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Abstract
In this paper, We use the soft closure operator to introduce soft ω∗-open sets as a new class of soft sets. We prove that

this class of soft sets forms a soft topology that lies strictly between the soft topology of soft θ-open sets and the soft topology
of soft ω-open sets. Also, we show that the soft topology of soft ω∗-open sets contain the soft co-countable topology and is
independent of the topology of soft open sets. Furthermore, several results regarding soft almost Lindelofness are given. In
addition to these, we investigate the correspondences between the novel notions in soft topology and their general topological
analogs.
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1. Introduction and preliminaries

In engineering, medical research, finance, environment, and other professions, the majority of real-
world issues are rife with uncertainty. Molodtsov [27] proposed soft set theory as a mathematical tool for
handling uncertainty in 1999. The drawbacks of earlier theories, such as fuzzy set theory [32], rough set
theory [29], and others, are not present in this theory. In particular, the nature of parameter sets connected
to soft sets offers a consistent foundation for modelling ambiguous data. As a result, soft set theory has
quickly developed in a short amount of time and has seen a variety of real-world applications.

The fundamental set-theoretic concepts and techniques are the focus of the branch of topology known
as ”general topology” in mathematics. In topology and other related fields of mathematics, a set of axioms
known as the Kuratowski closure axioms [24] can be used to create a topological structure on a set. They
share the same characteristics as the more popular open set concept. The closure system of axioms has
practical applications and is important for domain theory (see [26] for more details).

Shabir and Naz [31] invented another branch of topology called ”soft topology,” which is a combina-
tion of soft set theory and topology, and was influenced by the basic tenets of classical topological space.
It concentrates on creating the mechanism for all soft sets. Soft topology is considered one of the branches
of topology that has gained interest among researchers in recent years [8–12, 14–18, 20, 28]. Of course,
there is still an opportunity for a lot of research papers.

Email address: algore@just.edu.jo (Samer Al Ghour)

doi: 10.22436/jmcs.030.03.07

Received: 2022-11-10 Revised: 2022-11-27 Accepted: 2022-12-30

http://dx.doi.org/10.22436/jmcs.030.03.07
http://dx.doi.org/10.22436/jmcs.030.03.07
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.030.03.07&domain=pdf


S. Al Ghour, J. Math. Computer Sci., 30 (2023), 281–289 282

We hope that by establishing a sound new class of soft sets in soft topological spaces, we will open
the door to several articles on the topic in the future. Soft ω-open sets, for example, were introduced as
a generalization of soft open sets in soft topological spaces in [7], and other research papers on the topic,
such as [1–5], have also been published.

In this paper, we use the soft closure operator to introduce soft ω∗-open sets as a new class of soft
sets. We prove that this class of soft sets forms a soft topology that lies strictly between the soft topology
of soft θ-open sets and the soft topology of soft ω-open sets. Also, we show that the soft topology of
soft ω∗-open sets contain the soft co-countable topology and is independent of the topology of soft open
sets. Furthermore, several results regarding soft almost Lindelofness are given. In addition to these, we
investigate the correspondences between the novel notions in soft topology and their general topological
analogs.

The body of the paper is structured as follows. In Section 2, we use the soft closure operator to
introduce soft ω∗-open sets as a new class of soft sets. We show that this class of soft sets has a soft
topology that is strictly between the soft topologies of soft θ-open sets and soft ω-open sets. We also
show that the soft topology of soft ω∗-open sets contain the soft countable topology and is independent
of the soft open set topology. In Section 3, we introduce several results regarding soft almost Lindelof
STSs.

We follow the concepts and terminology used in [6, 7] in this paper. In this paper, topological space
and soft topological space will be referred to as ST and STS, respectively. Let (H,β,D) be an STS and
(H,µ) be a TS. Let K ∈ SS(H,D) and A ⊆ H. Throughout this paper, βc will denote the collection of all
soft closed sets of (H,β,D), and µc will denote the collection of all closed sets of (H,µ), with Clβ(K),
Intβ(K), Bdβ(K), Clµ(A), and Intµ(A) denoting the soft closure of K in (H,β,D), the soft interior of K in
(H,β,D), the soft boundary of K in (H,β,D), the closure of A in (H,µ), and the interior of A in (H,µ),
respectively. In this paper, for any non-empty set H and any set of parameters D, Scoc will denote the
soft topology {K ∈ SS(H,D) : 1D −K ∈∈ CSS(H,D)} ∪ {0D} on H relative to D.

The following definitions and results will be used in the sequel.
Now we recall some preliminaries that will be used in the sequel.

Definition 1.1 ([21]). Let (H,µ) be a TS and A ⊆ H. Then

(a) A is said to be an ω∗-open set in (H,µ) if for every a ∈ A, there exist B ∈ µ such that a ∈ B and B−A
is countable;

(b) the collection of all ω∗-open subsets of (H,µ) will be denoted by µω∗ ;
(c) A is said to be an ω∗-closed subset of (H,µ) if H−A ∈ µω∗ .

Theorem 1.2 ([22]). Let (H,β,D) be an STS and let K ∈ SS(H,D). Then

(a) a soft point hd ∈ SP(H,D) is in the soft θ-closure of K (hd∈̃Clθ(K)) if M∩̃Clβ(M) 6= 0D for any M ∈ β
with hd∈̃M;

(b) K is soft θ-closed in (H,β,D) if Clθ(K) = K;
(c) K is soft θ-open in (H,β,D) if 1D −K is soft θ-closed in (H,β,D);
(d) the family of all soft θ-open in (H,β,D) will be denoted by βθ.

Theorem 1.3 ([22]). Let (H,β,D) be an STS. Then

(a) (H,βθ,D) is an STS;
(b) βθ ⊆ β and βθ 6= β in general.

Definition 1.4. An STS (H,β,D) is said to be

(a) [23] soft regular if for any hd ∈ SP(H,D) and any K ∈ β such that hd∈̃K there exists M ∈ β such that
hd∈̃M and Clβ (M) ⊆̃K;

(b) [30] soft locally indiscrete if β ⊆ βc;
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(c) [25] soft hyperconnected if K∩̃M 6= 0D for every K,M ∈ β− {0D};
(d) [19] soft Lindelof if for every A ⊆β such that ∪̃A∈AA = 1D, there exists a countable subfamily A1⊆ A

such that ∪̃A∈A1A = 1D;
(e) [13] soft almost Lindelof if for every A ⊆β such that ∪̃A∈AA = 1D, there exists a countable subfamily

A1⊆ A such that ∪̃A∈A1Clβ (A) = 1D.

2. Soft ω∗-open sets

In this section, we use the soft closure operator to introduce soft ω∗-open sets as a new class of soft
sets. We show that this class of soft sets has a soft topology that is strictly between the soft topologies of
soft θ-open sets and soft ω-open sets. We also show that the soft topology of soft ω∗-open sets contains
the soft countable topology and is independent of the soft open set topology.

Definition 2.1. Let (H,β,D) be an STS and let K ∈ SS(H,D). Then

(a) K is called a soft ω∗-open set in (H,β,D) if for all dh ∈̃ K, there exists M ∈ β such that dh ∈̃M and
Clβ (M) −K ∈ CSS(H,D), the collection of all soft ω∗-open sets in (H,β,D) will be denoted by βω∗ ;

(b) K is called a soft ω∗-closed set in (H,β,D) if 1D −K ∈ βω∗ .

Theorem 2.2. Let (H,β,D) be an STS and let K ∈ SS(H,D). Then K ∈ βω∗ if and only if for every dh ∈̃ K,
there exist M ∈ β and N ∈ CSS(H,D) such that dh ∈̃M and Clβ (M) −N ⊆̃K.

Proof.

Necessity. Suppose that K ∈ βω∗ and let dh ∈̃ K. Then there exists M ∈ β such that dh ∈̃ M and
Clβ (M) − K ∈ CSS(H,D). Put N = Clβ (M) − K. Then N ∈ CSS(H,D) and Clβ (M) −N = Clβ (M) −(
Clβ (M) −K

)
⊆̃K.

Sufficiency. Suppose that for every dh ∈̃ K, there exist M ∈ β and N ∈ CSS(H,D) such that dh ∈̃M
and Clβ (M) −N ⊆̃K. Let dh ∈̃ K. Then there exist M ∈ β and N ∈ CSS(H,D) such that dh ∈̃M and
Clβ (M) −N ⊆̃K. Thus, Clβ (M) −K ⊆̃N and hence, Clβ (M) −K ∈ CSS(H,D). Therefore, K ∈ βω∗ .

Theorem 2.3. For any STS (H,β,D), (H,βω∗ ,D) is an STS.

Proof.

(a) 0D ∈ βω∗ follows directly from the definition. To see that 1D ∈ βω∗ , let dh ∈̃ 1D. Then we have dh ∈̃
1D ∈ β and Clβ (1D) − 1D = 1D − 1D = 0D ∈ CSS(H,D). Thus, 1D ∈ βω∗ .
(b) Let T ,S ∈ βω∗ and let dh ∈̃T ∩̃S. Then dh ∈̃T and dh ∈̃S, and so there exist M,N ∈ β such that dh
∈̃M∩̃N ∈ β and Clβ (M)−T , Clβ (N)−S ∈ CSS(H,D). Since Clβ

(
M∩̃N

)
−
(
T ∩̃S

)
⊆̃
(
Clβ (M) ∩̃Clβ (N)

)
−(

T ∩̃S
)
⊆̃
(
Clβ (M) − T

)
∪̃
(
Clβ (N) − S

)
, then Clβ

(
M∩̃N

)
−
(
T ∩̃S

)
∈ CSS(H,D). Therefore, T ∩̃S ∈ βω∗ .

(c) Let {Kα : α ∈ ∆} ⊆ βω∗ and let dh ∈̃ ∪̃α∈∆Kα. Then there exists α0 ∈ ∆ such that dh ∈̃ Kα0 ∈
βω∗ . Thus, there exists M ∈ β such that dh ∈̃ M and Clβ (M) − Kα0 ∈ CSS(H,D). Since Clβ (M) −(
∪̃α∈∆Kα

)
⊆̃Clβ (M) −Kα0 , then Clβ (M) −

(
∪̃α∈∆Kα

)
∈ CSS(H,D). Therefore, ∪̃α∈∆Kα ∈ βω∗ .

Theorem 2.4. For any STS (H,β,D), βω∗ ⊆ βω.

Proof. Let K ∈ βω∗ and let dh ∈̃K. Then there exists M ∈ β such that dh ∈̃ M and Clβ (M) − K ∈
CSS(H,D). Since M−K⊆̃Clβ (M) −K, then M−K ∈ CSS(H,D). Therefore, K ∈ βω.

The following example shows that the inclusion in Theorem 2.4 cannot be replaced by equality in
general.

Example 2.5. Let H = R, D = {a,b}, and β =
{
T ∈ SS(H,D) : a0∈̃T

}
∪ {0D}. Let K = {(a, {0, 1}) , (b, ∅)}.

Then a0∈̃K and so K ∈ β. Thus, by Theorem 2 of [7], K ∈ βω. To see that K /∈ βω∗ , suppose to the
contrary that K ∈ βω∗ . Then there exists M ∈ β such that a0 ∈̃M and Clβ (M) −K ∈ CSS(H,D). Since a0
∈̃ Clβ (M) ∈ βc, then Clβ (M) = 1D and so 1D−K ∈ CSS(H,D). But 1D−K /∈ CSS(H,D), a contradiction.
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Example 2.5 shows also that β * βω∗ in general.

Theorem 2.6. For any soft regular STS (H,β,D), βω∗ = βω.

Proof. By Theorem 2.4, we have βω∗ ⊆ βω. To show that βω ⊆ βω∗ , let K ∈ βω and let dh ∈̃K. Then there
exists M ∈ β such that dh ∈̃ M and M− K ∈ CSS(H,D). Since (H,β,D) is soft regular, then there exists
T ∈ β such that dh ∈̃ T⊆̃Clβ(T)⊆̃M. Since Clβ(T) −K⊆̃M−K, then Clβ (T) −K ∈ CSS(H,D). Therefore,
K ∈ βω∗ .

Corollary 2.7. For any soft locally indiscrete STS (H,β,D), βω∗ = βω.

Corollary 2.8. For any soft regular STS (H,β,D), β ⊆ βω∗ .

Proof. Follows from Theorem 2.6 and Theorem 2 of [7].

Corollary 2.9. For any soft locally indiscrete STS (H,β,D), β ⊆ βω∗ .

The converse of each of Theorem 2.6 and Corollary 2.8 need not be true in general.

Example 2.10. Let H = {0, 1}, D = {a}, and β = {0D, 1D,a0}. Then β ⊆ βω∗ = SS(H,D).

Theorem 2.11. For any STS (H,β,D), (βθ)ω ⊆ βω∗ .

Proof. Let K ∈ (βθ)ω and let dh ∈̃K. Then there exists M ∈ βθ such that dh ∈̃M and M−K ∈ CSS(H,D).
Since dh ∈̃M ∈ βθ, then there exists T ∈ β such that dh ∈̃ T⊆̃Clβ(T)⊆̃M. Since Clβ(T) −K⊆̃M−K, then
Clβ (T) −K ∈ CSS(H,D). Therefore, K ∈ βω.

Corollary 2.12. For any STS (H,β,D), βθ ⊆ βω∗ .

Proof. By Theorem 2 of [7], βθ ⊆ (βθ)ω. So, by Theorem 2.11, βθ ⊆ βω∗ .

The following shows that the inclusion in Theorem 2.11 cannot be replaced by equality in general.

Example 2.13. Let H = R, D = {a,b}, and β =
{
T ∈ SS(H,D) : a0 /̃∈T

}
∪ {1D}. Let K = a1. To see

that K ∈ βω∗ − (βθ)ω. Then a0∈̃K and so K ∈ β. Thus, by Theorem 2 of [7], K ∈ βω. To see that
K ∈ βω∗ , suppose to the contrary, let bx∈̃K. Then bx = a1. Take M = K. Then bx∈̃M ∈ β and
Clβ(M) −M = a{0,1} ∈ CSS(H,D). Therefore, K ∈ βω∗ . If K ∈ (βθ)ω, then there exists T ∈ βθ such that
a1∈̃T and T −K ∈ CSS(H,D). Since a1∈̃T ∈ βθ, then there exists S ∈ β such that a1∈̃S⊆̃Clβ(S) = S∪̃a0⊆̃T .
So, a0∈̃T and thus T = 1D. This implies that 1D −K ∈ CSS(H,D), which is impossible.

Definition 2.14. Let (H,β,D) be an STS and let K ∈ SS(H,D). A soft point dh ∈ SP(H,D) is said to be a
soft ∗-condensation point of K if for every M ∈ β with dh ∈̃M, K∩̃Clβ (M) /∈ CSS(H,D). The soft union
of all soft ∗-condensation points of K will be denoted by Cond∗(K).

Theorem 2.15. Let (H,β,D) be an STS and let K ∈ SS(H,D). Then K ∈ (βω∗)
c if and only if Cond∗(K)⊆̃K.

Proof.

Necessity. Suppose that K ∈ (βω∗)
c. Suppose to the contrary that there exists dh∈̃Cond∗(K) − K. Since

dh∈̃1D − K ∈ βω∗ . Then there exists M ∈ β such that dh ∈̃ M and Clβ (M) − (1D −K) = K∩̃Clβ (M) ∈
CSS(H,D). On the other hand, since dh∈̃Cond∗(K), then K∩̃Clβ (M) /∈ CSS(H,D), a contradiction.

Sufficiency. Suppose that Cond∗(K)⊆̃K. Let dh∈̃1D − K. Then dh /̃∈Cond∗(K) and so there exists M ∈ β
with dh ∈̃M, K∩̃Clβ (M) = Clβ (M) − (1D −K) ∈ CSS(H,D). Therefore, 1D − K ∈ βω∗ . Hence, K ∈
(βω∗)

c.

Corollary 2.16. For any STS (H,β,D), CSS(H,D) ⊆ (βω∗)
c.
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Proof. Let K ∈ CSS(H,D). Then Cond∗(K) = 0D and so Cond∗(K)⊆̃K. Hence, by Theorem 2.15, K ∈
(βω∗)

c.

Corollary 2.17. For any STS (H,β,D), Scoc ⊆ βω∗ .

Proof. Let K ∈ δcoc − {0D}. Then by Corollary 2.16, 1D −K ∈ CSS(H,D) ⊆ (βω∗)
c. Hence, K ∈ βω∗ .

Corollary 2.18. Let (H,β,D) be an STS such that H is countable. Then βω∗ = SS(H,D).

Proof. Let K ∈ SS(H,D) − {0D}. Since H is countable, then 1D − K ∈ CSS(H,D). Thus, by Corollary 2.16,
1D −K ∈ (βω∗)

c. Hence, K ∈ βω∗ .

According to Corollary 2.18, we can find many examples to show that the inclusion in Corollary 2.17
cannot be replaced by equality in general. However, we have the following result.

Theorem 2.19. If (H,β,D) is a soft hyperconnected STS, then βω∗ = Scoc.

Proof. To see that βω∗ ⊆ Scoc, let K ∈ βω∗ − {0D}. Pick dh∈̃K. Then there exists M ∈ β such that dh
∈̃ M and Clβ (M) − K ∈ CSS(H,D). Since (H,β,D) is soft hyperconnected, then Clβ (M) = 1D and so
1D − K ∈ CSS(H,D). Hence, K ∈ Scoc. Therefore, βω∗ ⊆ Scoc. On the other hand, by Corollary 2.17,
Scoc ⊆ βω∗ .

Theorem 2.20. Let (H,β,D) be an STS, then βω∗ = βω if and only if β ⊆ βω∗ .

Proof.

Necessity. Suppose that βω∗ = βω. Since, by Theorem 2 of [7], β ⊆ βω, then β ⊆ βω∗ .
Sufficiency. Suppose that β ⊆ βω∗ . Then by Corollary 2.17, β ∪ Scoc ⊆ βω∗ . Therefore, by Corollary 2 of
[7], βω ⊆ βω∗ . On the other hand, by Theorem 2.4, we have βω∗ ⊆ βω. Therefore, βω∗ = βω.

Theorem 2.21. Let (H,β,D) be an STS. If K ∈ β such that Bdβ(K) ∈ CSS(H,D), then K ∈ βω∗ .

Proof. Suppose that K ∈ β such that Bdβ(K) ∈ CSS(H,D). Let dh∈̃K. Then we have dh∈̃K ∈ β and
Clβ(K) −K = Clβ(K) − Intβ (K) = Bdβ(K) ∈ CSS(H,D). Hence, K ∈ βω∗ .

Corollary 2.22. Let (H,β,D) be an STS which has a soft base A such that Bdβ(A) ∈ CSS(H,D) for each A ∈ A.
Then βω∗ = βω.

Proof. By Theorem 2.21, A ⊆ βω∗ and so β ⊆ βω∗ . Thus, by Theorem 2.20, βω∗ = βω.

Theorem 2.23. Let (H,β,D) be an STS. Then for all d ∈ D, (βω∗)d ⊆ (βd)ω∗ .

Proof. Let d ∈ D. Let V ∈ (βω∗)d and let h ∈ V . Choose K ∈ βω∗ such that K(d) = V . Since dh∈̃K ∈ βω∗ ,
then by Theorem 2.2 there exist M ∈ β and N ∈ CSS(H,D) such that dh ∈̃M and Clβ (M) −N ⊆̃K.
Now, we have h ∈ M (d) ∈ βd, N(d) is a countable set. On the other hand, by Proposition 4 of [31],
Clβd (M(d)) −N(d) ⊆

(
Clβ (M)

)
(d) −N(d) ⊆ K(d) = V . Hence, V ∈ (βd)ω∗ .

Corollary 2.24. Let (H,β,D) be an STS. If K ∈ βω∗ , then K(d) ∈ (βd)ω∗ for all d ∈ D.

Proof. Let K ∈ βω∗ and let d ∈ D. Then K(d) ∈ (βω∗)d and by Theorem 2.23, K(d) ∈ (βd)ω∗ .

Theorem 2.25. Let {(H, δd) : d ∈ D} be an indexed family of STSs. Then (⊕d∈Dδd)ω∗ = ⊕d∈D (δd)ω∗ .

Proof. By Theorem 3.11 of [6] and Theorem 2.23, ((⊕d∈Dδd)ω∗)d ⊆ ((⊕d∈Dδd)d)ω∗ = (δd)ω∗ for every
d ∈ D. Hence, (⊕d∈Dδd)ω∗ ⊆ ⊕d∈D (δd)ω∗ . To see that ⊕d∈D (δd)ω∗ ⊆ (⊕d∈Dδd)ω∗ , by Theorem 3.5 of
[6], it is sufficient to see that dV ∈ (⊕d∈Dδd)ω∗ for all d ∈ D and V ∈ (δd)ω∗ . Let d ∈ D and V ∈ (δd)ω∗ .
Let dh∈̃dV . Then h ∈ V ∈ (δd)ω∗ . So, there exists U ∈ δd such that h ∈ U and Clδd(U) − V is countable.
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We have dh∈̃dU ∈ ⊕d∈Dδd. Also, for every e ∈ D,
(
Cl⊕d∈Dδd(dU) − dV

)
(e) =

(
Cl⊕d∈Dδd(dU)

)
(e) −

(dV) (e) =
(
dClδd(U)

)
(e) − V =

{
Clδd(U) − V , if e = d,
∅, ife 6= d. Thus, Cl⊕d∈Dδd(dU) − dV ∈ CSS(H,D). It

follows that dV ∈ (⊕d∈Dδd)ω∗ .

Corollary 2.26. For any TS (H, δ) and any set of parameters D, (τ(δ))ω∗ = τ(δω∗).

Proof. Let δ = δd for all d ∈ D. Then τ(δ) = ⊕d∈Dδd. So, by Theorem 2.25,

(τ(δ))ω∗ = (⊕d∈Dδd)ω∗ = ⊕d∈D (δd)ω∗ = ⊕d∈Dδω∗ = τ(δω∗).

Theorem 2.27. For any STS (H,β,D), (βω∗)ω∗ ⊆ βω∗ .

Proof. Let K ∈ (βω∗)ω∗ and let dh∈̃K. By Theorem 2.2, there exist M ∈ βω∗ and N ∈ CSS(H,D) such that
dh ∈̃M and Clβω∗ (M) −N ⊆̃K. Again by Theorem 2.2, there exist T ∈ β and S ∈ CSS(H,D) such that dh
∈̃T and Clβ (T) − S ⊆̃M. Now N∪̃S ∈ CSS(H,D) and

Clβ (T) −
(
N∪̃S

)
⊆̃M−N⊆̃Clβω∗ (M) −N⊆̃K.

Hence, by Theorem 2.2, K ∈ βω∗ .

Problem 2.28. Let (H,β,D) be an STS. Is it true that (βω∗)ω∗ = βω∗?

Lemma 2.29. If (H,β,D) and (H,γ,D) are STSs such that β ⊆ γ, then βω∗ ⊆ γω∗ .

Proof. Let K ∈ βω∗ − {0D} and let dh∈̃K. Then by Theorem 2.2, there exists M ∈ β (hence, M ∈ γ) and
N ∈ CSS(H,D) such that dh∈̃M and Clβ(M) −N⊆̃K. Since β ⊆ γ, then Clγ(M)⊆̃Clβ(M) and hence,
Clγ(M) −N⊆̃Clβ(M) −N⊆̃K. Therefore, K ∈ γω∗ .

The following result is a partial answer for Problem 2.28:

Theorem 2.30. For any soft regular STS (H,β,D), (βω∗)ω∗ = βω∗ .

Proof. By Corollary 2.8, β ⊆ βω∗ . So by Lemma 2.29, βω∗ ⊆ (βω∗)ω∗ . Also, by Theorem 2.27, (βω∗)ω∗ ⊆
βω∗ . Hence, (βω∗)ω∗ = βω∗ .

Theorem 2.31. Let (H,β,D) be an STS and Y be a non empty subset of H. Then (βω∗)Y ⊆ (βY)ω∗ .

Proof. Let T ∈ (βω∗)Y and dy∈̃T . Choose K ∈ βω∗ such that T = K∩̃CY . Since dy∈̃K ∈ βω∗ , then there
exists M ∈ β such that dy ∈̃ M and Clβ (M) − K ∈ CSS(H,D). Let S = M∩̃CY . Then dy ∈̃S ∈ βY and
ClβY (S) ⊆̃Clβ (M). Since ClβY (S) − T = ClβY (S) −

(
K∩̃CY

)
= ClβY (S) − K⊆̃Clβ (M) − K⊆̃Clβ (M) − K.

Therefore, ClβY (S) − T ∈ CSS(H,D).

The following example will show that the inclusion in Theorem 2.31 cannot be replaced by equality
even if CY ∈ βc:

Example 2.32. Let H = [0, 1], D = {a}, and β = {T ∈ SS(H,D) : 0 ∈ T (a)} ∪ {0D} and let Y = (0, 1]. Then
CY ∈ βc, βY = SS(Y,D), and (βY)ω∗ = SS(Y,D). Since (H,β,D) is a soft hyperconnected, then by
Theorem 2.19, βω∗ = Scoc and so (βω∗)Y = Scoc 6= (βY)ω∗ .

Theorem 2.33. Let (H,β,D) be an STS and Y be a non empty subset of H such that CY ∈ β ∩ βc. Then
(βY)ω∗ = (βω∗)Y .
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Proof. To show that (βY)ω∗ ⊆ (βω∗)Y , let K ∈ (βY)ω∗ − {0D}. Pick dy∈̃K. Then there exists M ∈ βY such
that dy ∈̃M and ClβY (M) −K ∈ CSS(Y,D). Since CY ∈ β, then M ∈ β. Since CY ∈ βc, then ClβY (M) =
Clβ (M). Thus, Clβ (M) − K ∈ CSS(H,D) and hence K ∈ βω∗ . Since K = K∩̃CY , then K ∈ (βω∗)Y . This
shows that (βY)ω∗ ⊆ (βω∗)Y . On the other hand, by Theorem 2.31, (βω∗)Y ⊆ (βY)ω∗ .

Theorem 2.34. Let (H,β,D) be an STS. If K ∈ (βω∗)
c, then K⊆̃Intβ(T)∪̃N for some T ∈ βc and N ∈

CSS(H,D).

Proof. If K = 1D, then we choose T = K and N = 0D to get K⊆̃Intβ(T)∪̃N. If K 6= 1D, choose dh∈̃1D−K ∈
βω∗ . Then by Theorem 2.2, there exist M ∈ β and N ∈ CSS(H,D) such that dh ∈̃ M and Clβ (M) −
N⊆̃1D −K. Put T = 1D −M. Then we have T ∈ βc, N ∈ CSS(H,D), and

K⊆̃1D −
(
Clβ (M) −N

)
=
(
1D −Clβ (M)

)
∪̃N = Intβ(1D −M)∪̃N = Intβ(T)∪̃N.

Theorem 2.35. Let (H,β,D) be an STS and K ∈ SS(H,D) − {1D}. Then K ∈ (βω∗)
c if and only if for each

dh∈̃1D −K, there exist T ∈ βc and N ∈ CSS(H,D) such that dh∈̃1D − T and K⊆̃Intβ(T)∪̃N.

Proof.

Necessity. Let K ∈ (βω∗)
c and let dh∈̃1D−K. Then by Theorem 2.2, there exist M ∈ β and N ∈ CSS(H,D)

such that dh ∈̃M and Clβ (M) −N⊆̃1D −K. Put T = 1D −M. Then we have T ∈ βc, N ∈ CSS(H,D), and

K⊆̃1D −
(
Clβ (M) −N

)
=
(
1D −Clβ (M)

)
∪̃N = Intβ(1D −M)∪̃N = Intβ(T)∪̃N.

Sufficiency. Suppose that for each dh∈̃1D −K, there exist T ∈ βc and N ∈ CSS(H,D) such that dh∈̃1D − T
and K⊆̃Intβ(T)∪̃N. We will show that 1D − K ∈ βω∗ . Let dh∈̃1D − K. Then there exist T ∈ βc and
N ∈ CSS(H,D) such that dh∈̃1D − T and K⊆̃Intβ(T)∪̃N. Let M = 1D − T . Then dh∈̃M ∈ β and
Clβ(M) −N = 1D − (Intβ(T)∪̃N)⊆̃1D −K. Hence, 1D −K ∈ βω∗ .

3. Soft almost Lindelofness

In this section, we introduce several results regarding soft almost Lindelof STSs.

Lemma 3.1. Let (H,β,D) be an STS and let N be a soft base of (H,β,D). Then (H,β,D) is soft almost Lindelof
if and only if for every A ⊆ N with ∪̃A∈AA = 1D there exists a countable subfamily A1⊆ A such that ∪̃A∈A1A =
1D.

Proof.

Necessity. It is obvious.

Sufficiency. Suppose that for every A ⊆ N with ∪̃A∈AA = 1D there exists a countable subfamily A1⊆ A

such that ∪̃A∈A1A = 1D. Let T ⊆β− {0D} such that ∪̃T∈TT = 1D. For every K ∈ T, there is AK ⊆ N

such that ∪̃A∈AKA = K. Let S = {A : A ∈ AK,K ∈ T }. Then ∪̃A∈SA = 1D and by assumption, there exists
a countable subfamily S1 ⊆ S such that ∪̃A∈S1A = 1D. For each A ∈ S1, choose T (A) ∈ T such that A
⊆̃T (A). Then {T (A) : A ∈ S1} is a countable subfamily of T with ∪̃A∈S1T(A) = 1D. Hence, (H,β,D) is soft
almost Lindelof.

Theorem 3.2. Let {(H,µd) : d ∈ D} be an indexed family of STSs. Then (H,⊕d∈Dµd,D) is soft almost Lindelof
if and only if D is countable and (H,µd) is almost Lindelof for all d ∈ D.

Proof.

Necessity. Suppose that (H,⊕d∈Dµd,D) is soft almost Lindelof. Since {dH : d ∈ D} ⊆ ⊕d∈Dµd with
∪̃d∈DdH = 1D, then there exists a countable subset D1 ⊆ D such that

∪̃d∈D1Cl⊕d∈Dµd (dH) = ∪̃d∈D1dClµd(H) = ∪̃d∈D1dH = 1D,

which implies that D = D1. Hence, D is countable. Let a ∈ D. To show that (H,µa) is almost Lindelof,



S. Al Ghour, J. Math. Computer Sci., 30 (2023), 281–289 288

let U ⊆ µa with ∪U∈UU = H. Let A = {aU : U ∈ U} ∪ {dH : d ∈ D− {a}}. Then A ⊆ ⊕d∈Dµd with
∪̃A∈AA = 1D. Thus, there exists a countable subfamily A1 ⊆ A such that ∪̃A∈A1Cl⊕d∈Dµd (A) = 1D. Now
for each d ∈ D− {a}, Cl⊕d∈Dµd (dH) = dClµd(H) = dH. And, for each U ∈ U, Cl⊕d∈Dµd (aU) = aClµa(U).
Therefore, there exists a countable subfamily U1 ⊆ U such that ∪U∈U1U = H. It follows that (H,µa) is
almost Lindelof.

Sufficiency. Suppose that D is countable and (H,µd) is almost Lindelof for all d ∈ D. Let B = {dU : d ∈ D
and U ∈ µd}. By Theorem 3.5 of [6], B is a soft base of ⊕d∈Dµd. We apply Lemma 3.1. Let A ⊆ B such
that ∪̃A∈AA = 1D. For each d ∈ D, let σd = {U ⊆ H : dU ∈ A}. Then for each d ∈ D, σd ⊆ µd with
∪U∈σdU = H and so, there exists a countable subfamily ρd ⊆ σd such that ∪U∈ρdClµd (U) = H. Let A1 =
{dU : d ∈ D and U ∈ ρd}. Since D is countable, then {dU : d ∈ D and U ∈ ρd} is countable. Therefore, we
have A1 is a countable subfamily of A with ∪̃A∈A1A = 1D. It follows that (H,⊕d∈Dµd,D) is soft almost
Lindelof.

Theorem 3.3. Let {(H,µd) : d ∈ D} be an indexed family of STSs. Then (H, (⊕d∈Dµd)ω∗ ,D) is soft Lindelof if
and only if D is countable and (H, (µd)ω∗) is Lindelof for all d ∈ D.

Proof. Follows from Theorem 2.25 and Theorem 38 of [7].

Theorem 3.4. If (H,β,D) is soft almost Lindelof, then (H,βω∗ ,D) is soft Lindelof.

Proof. Let K ⊆ βω∗ such that 1D = ∪̃K. For each dm∈̃1D, choose Kdm ∈ K such that dm∈̃Kdm .
Thus, for each dm∈̃1D, there exists Mdm ∈ β such that dm∈̃Mdm and Clβ (Mdm) − Kdm = Ndm ∈
CSS(H,D). Since (H,β,D) is soft almost Lindelof and ∪̃dm∈̃1DMdm = 1D, then there exists a count-
able subset T ⊆ SP(H,D) such that ∪̃dm∈̃TClβ (Mdm) =

(
∪̃dm∈̃T

(
Clβ (Mdm) −Kdm

))
∪̃
(
∪̃dm∈̃TKdm

)
=(

∪̃dm∈̃TNdm
)
∪̃
(
∪̃dm∈̃TKdm

)
. Since ∪̃dm∈̃TNdm ∈ CSS(H,D), then there exists a countable subset K1 ⊆ K

such that ∪̃dm∈̃TNdm⊆̃∪̃K∈K1K. Thus, 1D =
(
∪̃K∈K1K

)
∪̃
(
∪̃dm∈̃TKdm

)
. Therefore, (H,βω∗ ,D) is soft

Lindelof.

Corollary 3.5. If (H,β,D) is soft Lindelof, then (H,βω∗ ,D) is soft Lindelof.

Proof. This follows from Theorem 3.4 and the fact that soft Lindelof STSs are soft almost Lindelof.

Problem 3.6. Let (H,β,D) be an STS such that (H,βω∗ ,D) is soft Lindelof. Is it true that (H,β,D) is soft
Lindelof?

4. Conclusion

Following the work of Shabir and Naz [31], several different soft set types have been explored. Soft
semi-open sets, soft pre-open sets, soft regular open sets, soft theta open sets, soft omega open sets, and
so forth are a few examples.

In this paper, we developed a new type of soft sets called soft ω∗-open sets using the soft closure
operator. We establish that the soft topology formed by this class of soft sets strictly falls between that
of soft ω-open sets and that of soft θ-open sets. Moreover, we demonstrate that the soft co-countable
topology is included in the soft topology of soft ω∗-open sets and is independent of the topology of soft
open sets. Additionally, we presented several results concerning soft almost Lindelof STSs. Finally, it
studied how the unique concept of soft topology corresponds to its general topological analog.

In future studies, the following topics could be considered:

1) define new classes of soft functions using soft ω∗-open sets;
2) investigate the behavior of soft ω∗-open sets in the context of product STSs;
3) define the soft ω∗-closure and the soft ω∗-interior operators.
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