of the parameter β3, as shown
in Figure 9.
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Figure 10: Travelling wave solutions of a velocity profile for various values of thermal conductivity k.
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Figure 11: Travelling wave solutions of temperature profile for various values of thermal conductivity k.

In Figure 10, we did not observe a consequent variation velocity profile, for various values of the
parameter k. On the other hand, in Figure 11, an increasing temperature with decreasing values of the
parameter k is observed. All previous figures are by those related in the works [7, 11, 22].
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6. Conclusion

In this paper, we applied the Lie group method to study the heat transfer of third-grade fluid between
two parallel plates. The explicit exact solutions are obtained by similarity reductions. Furthermore, by
using travelling wave solutions, we were able to highlight the influence of certain physical parameters on
this heat flow. More generally, the Lie group analysis has shown to be an effective method for studying
coupled highly nonlinear partial differential equations.
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