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Abstract

The primary objective of this study was to demonstrate the existence and uniqueness of a weak solution for a nonlinear
parabolic problem with fractional derivatives for the spatial and temporal variables on a one-dimensional domain. Using the
Nehari manifold method and its relationship with the Fibering maps, the existence of a weak solution for the stationary case
was demonstrated. Finally, using the Arzela-Ascoli theorem and Banach'’s fixed point theorem, the existence and uniqueness of
a weak solution for the nonlinear parabolic problem were shown.
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1. Introduction

Fractional calculus finds its application in different areas; for example, applications can be cited in
viscoelasticity, electronics, chemical reactions, quantum mechanics, semiconductors, propagation of elec-
tromagnetic waves and materials, and transport phenomena by convection-diffusion, see [1, 5, 6, 8, 11, 13,
16, 17, 20, 21, 23, 24, 27, 28, 33].

Some studies have made it possible to test different methods in this area of research, such as the work
of Hai Pu and Lili Cao [25], who proved the existence and multiplicity of solutions for a fractional differ-
ential equation with boundary conditions using the Nehari manifold and Fibering maps; and the work of
Goyal and Sreenadh [12], who demonstrated the existence and multiplicity of nonnegative solutions by
minimization on the appropriate subset of the Nehari manifold using Fibering maps. In the same way,
Meilan et al. [26] proved the existence of a weak solution for a p-Laplace problem and obtained results
of the existence of weak solutions using the Nehari variety, the fixed point theorem and the Arzela-Ascoli
theorem. Brown et al. [4] studied a differential equation with Dirichlet conditions and showed how the
results of the existence and multiplicity of solutions by nature of the Nehari manifold arise. Tsun-Wu [31]
studied the number of solutions for a semilinear elliptic system with a weight function that changes sign,
and with the Nehari variety method, they showed that the system has at least two nontrivial nonnegative
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solutions. Brown [3] demonstrated the existence of a weak solution for an elliptic problem with the Nehari
manifold method, and with bifurcation theory, the nonexistence of solutions was analyzed. Drabek et al.
[9] studied the theory of nonlinear boundary value problems for elliptic operators and demonstrated the
existence of a weak solution in weighted Sobolev spaces. Similarly, Torres [18] demonstrated the existence
of nontrivial solutions for a Dirichlet problem with mixed fractional derivatives using variational methods
and the mountain pass theorem. In the same way, Chen et al. [7] used critical point theory to demon-
strate the existence of weak solutions for a frontier problem with fractional derivative and p-Laplacian.
Similarly, Meilan et al. [26] demonstrated the existence of a weak solution for a nonlinear problem with
fractional derivative using the Nehari manifold method. These results are an important antecedent for
the objective of this study and are described below:

ng’u(X,t) = —DX (| oDXu(x, t)[P72 oDXu(x, t) + Au(x, t)[P~2u(x, t),
+b(x)u(x, t)]9 Tu(x, t), (x,t) € QT,
P;1: ¢ u(0,t) =u(A,t)=0, t€I0,T], (1.1)
u(x,0) = d(x),x € [0,A],
ue(x,0) =(x),x € [0,Al,

where Q1 = [0,A] x [0,T], °DP and D% are Caputo fractional derivatives of order 1 < 3 < 2 and
% < a < 1 for the temporary variable, respectively; 1 < q<p—1with 2<p <oo,b:[0,A] = Ris
a continuous function, b € L*([0,A]), ¢(x), P(x) € L*[0,Al, A is real positive, and u € Eg‘ P[0, A] is the
fractional space that will be defined in a later section of the article. In addition, the stationary problem
associated with the problem P; is:

P, - { «DX (oDFu(x)P72 gDgu(x)) = Au(x)[P2u(x) + b(x)u(x)[ " u(x), x € [0, Al, (12)
O uw(0) =u(A) =0, '
where % <a<l,and 1<qg<p—1,with 2<p<oo,and b € L*[0, A.
To prove the existence of a weak solution for the problem P; (1.1), we will prove the existence of a
weak solution for the problem Py (1.2). To achieve this, we will use the Nehari Manifold because the
minimization of energy functional associated with the problem Py (1.2) is not possible for all E;"P[0, Al.
Thus, it is necessary to restrict to the set of critical points on the Nehari manifold, which is a weak solution
for the problem Py (1.2).

This study is structured in different sections as follows. Preliminaries are described in Section 2; the
weak solution of the stationary problem Py is described in Section 3; the existence of a weak solution
of the fractional parabolic equation is described in Section 4; and conclusions are provided in the final
section.

2. Preliminary

Different definitions of fractional derivatives, such as those reported by Riemann Liouville, Grunwald
Letnikov, Hadamard, Erdelyi and Caputo, which can be found in the literature by Kilbas [16] and Kenneth
[21], are not necessarily equivalent. This study used the Riemann-Liouville and Caputo definitions of
fractional derivatives.

Definition 2.1 ([32]). Let u: [a,b] C R — R be a real function and « € R*. The left and right Riemann-

Liouville fractional integral of order « and function u are defined by:

t b
Jfu(t) = F(loc)J (t—s)* tu(s)ds, (ISu(t) = F(loc)J (s —t)* Tu(s)ds,

respectively.
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Definition 2.2 ([32]). Let u: [a,b] C R — R be a real function where « € R" and [«] = n is the smallest
integer greater than «. The left and right Riemann-Liouville fractional derivates of order & and function
u are defined by:

x o 1 g t e yn—a—1
aDfu(t) = Fn o0 dtn L(t s) u(s)ds (2.1)
and .
«Dpu(t) = (—1)“% L (s —t)" > lu(s)ds, (2.2)

respectively. Expressions (2.1) and (2.2) can also be written as

d" e d"  mn-w)

aDiu(t) = o laly” “uls)] and (Dpult) = (17 S okl Tuls)],

where alinf(x), tll()nf‘x) € C™a,bl.

Definition 2.3 ([32]). Let «x € R* and [&] = n be the smallest integer greater than «. The Caputo
fractional left and right derivatives of the function u : [a,b] € R — R are defined by the Riemann-
Liouville fractional derivative as follows:

Crhya o4 = uk(a) k Crha 4 = uk(b) k
SDfu(t) = oDF u(t) — ) o (t—a)| and £DFu(t) = «DF |ult) - > o (b—1)
k=0 ) k=0 )
for a <t < b. In particular, when 0 < & < 1, of Definition 2.3, we have:
D) = D) —u(a), SDFu(t) = (DE() —ula)). (2.3)

Proposition 2.4 ([34]). Let o« > 0, n € IN such that [«| = n is the smallest integer greater than x (n—1 < oc <
n). Ifue AC™([a,b],R) or u € C™([a, b],R), then

JIX(EDFU(t) = u(t) —

- (2.4)
JE(EDFU(t) =u(t) — (b—1t)%, tela,bl

In particular, when 0 < « < 1, u € AC™([a, b],R) or u € C™([a, b],R), then
JXEDIU(t) =ult) —u(a), IF(EDFu(t)) =ult) —u(b).

Definition 2.5 ([19]). Let u € L!(a,b), c € (0,1). If v € L _ _(a, b) exists such that:

Loc

A VAN
L u(t) th;q)(t)dtzL v(t)e(t)dt, Vo € CF(0,ALR),

then, v is called the left fractional weak derivative of u and is denoted by: aD;"u = v. Similarly, we have
that if there exists w € L! _ (a,b) such that:

Loc

A A

j u(t) aDs‘cp(t)dtzj w(t)p(t)dt, Ve € CP([0,AlR).
0 0

Then, w is called the right fractional weak derivative of u and is denoted by {D%u = w.
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Definition 2.6 ([15]). For 0 < « < 1 and 1 < p < oo, the fractional Sobolev space denoted for Ej"P is
defined for the closure of C§°([0, A], R) with respect to the norm of E*P[a, b],

E(()Xfp [a’ b] — CSO[O, /\]H‘”&X,p.

Definition 2.7 ([30]). Let % <a<land1 < p < oo, the space of fractional derivatives E;"P[0, A is
defined by:
EqP0,Al ={u € LP[0,A] : ¢Dffu € LP[0, Al,u(0) = u(A) =0}

with
A

A
Il = J (Pt + j LDSu(DPdt, Vu € ESPI0, Al
0 0

In the following, we give some properties of the fractional space E;""[0, Al.

Proposition 2.8 ([30, Poincare-Friedrich inequality]). Let 0 < « < 1and 1 < p < oco. Forall u € Eg"p [0, Al,
we have

TO(.
u < ——|[oD&ul|r.
Ilir < oy loDEule
1 1.1 _
Ifa>Sand o+ =1, then
To—1/p o
[ulloo < loD -

Mo ((c—1)q+1)/d
Remark 2.9 ([30]). According to Proposition 2.8, can be considered E(‘)x P[0, A] with respect to the norm

¢ 1/p
Iullop = loDSu(t)]r = (L |0D%u(t)|pdt) | 25)

Proposition 2.10 ([14, 18]). Let 0 < x < 1and 1 < p < oo. Assume that o« > % and the sequence {uy } converges
weakly to won Ey"P[0, A]; then, we — win C[0,T], ie., ||urf —uljoc — 0, k — o0.

Theorem 2.11 ([30]). Let o € <%, 1), then, the continuous injection £y [0, A] < LP[0, T] is compact.

Theorem 2.12 ([2, Banach fixed point theorem]). Let X be a Banach space and let T : X — X be a contraction,
that is, there exists k € (0,1) such that

ITw) —THW)|| < k|lu—v]|], Vu,veX.
Then, there exists uy € X (unique) such that T(ug) = uy.
Lemma 2.13 ([16]). Supposey € C[0,T], 0 < T < land 1 < o < 2, then, the problem
D*u(t) =y(t), tel0,T],
has a unique solution

u(t) = up +u/(0)t+ F(loc) Jo (t—s)* ly(s)ds.

3. Weak solution of the stationary parabolic problem P,

Considering the problem Py, we proceed to make the variation formulation to obtain the energy
functional. We have the problem:

<D (JoDZu(x) P72 oDZu(x)) = Au(x)[P~2u(x) + b(x)u(x)|9 'u(x), ¥x € [0,Al, u(0) =u(A) =0.

The next Theorem 3.1 shows that the function of the problem Py is ], € C1(E;"7[0, Al R).
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Theorem 3.1. Let J : E57P [0, Al — R defined by

1 A 1
Jalu) = J | oDSuPdx — J Iulpdx—J blu/9 ! dx.
P JioAl P JioAl q+1Jpn
Then, J € CL(Ey"P[0, Al R) with
Jawyv = J loDXuP~2 gD %u oD %vdx —J AP ~2uvdx —J blul9 Tuvdx; W € EoP[0, Al
(0,A] [0,A] [0,A]

Proof. Given1 < q<p—1, 2 <p < o0, % < o< landv e Ci°[0,A], the variation formulation of the
problem Py is:

-
XDj"\(\ODi‘u\p_z oDIu)edx = J Au/P2ugdx —i—J blul9 ue, Ve e Co°l0, Al
J[O,A] ] [0,A]

r

oA

IOD)"(‘uI"*2 oDJu oDy @dx = J AuP2updx +J blul9 lupdx, Vo e Cyl0, A,
JIO,A] ] ]

N

[0,A [0,A

|0D,‘z‘u|p*2 oDJu oDEvdx = J Aulpzuvdx—l—J blul9 tuvdx, Wv € Cgelo, Al (3.1)
JIo,A] ]

r

[0,A] [0,A

loDSu/P 2 gD%u (D ¥vdx = J AP 2w vdx +J blu/9 luvdx, Wv e EgPI0, Al

JI0,A] [0,A]

Jawyv = J[o R loDXuP~2 (D%u (D %vdx — J

[0,A]

Au/P~2uvdx —J blul/9 Tuvdx; Wy e EqP[0, Al
]

(0,A] [0,A

If this function is the derivative of a functional for some u € Eg‘ ‘P[0, A] then we have a variational formu-
lation, with J, : P[0, A] = R and
1 « A 1 1 ap
Jalw) == | oDSu/Pdx — — [uPdx — —— blu[Tdx, Yu e EyP[0, Al
P Jio,Al P JioAl q+1Jpn

d
According to the Theorem 3.1, J; is a functional in c! (Eg‘ ‘P10, A]l,R) with the derivative of Gateaux on
u € E;P[0, A] given by (3.1) for every address v € E;"P [0, A]. In this case, u € E;"P[0, Al is a weak solution

for the problem Py if and only if it is a critical point of the functional J,. The following Lemma explains
the behavior of the energy functional ], (u) in the fractional space Eg‘ P10, Al.

Lemma 3.2.

(i) Suppose N < Ay, then, ]y is lower bounded on Ey"P[0, Al.
(ii) If A > Aq, then ], is not lower bounded.

Proof.

(i) The first eigenvalue A; of problem Py is:

" oM oDZu(x) [P dx

Al = mi < 0,
uekg” [0 u(x)Pdx
Also
M hww<J oD ufP dx,
Jio,A] 0,A]
A J [uPdx — A [ulPdx < J | oDSu/Pdx — A J [u|P dx, (3.2)
[0,A] J[O,A] [0,A] (0,A]
J | oDZu[Pdx — A uPdx > (A —A) J lu[Pdx, Vue ESP.
[0,A] J[O,A] [0,A]
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Then, we have

A —A 1
N )J |u|de—J bl dx,
P [0,A] q+1

and

AW =1 — A)j |u|pdx—bj|u|q+1dx,
[0,A] q

+1

J1
P
K (3.3)

(q+1)/
A 2= (A — ?\)J N A <Jlulpdx> .
P [0,A] q-+

Therefore, ], is lower bounded on E;"P[0, A] when A < A;.

(ii) If A > A;, we look at the address of the primary eigenfunction ¢1 € E;"P, and we see that, when
t — oo, the functional ], goes to —oo, that is

A A 1
lim Jx(tby) = lim {1 | nera-2 e | b|tq>1|q“dx] ,
t—o0 t—=oo [ P Jo,A] P JioAl q+1Jp,n

lim Jx(tdq1) = lim |t[P |[—2 Pdx — bldpq[9T dx |,
tﬁooh( ¢1) t%oo| | [ - ol [o}] (g D@ Jg 0 |1l

we have that tlim Ja(td1) = —o0, therefore, ], is not lower bounded on Eg"p [0, A] when A > Aq. O
—00

Minimization is not possible in the entire space Eg"p [0, Al. In this case, we can consider the Nehari
Manifold [22] for the problem Py defined by:

N ={u € EXP[0, Al : (J4(w),uw) = 0,u # 0}, (3.4)

The set N (3.4) to be Negari manifold should satisfy some condition, such as Ny # {), closed and C!
class.
The next proposition shows that N, is closed in E;"P [0, Al.

Proposition 3.3. There exists co > 0 such that ||ul[gara) 2 co for all u € Nx. Consequently, Ny is a closed
subset of E;'P [0, Al

Proof. From the Poincaré inequality [18, Proposition 2.6], we have

X X

—[|oD¥ = — «, .
r(a+ 1)”0 tuHI—p F(Cx,—i‘l)”uHEop[O’A]

Additionally, as b € L*°[0, A] by continuous injection LP[0, A] — L9410, A], there exists a constant ¢, such
that |[ul[p a+1j0,4; < c|[t|lLr(o,A); NOW considering b < [|b||{ [y A, it follows that:

[ullee <

1 1
J[OM blul 9 dx < [|bl[reio ) Iullfes < bl acd™ Hullfs ' < Ibllrepacd™!

- [|[U||px .
Mo 1)” HEOP[O,/\]
Because u € N, we have that

| oDSu/Pdx — AJ hu/P dx—J blu/9dx =0,
JIO,A] [0,A] [0,A]

| oDSuPdx — ?\J lulPdx = J blu/9t dx,

J[O,A] [0,A] [0,A]
| oDSuPdx + J lu|P dx — J lu|Pdx — AJ lu|Pdx = J blu/9dx,
JIO,A] [0,A] [0,A] [0,A] [0, /\]
P _ q+1 q+1 q+1
HuHEw oA — TNl = J[O,M b9 dx < [[b|Lo,A)C Mo H s 0,417
1) b R s
HuHE"‘P [0,A] ( + )WHU'HE“P 0,A] + || HLDO[O,/\}C m” ||E°‘P [0,A]°
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Considering ¢; = (1+A) ria5qy and €2 = [[b| Lo, Ajc 9™ w457, We have the next inequality,

1
[P gy < 1m0y + 2SR

1
HuHED‘P [0,A] > ClHuHE“P [0,A] + CZHuHE;LP [0,A]
Co 1
ulleario g [1+c JP=laF = ¢o > 0.

\\/

That is, ||u||E(er,p 0,A] = €0 >0, Vu € N, therefore, Nj is a closed subset of Eg"P[0, Al. O

For the functional ], minimizing points should be coercive and lower bounded on Nj. The following
Theorem 3.4 shows this.

Theorem 3.4. The functional ]y is coercive and lower bounded on Nj.

Proof. From the definition of J,, as well as b € L*[0, A], using equivalence (2.5) and continuous injection
of LP[0, A] < L9%1[0, Al, there exists Cq such that |[u|| 4119 4) < C1l[ul|Lron :

bl

Jalu) > *HuHEg‘P 0,A] ” ITr 0,0 — LP0,A]"

q+1
Also, from the continuous injection of Eg‘ P[0,A] — LP[0,A], there exists Cp such that |[ul|;» 0A] <

Callul[ggro,A)- Having

1 )\ 1 .
])\(U) P ||U||Eccp [0,A] CZHu”Emp (0,A] q ||b||ooC1C2Hqu;Lp AL

implies that:

1 A
q-+1
() > (5= 22 Iuligri 0~ g IoCallal R 0

Because 1 < q <p—1, then2 < q+1 < p, and it follows that
Ja(w) — +o00, when HuHES"p([O,/\]) — 00.

The functional J, is bounded below. Indeed, if J, is coercive and given M = 1, there exists R > 0 such
that:
Jalw) 21 for |lullgar (o)) = R. (3.5)

If u € EgP[0, Al and [uflgario ) < R, then

1 A .
Ta(w)] < pIIuIIEwOM pllulleo/\]+q HbllooClHuHEJOA

1 A .
1;IlullEap oAn T pCZHU—”Ecxp o T g1 HbllooClCzHuHEip Al
1 A

1
<=RP + ZCoRP + ——||b]|C3RIT =K.
p P q+1
Therefore, we have
Jalu) = —K. (3.6)

From (3.5) and (3.6):
Jalu) > —K, VueEFP[0,Al

proving that ], is lower bounded in E;"P[0, Al. O
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The Nehari Manifold is associated with the behavior of Fibering maps of the form ¢ (t) : t —
Ja(tu) (t > 0). The Fibering maps were introduced by Drabek and Pohozaev [9] and by Brown and
Zhang [4]. The fiber map for problem Py is defined by following.

Definition 3.5. Let t € R™, the Fibering maps ¢, : R — R are defined by

q+1

Put) = Jaltu) = fj (| oD — AluP) dx— &

J blu/9 1 dx.
[0,A] q+1Jpon

Then, the derivative of ¢ (t), is:

$! (1) = Ja(twu =P J (| oDXUP — AlulP) dx — 9 J blu/9tdx. (3.7)

(0,A] (0,A]

Because t > 0 it follows from (3.7) that

oL = Tt (3.5)

This result implies that t > 0 is the critical point of ¢, if and only if tu € Nj; for example, u € N, if and
only if t = 1 is a critical point of ¢,,. Thus, the task of proving that N # () can be replaced by finding
critical points for the Fibering maps. Explicitly finding the critical points of ¢, is infeasible; thus, the
following helper function is defined:

my(t) = J | oDXufPdx — ta—(P—1) J bhu/9t1dx. (3.9)

[0,A] (0,A]

The derivative of (3.9) is:

m(t) =[(p—1)—qltdP J blu[9tdx, m[/(t) =[(p—1)—ql(q—p)td P! J blu/9™dx. (3.10)
[0,A] [0,A]

Factoring tP~! in the equation (3.7), we have:

dL(t) =tP ! (J (| oD —AfuP) dx — 4~ (P~1) J blulq“dX>

[0,A] [0,A]

== (J | oDZufPdx —t9=(P~1 J blu/9+dx — J AlufP dx) (3.11)
[0,A] [O,A] (0,A]

=P ! (mu(t) —J ?\ulpdx> .

[0,A]
Thus, from (3.11) and (3.8), we obtain
tue Ny & ¢, (1) =0 my(t) = AJ luPdx, t>0. (3.12)
[0,A]

Remark 3.6. Given t > 0 will be a critical point of ¢, if and only if, it is a solution of the equation

my(t) = AJ [ulP dx. (3.13)
[0,A]

If u € N, then t =1 is a critical point of the function ¢,. Thus, the critical point can be characterized
according to the sign of the second derivative of ¢.,, that is, verifying if ¢./(1) >0, ¢//(1) <0, o ¢;/(1) =
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0. With problem Py, this characterization is equivalent to verifying if the critical point is a local minimum,
local maximum or inflection point. Thus, the second derivative of ¢, is:

"t) = (p—1)tP 2 J (I oDZUP —Alu/P) dx — qt9—1 J blu/9ttdx

[0,A] (0,A]

1 1 (3.14)
=2 ((p—l)J (| Ofotulp—)\ltulp)dx—qJ bltulqﬂdx) = t—zd){'u(l), t>0.
[0,A] [0,A]
Thus, similar to the method used by Tarantello [29], N, is subdivided into three subsets:
NY={ueNy: (1) >0}, Ny={ueNy:4/(1)<0}, NQ={ueNyr:¢](1)=0}.
(3.14) and (3.10) imply that:
1
L) = 500 (1) =t TIm{ (1), (315)

Equation (3.15) tells us that to characterize a critical point of ¢, it is sufficient to observe the sign of the
first derivative of m;, relative to that point. Once the subsets of N, have been defined, we are in a position
to state the following theorem, which gives us a sufficient condition for the set N, to be a differentiable
variety.

Theorem 3.7. If NQ = (), then the set Ny is a manifold of class C*[0, Al.

Proof. We have N = G;l({O}), where Gy : E;"P[0, A] \{0} — R, is a function defined by

Ga(u) = (Ja(u),u) = J | oDSuPdx — )\J luPdx — J blu/9dx, (3.16)
] [0,A]

oA [0,A]

where G, is a function of class C![0, A], whose gateaux derivative is u € Eg"p [0, A] \{0}, in the direction of
vector v, which is given by

(Gr(uw),v) =p J | OD,‘Z‘uIP_1 oDJvdx — Ap J P~ lvdx — (g +1) J blul9 Tuvdx.
[0,A] [0,A]

0,A [0,A]

We want to prove that N = G;l({O}) is a variety. 0 will be proved to be a regular value of G, (u), which
is equivalent to proving that, for all u € N,, the function G, : Eg‘ P10, Al \[0} — R is surjective. Thus,
there exists v € Eg"p [0, A] such that (G} (u),v) # 0. However, because u € N, just taking v = u, we have

(Gy(u),w) :pJ | OD)‘i‘updx—ApJ Iulpdx—(q—i-l)J blu/9 Tt dx
] 0,A]

O,A (0, [0,A]
—(p-D | JoDfWPax-Ap-1) | juPax— | bhtlax
[0,A] [0,A] (3.17)

lu|Pdx — qJ blul9dx
[0,A]

[0,A]

—i—J IODi‘qudx—?\J
[0,A] [0,A]

= ¢ (D) + (Jalw),w) = d(1).

Because N§ = (), we have ¢//(1) # 0, and therefore, G, : E;"P[0,A] \{0} — R is surjective for every
u € Ny. The proof is thus concluded. O

The following proposition relates the Nehari manifold and fibering maps.
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Remark 3.8. Given u € N, we can write the functional J, : E5P [0, A] — R as

1 1
(u) = < — ) J blu/9 Tt dx
I P q+1/ Jona

as a consequence of

| GoDgurax—NwPyax= | bhuerTax. (3.18)
[0,A] [0,A]
Remark 3.9. If u € Ny, that is, if ¢ (1) =0, from (3.18) and (3.14), we have
71 =[(p—1) —q]J blul9 dx. (3.19)
(0,A]

Lemma 3.10. If tu € Ny, it follows from (3.19) and (3.10) that
(D) =P my ().
Proof. If ¢/ (1) =0 of (3.7), we have:
OI(1) = [(p—1) q]J bl dx.
[0,A]
Then, letting tu € Nj, we have

L) =Ip—1)—qlta*! J b9 dx = tPH1t9P [(p—1) — q] J bhul9* dx.
(0O,A]
From (3.10), we have

0 (1) =P m (1)

O
Lemma 3.11. Given u € Ny and my,(t) defined in (3.9) implies that:
ue Ny <= mj(t) >0 and ue Ny < m/(t) <0.
Proof. This result follows from Lemma (3.10):
tue Ny <= ¢"(1) <= m[(t) >0, tue N, < ¢"(1) < m/(t) <0.
O

The following lemma exhibits a sufficient condition for minimization over Nehari to generate critical
points for the functional Jj.

Lemma 3.12. Suppose that uwy € Ny is a local maximum or minimum point for Jx in Nj. Therefore, if uy ¢ N9,
then wy is a critical point of J at Ey'P.

Proof. If ug is a local maximum or minimum point of J, in Nj, then ug is a solution of the following
optimization problem:

Maximize(Minimize) J subject to N, where Nj = G;l{O} and G, defined in (3.16).
Then, by Lagrange’s Multipliers Theorem, there exists 6 € R such that:
(Ja(ug), vy =8 (G'(up),v), for all v € E;"P[0, Al (3.20)

Taking v = 1y and considering that ug € N,, it follows from (3.17) that (G'(ug), uo) = ¢ (1), which is

Uo

different from zero, by hypothesis. Therefore, from (3.20) it follows that 5 = 0. Therefore, uy is the critical
point of J,. O
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3.1. Behavior of the function my,

The behavior of the functions m,, and ¢,, depend on the sign of the integrals I[O, Al (| oDSUP —AJulP)dx
and f[o,/\] blu|9t1dx, (in the graphs, A(u) is f[o,/\] | oDZu/Pdx and H(u) is f[o,/\] [ulP dx). We present all
possible cases for the behavior of the function my,:

Case A. If [ 4, blu/9+1dx > 0, the function m,, satisfies the following properties.

(a) We deduce from (3.10) that m,, is a strictly increasing function on (0, +-00).

(b) If t =0, the derivative of the function m,, is not defined.

(c) tlirglo my(t) = f[O, Ayl 0DSu[P dx (see graph (a) in Figure 1)

(d) lirgl my (t) = —oo.
t—0*+

(e) If J‘[O, Al (| oDgu/P —Alu/P)dx < O, then there is no value t that it is a critical point and
therefore that it satisfies the equivalence (3.12).

1
J‘[O/\] b\u\q“dx (p—1—q)
[0,/\](‘ oDguP—AlulP)dx ’

(f) If I[O,/\} (l oDEuP —AlulP) dx > 0, there is only one value t = [I

which is a critical point and thus satisfies the equivalence (3.12).

;n“(t] 1y (£)

A S A \

| e

~y

(a) f[o,/\] blu/9tldx >0 (b) I[O,/\] blu/9ldx < 0
Figure 1: Possible graph of the function m,,.

Case B. If [} 5, bhu/9+1dx < 0, then the function m,, satisfies the following properties.
(a) We deduce from (3.10) that m,, is a strictly decreasing function (0, 4+c0).
(b) If t =0, the derivative of the function m,, is not defined.
(¢) tli_}r{}o my(t) = f[o, A1l oDRu[Pdx (see graph (b) in Figure 1).
(d) Iim my(t) = +oo.
t—0+
(e) If I[O, Al ([ o) DZuP —Alu|P)dx > 0, then there is no value t that it is a critical point and

therefore that it satisfies the equivalence (3.12)
(f) If I[o, Al (| ) DZuP —A[u|P) dx < 0, then there is only one value of

1
f[o,/\} b|u|q+1 dx p—1-q)

T—
Jion ([ oDguP — AlulP)dx

which is a critical point and thus satisfies the equivalence (3.12).

Thus, we can conclude that if I[o Al (| o DEUP — AluP) dx, f[o Al blu/9t1dx have the same sign, then for

ue Eg’p [0, Al, the function ¢, has a unique critical point at t, therefore, there exists t € R such that
tu € N,. If f[o Al (| o DEUP —Alu|P) dx and j[o Al blu/9t1dx have different signs, then ¢, does not have
critical points; therefore, there are no multiples of u in N,.
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\ my, (t) A \ 1y (t)

\
\

A Hfu)

|
1
Afu) R Afu)+ | - -
1
1
|

(a) f[O,A] [ oD&uPdx > A f[o,/\} [u|P dx (b) f[o,x\} | oDSuPdx < Af[o,/\} [ulP dx

Figure 2: Possible graph of the function m,, in Case B.

3.2. Analysis of Fibering maps

Using the behavior of auxiliary function m,,, we analyze the fiber maps considering four cases.
Casel. If I[O,/\] blu/9tldx < 0 and I[O,/\] (| o D&ulPdx — AuP) dx > 0, then we have the scenario described
in property (e) of f Case B, which is shown in graph (a) of Figure 2. Then, ¢.,(t) is increasing (see graph
(b) of Figure 3) because (3.7) we have that ¢/, (t) > 0. Thus, the equivalence (3.12) is not fulfilled; therefore,
it is concluded that no multiple of u is in Nj.

T

AHfu) it

(a) Graph of my, (b) Graph of ¢,

Figure 3: Possible graph of the function ¢, in Case 1.

Case2. If f[o,/\] blu/9t1dx < 0 and f[o,/\] (| o DZFuPdx — AlulP) dx < 0, then we have the scenario described
in the property (f) of Case B, this is observed in (b) of Figure 2. Also, we have that m,(t) is continuous
and Pn% my (t) = oo; thus, for a sufficiently small t;, we have:

—

my(ty) > AJ [u|P dx.
[0,A]

Additionally, ?\I[O A P dx > I[o A loDgulPdx and lirr}) my(t) = I[O A loDgulPdx, then there exists a to
, , o ,
that is sufficiently large such that:

my(t2) < ?\J [ulP dx.
(0,A]

Defining my, : [t1, t2] = R, my(t) is a continuous function with:

malt) < AJ WP dx < ma(t2),
[0,A]
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Then, by the intermediate value theorem, there exists t,, € (t1, t) such that

my(ty) = AJ [ulP dx.
[0,A]

Additionally

m,(t)=[(p—1)—qlti™P J blu/9 " dx.
[0,A]

Also
m (t) <0, sincet>0,1<q<p—1,2<p< 0.

Therefore, m,(t) is a strictly decreasing function. Then, we can conclude that t,, is unique, and the
equation (3.13) has a unique solution t,,. We now proceed to prove that t,, u € N,. Because m(t) has a
unique solution, substituting (3.13) into (3.9), we have

)\J lu|P dx :J | oDi‘ulpdx—tﬂ_(p_l)J blu/9tdx.
[0,A] [0,A] [0,A]

Thus

J | oD%ulP dx — ?\J P dx —td— P~ J blu/9 dx = 0. (3.21)
[0,A] [0,A] [0,A]

Multiplying equation (3.21) by t¥, !, we obtain:

tﬂ_l J (| o DEUP —AlufP) dx —td J blu/9tdx =0, (3.22)
[0,A] (0,A]

which is the same as J; (tyu)t,u = 0.. As a consequence, t,u € Nj. Given t,u € Ny, m/ (t,) < 0 and
t > 0, by remark 3.10:

U (D) =tPm] (ty) < 0.

Thus, tyu € Ny . Also, ¢;,(tu) = 0, which means that ¢,, has a single critical point at t = t,,, which is a
local maximum point. From (3.22), we know that

! J (I oDSUP = AjufP) dx — th bl dx = 0. (3:23)
[0,A] (0,A]

Dividing the equation (3.23) by t,, # 0, we have

tp—2 J (| oDUP — AfufP) dx — tﬂlj blu/9tdx = 0.
[0,A]

[0,A]
Also
tP ta+t 1
lim ¢ (t) = lim [J (| oDEUP — AlulP) dx — J bluldt dx} = —00,
t—o0 t—oo | P [0,A] q + 1 [0,A]
and
tP tq+1 i
Iim ¢ (t) = lim [J (| ) DJuP —AluP) dx — J bluldt dx] =0.
t—0+ t=0*" | P JioA] q+1 [0,A]

Based on this analysis, the graph of ¢, is similar to (b) of Figure 4.
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Afu)

]
.
g
\J

\J

(a) Graph of my, (b) Graph of ¢

Figure 4: Possible graph of ¢, in Case 2.

Afu- BRI Afuj- S

@) [o,a) 1 0DFUPdx <A (g o) P dx (b) Jion; [ oDgWPdx > A [y A [ulPdx

Figure 5: Possible graph of the function m,, in Case A.

Case3. If I[o, Al blu/9t1dx > 0 and f[o, Al (| oDEUIPdx —Alu|P) dx > 0, then we have the scenario described
in property (f) of Case A, which is observed in graph (a) of Figure 5. Also

lim my(t) = lim U | ODSulpdx—tq(Pl)J blulqﬂdx}
[0,A] [0,A]

t—o0 t—o0

= J | oDgul/Pdx > )\J [ulP dx
[0,A] [0,A]

and
lim my(t) = lim U | OD)‘fulpdx—tq_(p_l)J b|u|q+1dx} = —oo0.
[0,A] (0,A]

t—0+ t—0+
Because m,(t) is a continuous function with

Iim my(t) < AJ [uPdx < lim my(t),
t—0t [0,A] t—o0

by the intermediate value theorem, there exists t,, € (0, 4+00) such that

my (ty) = ?\J [u/P dx.
[0,A]
Also

my(t) = [(p—1)—q tq—PJ bl *+1dx
[0O,A]
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and
m, (t) >0, sincet>0,1<q<p—1,2<p<oo.

Thus, m,, is a strictly increasing function, and we conclude that the equation (3.13) has t,, as a unique
solution. Similarly, t,, u € N,. Because m,(t) has a unique solution, substituting (3.13) into (3.9), we have

A J hulP dx = J | oDSufPdx — 3P~ Y J bhul9 1 dx.
[0,A] [0,A] [0,A]
Thus

J | oDSufPdx — AJ uPdx —td~ P J blul9dx = 0. (3.24)
(0,A]

[0,A] [0,A]

Multiplying equation (3.24) by th !, we have
th—1 J (I oDXUP —Aju/P) dx — th blu/9dx =0,
[0,A] [0,A]
which is the same as J} (tuu)tyu = 0. Thus, tyu € Nj. Because tyu € Nj, m{ (ty) >0and t >0

’é/uu(l) = tp+1mﬁ(tu) >0,

that is, tyu € N; Also, ¢}, (tu) = 0, meaning that ¢,, has a critical point that is a local minimum point at
t = t,. Indeed

th1 J (| oDSUP —AluP) dx —td J blu/9tdx = 0. (3.25)
[0,A] (0,A]

Dividing equation (3.25) by t,, yields

th—2 J (I oDZuP —AfuP) dx —td~! J blu/9dx = 0.
(0,A]

(0,A]
Also
tP tq+1 1
lim ¢, (t) = lim [J (| o) DJUP —AluP) dx — J bluldT dx] =0
t—o t—oo p [0,A] q =+ 1 [0,A]
and
tP tq+1 1
lim ¢ (t) = lim [J (| o) DIuP —AuP) dx — J blul9t dx] =0.
t—0+ t—=0* | P Jjo,A] q+1 [0,A]

From this analysis, we conclude that the graph of ¢, is like (b) of Figure 6.
Cased. If I[O, Al blu/9t1dx > 0 and I[o, Al loDgulP —A I[O, A WP dx < 0, thus, we have the scenario described
in property (e) of Case A, which is observed in graph (b) of Figure 5. Then, ¢+, (t) is decreasing (see graph
(b) of Figure 7). Also, because (3.14), ¢/, (t) < 0. Thus, the equivalence (3.12) is not satisfied; therefore, it
is concluded that no multiple of u is in Nj.

After this analysis, we can now define:

Ly(A) = {u ey i ul = 1,J (| o DSUP — AluP) dx > 0} ,
[0,A]
B, = {u eESP :ull = 1,J b9 dx > 0}.
[0,A]

Analogously, we can define L_(A), B_, Ly(A), Bo. In an appropriate way, we can state the following.
(i) Ifu e Ly(A)NB,, then t — ¢ (t) has a local minimum t = t(u) y t(u)u € N;.
(i) Ifue L _(A)NB_, then t — ¢ (t) has a local maximum t = t(u) and t(uju € N, .
(iii) fue L (A)NB_, then t — ¢ (t) is strictly increasing and no multiple of u is in Nj.
(iv) fue L_(A)NB4, then t — ¢y (t) is strictly decreasing and no multiple of u is in Nj;
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i) PR c:-]“
s My ()

—T = A Hfu)

L

-~y
Y

(a) Graph of my, (b) Graph of ¢,

Figure 6: Possible graph of ¢, in Case 3.

ANHw) [

i
Y

Al - — - = —

e iy (t) = e : t

(a) Graph of my, (b) Graph of ¢,

Figure 7: Possible graph of ¢, in Case 4.

3.3. Properties of the Nehari manifold N

In this section, we discuss the fundamental role that the condition L_(A) C B_ plays in determining
the nature of the Nehari manifold.

e When A < A1, by (3.2), we have I[o,/\] (loDZuP —AlulP) dx > 0, for all u € E;"P[0, Al. Therefore,
Ly(A) ={ueEFP0,A]: |lul =1}
and L_(A) =0, Lo(A) = 0.
e When A = A, we have L_(A) =0, Ly(A) = {1}
* When A > A, L_(A) is nonempty.

According to the previous considerations, the condition L_(A) C B_ is always fulfilled when A < A,
because the set L_(A) = () in this case.

Theorem 3.13. Assuming that there exists A such that, forall A < A, L_(\) C B_, then, VA < A, it holds that:
(i) Lo(A) € B_ and so Lo(A) NBy = 0;
(ii) NI, is bounded;

(iii) 0 & N3, and N is closed;
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(iv) Ny NNy = 0.
Proof.
(i). Suppose by contradiction that Lo(A) € B_. Then, there exists u € Ly(A) such that u ¢ B_. Then

uely(A) =ue kP[0 A] |ull =1, J[o A](I oDZuPdx — Alu/P)dx =0,

and

|u| q+1
ugéB_:>J b<> dx > 0.
oA\l

If A < u < A, then
0= (oDgwP—AuPIax> | (oDl ~ phuP)dx = w e L)
[0,A] [0,A]
so that L_(pn) € B_, and what we obtained contradicts the hypothesis of the theorem. Then, Ly(A) C B_
and being B_ N By = (), we have Ly(A) N By = 0.

(ii). Suppose that N5, is not bounded. Then, there exists {u,} C N;\“, such that ||un || = oo when n — oo.
Let v, = ﬁ Thus, we have that {v,} is bounded, and without loss of generality, it can be assumed

that v, — vg in Eg"P[0, Al. Thus, vq — vg in LP([0, A]) and in L971([0, A]), because 1 < q < p — 1. Like
un € Ni:

J blvn] T+ dx — Pl 9 dx > 0,
[0,A] ]

1
[in [l9F1 J[o,/\
Also
J blvol9Fldx > 0. (3.26)
[0,A]

Because un, € N3 C N, we have
J (| oD 1n [P — Al |P) dx = J bl 9+ dx.
[0,A] [0,A]

Then, dividing by ||un||P yields

[ (il il g | Il g
- 7
oAl N funlP [[un[P oA un 9 ffun P

1
un|[P—(a+D) dx — 0,

[ N E s
[0,A] [0,A]

on LP ([0, A]) because blv,,[97! is bounded on L9%1([0,A]) and |1, |[P~(9FY) — oo. Suppose now that
vn - vg in E"P[0, A]. By the convergence theorem, we have

J | 0DSvoP dx < lim ian [ 0DSvnlP.
(0,A] (0,A]

n—oo

Also
J (| oDvol? —APvolP) dx < lim J (| oDSvnlP — Alvn[P) dx = 0
[0,A] [0,A]

n—oo

and thus, we have H:—SH € L_(A). By hypothesis of the theorem, we have L_(A) C B_ and this allows

HX—SH € B_, which is a contradiction by (3.26). Now, suppose vy, — Vg in Eg’p [0, Al. Thus, ||vo|| =1 and

n—o0

J (1 (DSvolP —APvolP) dx = lim J (| (DvalP — Alvn[P) dx = 0.
[0,A] [0,A]
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Thus, vo € Lo(A) and for part (i) Lo(A) € B_, this allows us to obtain vy € B_, which is again a
contradiction, because

J blvol9T1dx > 0.
[0,A]

Therefore, N; is bounded.

(iii). Suppose 0 € Nix; then, there exists {un} € N, such that lim, o un = 0.
Taking v, = ”ﬁ—z”, we have that {v,,} is bounded, and it can be assumed, without a loss of generality,
that v, — vo in Eg”P. Thus, vn — vg in LP([0, A]) and L971([0, A]). Because u, € Ny C N,, we have

. DT AP ax = | bunftax <0
(0,A] ]

[O,A

and multiplying by ||u,||~P, we obtain

J <|0D;‘un|P_A|unlp>dx:J o fun T g9
oAl \ [lwn P [[un[P oA un 9 ffun P

Then, we have

1

(| oDgvnlP —AnP)dx = ———F—
JmA] b " [[un [[p—(a+1)

J blv, |9 dx,
[0,A]

Hunup(q“)L ](| onfvn|p—7\|Vn|p)dX=J ]b|vn|q+1dx <0.
0,A

[0O,A

We know that {v,} is bounded on Eg"p [0, A], b is regular on [0, A] and liLr1 |lun || = 0, and we obtain
mn o0

lim J blv, |9t dx = 0.
0,A]

n—o0

Thus
J blvo|9Ttdx = 0. (3.27)
[0,A]

Because b|vg|9*! is bounded on [0, A] and the term ||u,, HP*(qH) — 00. Suppose that v, — vp in Eg"p [0, Al;
thus, ||vo|| =1 and

j (| (Dvol? —APvolP) dx = lim j (| oD%l —AvnlP) dx < 0,
[0,A] [0,A]

n—oo

which allows vy € Lo(A) or vo € L_(A). Ly € Bg(A) by hypothesis of the theorem and Ly(A) C B_ this for
(i). In both cases, we would have vy € B_, which contradicts (3.27). Thus, v, = vg in Eg‘ ‘P[0, Al; thus, by
the convergence theorem, we have that:

| 1oDgwPax< fim | [oDgvaPax
[0,A] (0,A]

n—oo

Also, {v,} is bounded on ES"P [0, A] and by the dominated convergence theorem
0 y g

lim J [V P dx :J lim |vy|Pdx.
n—o0 [0,/\] [0,A] n—o00

Thus

| oDzl ~ APy ax < tim [ (1 0DgvRP < Aval?) ex <0,
[0,A] n=00 Jo,A]
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Then, ﬁ € L_(A) N By, which is again a contradiction, because L_(A) C B_ and in B_NBy = 0.

Therefore, 0 ¢ Ni)f Now, we continue with the proof that Ni)f is closed. To achieve this, we must show
that N5 C N5 . Let {un} C Ny ; thus, there exists {un} € N3 such that u, — u into E;"P[0, A]l. Therefore,
u € N, , and as we saw before, u cannot be identically null, that is, u # 0. Also, we have the following
result:

J (| oDXUP —AjulP) dx = J blu/** ldx <0. (3.28)
[0,A] [0,A]

If both integrals are equal to 0, then ||73H € Lo(A) N By, which contradicts (i). Hence, by (3.28), both integrals
must be negative, which allows us to u € N, . Thus, N, is closed.

(iv). Suppose that there exists u € Ni)f NN, because u € N, by (iii), we have that u is not identically
null, that is, u # 0, and it is evident that

blu/9 T dx < 0.
JIO,A]

Additionally, because u € Nix,

~

blu/9tdx >0,

J[0,A]
which is a contradiction because we would have to

J (I oDEWP —AlulP) dx = J blul9tldx =0,
[0,A] [0,A]

which is impossible. Therefore, we conclude that W NNy = . O

When analyzing the Fibering maps, we observed that Jx(u) > 0in N} and Ja(u) < 0 in N; That is,
the following theorem states that J(u) > 0 in N and the behavior of J(u) in N3

Theorem 3.14. Suppose that there exists A such that, forall A < A, L_(A) € B_. Then, VA < A, it holds that
(hypothesis of Theorem 3.13):

(i) Ja is lower bounded on N ;

(i) inf Ja(u) > 0, showing that Ny is nonempty.
ueN;

Proof.
(i). The proof of (i) is an immediate consequence of the bounding of N .
(ii). Note that J(u) > 0 for u € N} . Indeed, if u € N then u € N, and

1 1 1 1
(u) = ( — > J (| DU —AlufP)dx = ( — ) J blu/9dx > 0.
I P qa+1/Jon 0 P q+1/ Jipal

Now, suppose that inf J,(u) = 0. Then, there exists {u,} € N, such that liin Ja(un) = 0. By Theorem
NT n—oo

ueciNy

2.11:

J (| oD%upn[P — Al )D&up[P)dx — 0, J blug/9 tdx = lim J blun|9 tdx — 0,
[0,A] [0,A]

[0,/\] n—oo

when n — oo.
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Now, let v, = ”32” ,as0 ¢ Nii; then, ||un || is bounded, that is, there exists C > 0 such that {||un ||} > C.
Then

1
lim J (I oD%V [P — Al )D&y [P)dx = lim J (| oD%uUn[P — Al )DZun[P)dx =0
n—o0 Jg A] n—oo |[un|[P Jio A
and ,
lim J blvn|9Tldx = lim J blun, |9 dx = 0.

0,A] [0,A]

n—oo nAmHuﬁW

Being v,, bounded, we can assume, without a loss of generality, that v, — vg in Eg‘ ‘P[0, A]. Therefore,
vn — vo on E;"P[0, Al, and we have [[vo| = 1 and v, — vg on LP([0, A]) and L9%1([0, A]). Because b is a
regular function on [0, A], using the dominated convergence theorem, we conclude that

lim J blvnqudx:J b lim Ivnqudx:J blvg|9tldx =0,
[0,A] [0,A] [0,A]

n—oo n—oo

J (| 0DLWoIP — Al oDZwp[P)dx = 0.
[0O,A]
Thus, v € Lo(A). Conversely, if v, + v into E;"P[0, A], we have
J (] 0D2vo[P — Al eDZvp[P)dx < 0,
[0O,A]

that is, ﬁ € L_(A\). However, in both cases, H:—‘O’H € By, which is a contradiction, since we know
L_(A) € B_ and Ly(A) N By = (. Therefore

inf Jy(u)>0.
ueNy

3.4. Existence of weak solution of problem Py

In this section, we show that there exists a minimizer at N3 (N5 ), which is a critical point of J,(u) and
thus a nontrivial solution of the boundary problem Py:

Theorem 3.15. Suppose L_(A) € B_(A), then for all A < A

(i) there is a minimizing point for Jx at N¥;
(ii) there is a minimizing point for Jx in N, whenever L_(A) is nonempty.

Proof.

(i). By Theorem 3.14, ], is lower bounded on N;\“. By the definition of infimum, there exists {un} C Ni a
minimizing sequence such that:

lim Ja(un) = inf Jx(u) <O.
n—c0 ueN;

_(1_ 1 q+1
Jalin) (P (Q+1)>J[0,AJb|un| '

as (% — (q}kl)) < 0 and I[O,/\] blvo/9t1dx > 0 for all n, we have that Jx(un) < 0. Also, by part (ii)

of Theorem 3.14, NX is bounded; thus, we can assume that u, — ug in E(‘)x’p 0,A] and u, — ug in
L97+1([0, A]). Therefore, we follow that

and

n—o0

J blug/9Ttdx = limJ blun |9 dx >0
[0,A] [0,A]



R. A. Sanchez-Ancajima, L. J. Caucha, J. Math. Computer Sci., 30 (2023), 226-254 246

1 1
and so m € B,. Therefore, Jx(un) = (p— q+1> LO A]blunqu. By Theorem 3.13, Lo(A\) € B_,
L _(A) € B_ and we also have B_ N B, = (). Thus, Yo € L (A)NB,, and by the previous results, we
ol yoer

obtain that ¢, has a unique minimum in t,,, such that t,,up € N;\“. We must prove that 1y is in the
Nehari manifold. To do this, suppose that un - ug in E;"?, then

J (| oD% uol” — Al gDSugP)dx < lim J (| oD%l — Al oD%un[P)dx,
[0,A] [0,A]

n—oo

lim J blunlqﬂdx:Jbuoqudx.
[0,A]

n—o0

Therefore

1
Jio.n) bluoldT dx e 1
ty, = - > 1.
Y T (| oDZuglP — AjuglP)dx
Also

Jaluo) = J[ ](| oDZuglP — Al gDZug|P ) dx — intig A blugl 9 dx
0N

3.29
< lim J[O,/\] (loDgunl? —Al D3 unlP)dx — J{ON blun |9 dx = lim Ty (un). 02
Because ¢, has a unique minimum at t,,, such that t,,,up € N, it follows that:
by (tuy) = Taltuglto) < du,(t), VEERT
In particular, the inequality holds for t =1,
Jaltuouo) < Jaluo). (3.30)

Then, by (3.29) and (3.30), we have that

Ja(tuguo) < Ja(u) < Jim Ja(un) = inf Ja(u),

which is impossible because t,ug € N5 . Therefore, un, — ug in E;’P[0, A] and ug € N;. Then, we follow
that 1y is a minimizer for J, in N3 .

Conversely, Ja(u) = Ja(lul), and we can assume that 1y is nonnegative in [0, A]. Therefore, JA(up) <
0, up is a local minimum for J, in N;\“. We follow from Lemma 3.12 that 1y is a critical point of J, and
thus is a weak solution of the boundary problem Py.

(ii). Let {un} € N, be a minimizing sequence for J, in N . After Theorem 3.14, we have that

lim Jx(un) = inf Jx(u) > 0.

n—oo LLGN;

Suppose that {u,} is unbounded; thus, we can assume that ||un| — oo when n — oco. Consider v, =
tn_ Being {Ja (un)} bounded, it follows that

Tnl
{j ( oDzunW—Munmdx} and { J (b|un|q“)dx}
[0,A] [0,A]

are bounded and therefore

lim J (| oD&vn[P —Avn|P)dx =  lim J bvn|9tldx = lim blun|9Tldx = 0.
[0,A] [0,A]

n-—oo n— infty n—00 W J[O,A]
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Because {v;} is bounded, we can assume that v,;, — vy on Eg"p [0,A] and v, — vg on LP([0,A]) and
L9+1([0, A]); thus

J blvg|9tldx = 0.
[0,A]

If vin — vo in E;"P[0, A], we see that vy € Ly(A) N By, which is not possible by the (i) part of Theorem 3.13.
From there vy, - vg in Ej"P[0, A] and

J (| 0)DZvolP — AlvglP )dx < lim J | o DZvn [P — Avn[Pdx = 0.

[0,A] o0 J1o,Al

Therefore, vo # 0 and ﬁ € L_(A) N By, which is also impossible. Therefore, {u,} is bounded, and we
0

can assume that u,, — ug in Eg"p [0, Al and u,, — ug in LP([0, A]) and L9+1([0, A). Suppose that un, - uy
in E;"P0, A; then, we have

11\
J blug/9ttdx = lim J blun |9 dx = < — > lim Jx(un) <0
0,A] n—00 Jio,A] P q+1

— 00 n—oo
and
J (| (DZupP — AluglP)dx < lim j (| oDZUnlP — Alun[P)dx
[0,A] n=00 J[0,A]
= lim J blun |9 dx = Jb|uo|q+1dx <0.
Therefore, ﬁ € L_(A)NB_(A) and t,up € N, , where
Vo

1
o JioA] blug| @ dx Py <1
o f[O,A](l 0D>(zCuO|p - }\|u0|p)dx '

Additionally, ty un — ty,uo, but ty,un - ty ug in E5"P[0, Al, then
Ja(tuguo) < lim Ja (tugtn).
Because the operator t — ] (t(un), it reaches its maximum att =1,

lim Ja(tyuo) < lim Ja(un) = inf Ja(uw).
n—00 n—oo ueNjy

Therefore, Ja(ty,uo) < infueN; Ja(w), which is a contradiction. In that sense, u,, — up in Eg"p [0, A], and

it follows that ug is a minimizing point for Jx(u) in N5 . Because J) (u) = Jx(lu|) [19], we can assume that
Uy is nonnegative in [0, A], and as N, is closed, ug is a local minimum point for J in N;. We follow from
Lemma 3.12 that g is a critical point of J) and thus is a weak solution of the problem Py. O

4. Existence of a weak solution of the fractional order equation P,

In this section, we investigate the existence of a weak solution of the fractional order equation (P;) in
the fractional space Eg‘ P[0, Al. By Definition 2.1, [30, Theorem 2.2], [18, Theorem 2.1], and Lemma 2.13,
we can write the problem P; as an integral equation shown in Theorem 4.2.

Definition 4.1. Consider F: [0, A] x [0, T] — R such that:
F(x,u(x)) = — xDX (| oDZu(x, s)IP 2 oDSu(x, s)) + Aulx, s)[P~u(x, s) + b(x)u(x, s)|9 1 u(x, s)

a continuous function on a flat enclosure G C [0, A] x [0, T] that contains u(x,0) = ¢(x) and satisfies the
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Lipschitz condition with respect to t:
[F(x, t1) = F(x, t2)| < Mlt; —ta].

Theorem 4.2. Let 1 < B < 2, [B] = n and F(x,u(x)) defined in Definition 4.1. A function w € C2[0,T] is a
solution of the problem Py if and only if it is a solution of the integral equation

E u(x,t) = d(x) +P(x t—l—r fo s)P=1F(x,u(x))ds,
"1 u0,t) =u(A,t) =0, for dlte - [0, Tl

Proof.
= Let the continuous function F(u) : [0, A] x [0, T] — R with:

Flu(x, 1)) = — xD§(l 0DZu(x, s)IP 2 oDXu(x, s)) + Aw(x, s)[P2u(x, s) + b(x)u(x, )9 u(x, s).
From the problem P; we have the equation
SDPu =F(u) (4.1)

subject to initial conditions

u(x,0) = ¢(x) and u(x,0) = P(x), with x € [0, Al 4.2)
Applying the fractional Riemann-Liouville integral of order {3 from left to (4.1):

oI (§DP) = oIf (Fw)).

Then, given that 1 < 3 < 2 the value of n =2 and of the property (2.4), we can determine that:

u®)(0) K B / 1" pa
ult) = 3 P -0 o P (FO), £ 0,7, i) —u0) w0t = s | (191 MFwas,
k=0 '

then substituting the conditions (4.2),

1 t
() — b(x) — W)t = j (ts)PTF(w)ds

We thus obtain the integral equation E;.
<= In the integral equation E;, we apply the Caputo fractional derivative of order f3:

t
u(x, t) = d(x) + P (x)t+ r(l(s) L (ts)P~1F(u)ds,
SDPu(x,t) = SDPo(x) + SDEw()t+ SDP(HIPF(w)),

then with the property that connect the fractional derivative of Riemann-Liouville and Caputo [34], we
follow what

1 t
§DPulxt) =0+ MJ (ts)2 1@ ds+ SDP(IPFW), §DPulx,t) = Flu(x, 1)
- 0

To obtain the initial conditions, we consider u(x,0) of the equation E,

0
u(x,0) = d(x) +P(x)0 + F(lﬁ) JO (0—s)P~TF(u)ds, u(x,0) = d(x),

further differentiating u(x, t) and replacing t =0,

_ . B—1 _
ut(x,O)—w(xHr(me—s) Flwds, u(x,0) = b(x),

we obtain the problem P;. O
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Definition 4.3. We say that u € C([0, T; E5"P ([0, A])) for 0 < T < 1 is a weak solution of the differential
equation of fractional order Py, if it satisfies

J (u—®@(u))vdx =0, Vt € [0,T], for each v € E;’P ([0, Al),
[0,A]

where
D(w) = b (x) + W)t + w5y ot — )P (= xDF(| )DLulx, s)P~2 (Dgu(x, s))
+ Afu(x, s)[P2 (X 8) +b(x)u(x, S)I fu(x,s))ds, VY(x,t) € Qr,
u(0,t) =u(A,t) =0, foralltinQ =[0,T
Lemma 4.4. Let b € L*°[0, Al, then, the operator
®(u) : EgP10, Al — E¥P[0, Al
is completely continuous.
Proof. Given

F(u) = — xDX (| oDFulx, s)IP 2 oDFu(x, s)) + Au(x, s)P2ulx, s) + b(x)lu(x, s)[9 u(x, s),

then, we can write

t
D) = b(x) + ()t + 1J (t— s)P~TF(w)ds.
I'(B) Jo

For each v € Eg"" ([0, A]) and |[v|[go» = 1, we have that,

(Flu),v) = (— oDgu(x, )[P~2 oDZu(x, s) )DV(x, s) + Alu(x, s)[P~2u(x, s)v(x, s)
Jio,A]
+b(x)ulx, s)9 u(x, s)v(x, s))dx, for each v € ESP, (4.3)
I(F(w),v)| = J (=] oDxuP 72 oDyu gDV + Alu/P ~2uv 4 bjuf9 uv) dx
(0,A]

By Lemma 3.12, we know that r(u) = (J4 (u), u) = 0:
[ opariae= | Nurace | buetta

Additionally, E5P[0, A] < LP[0, A], we know by Poincaré’s inequality, HuHLp 0,A] S W”OD fullLeio,Al,

let us remember that |[oD{ul[rp(o A ||u||Ecxp 0,A] then [[ulip A7 < ]uHEcxp 0,A]- Thus

(oc+1 ’

/\(X
AP ax < = T ) < g 0
J[o,/\] [0,A] FelPoron < Moa+1) [Eav o]

Additionally, by (3.3) and [18, Proposition 2.6], we have

Al—(a+1)/p+a(q+1)
Mo+ 1)a+1

j b9+ dx < [[bll = (o.n) ]| 5L
[0,A]
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—(q+1)/p+a(q-+1)

Let S = +1 and C = W’ thus
1 +1
ullEor < INSPIwfEan + (bl €T el Ear,
1
ullEor — AISPIul[Ear < ||b”L°°[O,/\]Cq+1||u||gg<r,p/

1
Iul[Fan (1 =IAISP) < lleLw[o,/\]Cq“HUHE%,

P
llEser (1Bl iwio €O
Huﬂgﬂ S (1—AISP) "

[uf Pty ||bHLooo,\ ca+1
F_‘Xp ( |)\‘Sp) ,
N
HuH ap < ‘|bHL°°([O,/\])Cq+1 p—(q+1)
Byt (1_|)\|Sp) .

Now, we continue with (4.3) and have

|(F(u),v)| = ‘ J (—| ()D,‘i‘ulpf2 oDJu oDSv + AP 2wy + b9 uv) dx
[0,A] (4.5)

N

H | oDSu/P! g DSvdx + ‘ J blu|9vdx
[0,A] (0,A]

+ ‘ J AuP~vdx
[0,A]

Then, by (2.8), (2.5), and (4.4) and the inequality of Holder, we have that

p—1 1

o P
J | oDSuP~! yD%vdx < (J | 0D§fu|(p1)%dx> (J | OD,?vIpdx)
[0,A] [0,A] [0,A]

= [ oDZUlls Il DIVl = [l Bt V] -

Also
p1 1/p
P
J luP~vdx < (J |u|(p1)%dx> <J |v|pdx>
[0,A] [0,A] [0,A]
-1
=l Ml
(2N g (.
< «, Vg,
Ma+1) Ep Ma+1) o
A% P
~(farr) R o = 57 G Ve
and
g =
J blulBvdx < [[bll oA (J |u|q3dx) (J |v|v’kdx>
[0,A] [0,A] [0,A]
pfgqfl .
- P— P—dq4 p P
< Polueonmlias (| nra) T (] )
[0,A] [0,A]
o _pP
= bl Lo [l IAL T (V]|
_P
A q Ca—1 A P—q P
< |Iblly » L u|deplAl P-a [ — V|| Pd
bl M(r( +1)> M FL(WH)) VIS
A doct PR 4 Re »

< ol ullganlVIIgss

Mo+ 1)9% 50q
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b
Substituting in (4.5) the previous estimations and considering My = ~———"——, we also know that

||vHE8c,p =1l,and1 < q<p—1and 2 < p < oo, then, we have

[(F(w), v)| < ||u||ED¢p+|>\|Sp\|uHEap+Hb||Loo oA MU Eer
[(F(w), v)I < (1+AISP) IIHIIEaerIIbHLoo [0,A] MlllullEcxp

—1
bllt o Cq+1 W
[(F(w), v)| < (1+[AISP) (” Lo (10,A1) )

1—|AISP

=M,

q
[b]| Lo (jo,A7)CATY P aH
1—|A|ISP

+ 1Bl (t0,An M1 <
[(Flw),v) < M,
S,C, M, are constants that we obtain using the Poincaré-Friederich inequality (2.8). Then,

[O(W)[[(ggry- = sup  [@(u),v)]

HVHEg,pél
= sup {00V + (X)Wt o r(t — )P (F(w), v)ds
IVllegp <1 r'(B) Jo

t

< K0, )1+ b (), vt + ’r(lm [ =918, vas

0

t

gHd)(X)HLOO([O,/\})H"ch,p‘HN’ HLOO [0,A] H"HocpT‘i‘K |‘ (t—s)ﬁ lds

M t 1
< DO Lo (iongy F X [Leo (oA T + 527 J (t—s)P~1ds

I'(B) [Jo
< o0l b Ty
=X L ([0,A]) L>([0,A]) BF(B)

M s

<100 s qonn + IO ls(oAnT + 5y T

Therefore, ®(u) is bounded. Therefore, for each v € EgC PIO,AlL t1 < tp; t1,t2 € [0,T], T > 0 and
t) —t1 < 9, see the following:

[Pu(tz) = Pu(tr)| = sup  (Du(tz) — Qults), V)]
”v”]:_g"T»’gl
= sup | (P(x),v)(t —t)+1r2(t —s)P71(F(w),v)ds
_||v||EgE<1 SRR TN e
SR U P
F(B)L (t1 —s)" (F(u),v)ds |,
1 2
[|Du(ty) — du(ty)| < [[W(x ”Loo([O,/\])HV\Egm|tz—t1|+F(B)|<F(u),v>|Ll |t2—s|f’_1ds
+L|<F(u) V>|rll(t — )P (t;— )P Yds
rp) )y P !

= [ ()l (10,1 VIl egep Itz = ta] + s [(F(w), w)l(t2 — t1)P

1
r(p)
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+ r(lﬁ)|<F(u),v>|tzf3 _ L|<F(u),v>|(t2 )P — r(lﬁ)|<F(u),V>Itf

< W (%) oo (o, a7 [t2 — tal +

M g M g
Br(B) 2 Br(p) !
(th —tP)

M
= [0l ro,An Itz = tal + BT(B)

In the following, we divide the proof into two cases. Additionally, for case 1, consider f : (5;1) — R,
defined by f(t) = th.

Case1: 6 <t1 <ty <T,because 1 < 3 < 2, it follows that:

[Pu(ts) = Du(ty)||gerye =  sup  {Du(ty) — Dultr), v)| < [(x) ]| L=(io,an [tz — tal + (t) —tP)

A%

M
Br(p)

HEg‘rP<1

with t; <t < t; and applying the mean value theorem,

th —tf = BtP (s —t1) = [[W(x) || (o)) [t2 — tal + BtP 1ty —t1)

M
BT(B)

< X || Lo (jo,A7) It2 — 1l + [t — t4]

M
r(p)o1=P
M
= [l (10,418 + @66
M

= [[W(x) |t (10,41)8" + TB)SB

M
= <H1|)(X)’L°°([O,/\]) + r(B)) 5P <,

EEIReY.
|tz—t1|<5:{(Hw(X)||Lw([O'A])+'W> E} |

Case 2: 0 <t; <, ta < PP

if

| Du(ty) — d)u(tl)H(Eg,p)* = sup [(Qu(ty) —Qu(ty), V)]

Vg <t

(t) —tf)

M
< W) [l o,a7 [tz — tal + BF(B)

< W) e (0,47 5+m(ﬁ 5)P

M
< W) Lo (po,A7) + méﬁ

M
= (||1|)(X)|L°°([o,/\]) + F(B)> 5P < e.

Therefore, given € > 0 and setting

RNV
:{<”ﬂ)(><)llw([0/\1)+r((5)> 8} ,
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for each v € EFP([0,A]), t1 < t2; t1,t2 € [0,T], T> 0and t, — t; < 5, we have

[Oufty) —Qu(ty)]| = sup [(DPu(tz) —Du(ty),v)| <e.

¥llgen <1

Therefore, ®(u) is equicontinuous. Using the Arzela-Ascoli Theorem, we have that there exists a subse-
quence {d)(ukj)};?il C{®(uy) ¥ such that

@ (uy;) = O(u)
uniformly on E,** [0, Al. Therefore, @ (u) : E;"P[0, A] — E5"P[0, A] is completely continuous. O

Then, from Definition 2.13, Lemma 4.4, Banach Fixed Point Theorem 2.12, Theorem 4.2, and Definition
4.3, it is proven that the problem of nonlinear parabolic with fractional derivatives P; has a unique weak
solution u € C([0, T; E5"P[0, Al).

5. Conclusion

Problem Py has a unique weak solution in fractional Sobolev space E;"P[0, A], with the hypothesis of
A < A < A, where A is the first eigenvalue associated with problem Py, region Q1 = [0, A] x [0, T], and
Caputo fractional derivatives °DP and D* with order 1 < 3 <2 and 1 < & < 1 for temporal and spatial
variables, those were defined by Riemann-Liouville fractional derivative with conditions u(0) = u(A) =0,
where 1 < g < p—1with 2 < p < co. Also, continuous functions were established b, ¢, and { such
that b : [0,A] = R, b € L®[0,A], ¢(x), W(x) € L*®[0,A] and u € E;P[0, Al. The same conditions were
established for problem Py.
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