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Abstract

The main aim of this note is to obtain new oscillation criteria for a certain class of half-linear neutral conformable differential
equations by the method of comparison and Riccati transformation technique. A suitable example is given to illustrate our new
results.
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1. Introduction

In the last years a lot of studies on fractional differential equations have been made (see, for instance,
[2, 16, 17, 21, 25, 44] and the references cited therein). In 2014, Khalil et al. [23] defined the concept of
conformable fractional derivative. For the definition of this kind of derivative, we refer the reader to [1, 4, 9-
13, 15, 19, 23, 34, 35, 41]. It is worth pointing out that conformable fractional derivatives are used in
physics. Precisely, Lazo and Torres [27], where it was used to formulate an action principle for particles
subjected to frictional forces. In this paper, we discuss the oscillatory behaviour of conformable neutral
differential equations of the following form:

Taq (P(6) (e (a(8)Te2(1))P ) +F(1xP (1) = 0, > to, (L.1)

where z(t) = x(t) + c(t)x(5(t)) and for the definition of Ty,’s (i = 1,2,3), see below Definition 2.1. In the
sequel, we always assume that the following hypotheses hold:
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(Hy) 8 € C*([tg, 00),R) with 8(t) < tand lim¢_, 6(t) = co where C*! denotes a space of x;-continuously
differentiable functions;

(Hz) ¢, f € C([tg, 00),[0,00)) with 0 < c(t) < ¢ < 1 and f does not vanish identically;

(H3) B is a ratio of odd positive integers;

(Hs) p,q € C([tg, 00), (0,00)) and satisty

© 1 * 1
J TdWSS = J 7d0625 = 090,
to pB(s) to d(s)
for a definition of x-fractional integral, see below Definition 2.2.

By a solution of (1.1), we mean a nontrivial function z(t) € C*[t,, co) with t, > to, (T, (q (t)To(lz(t)))6

€ C(ty,00), Tas (p(t) (Ta, (q(t)Toqz(t)))B) € C(t4, 00) and x(t) satisfies (1.1) on [t,, c0). We assume that

equation (1.1) possesses such solutions satisfying sup {\x(t)I t> tl} > 0forallt’ > t,. A solution x(t) of

(1.1) is said to be oscillatory in [t., co) if it is neither eventually positive nor eventually negative. Otherwise,
it is said to be nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Oscillation phenomena take part in various models from real-world applications, we refer the reader
to the papers [20, 32, 33] for models from mathematical biology where oscillation and/or delay actions
may be formulated by means of cross-diffusion terms. In the last years a lot of studies related to the
oscillation of ordinary differential equations have been made. See, for instance, [14, 24, 26, 36-39, 42, 43]
and the references cited therein. In particular, half-linear equations have numerous applications in the
study of p-Laplace equations, non-Newtonian fluid theory, porous medium, and so forth; see, for instance,
the papers [6, 8] for more details and the papers [7, 8, 22, 30] and [3, 5, 6, 18, 28, 29, 31, 40] regarding the
oscillation of half-linear equations and half-linear neutral equations, respectively. On the other hand, we
mention that in the aforementioned works, conformable differential equations were not considered and,
for this reason, this article extends the previous studies.

The results established in this paper are improvements of results in [45, 46]. In the source papers
[45, 46], the results are derived in integer order differential equations. Here we extend the results in
fractional order which is the conformal analogue of the main paper. The example which is given here
cannot be dealt with in the integer case. This conformal is more general than the integer class.

2. Preliminaries

In this section, we describe the mathematical background that will be useful in the sequel. For the
sake of brevity, for any T > to, we set:

vt t 1
P(T,1) :J ——d,s = J st ds,

TpB(s T pE(s)
[t P(T,s) [t 4 P(T,s)
QT = | Ft s = [ s Zielas
_ tfq_l > 1—oc (1 > 1—o3 )é
S(T,t) = a JT S (5] L u f(wdu | ds,

t
R(T,t) =exp <J S(T,s)ds) :
T

Definition 2.1 ([23]). Let f: [0,c0) — R and t > 0. Then the fractional derivative of f order of « is defined
by

T.(f)(0) — lim f(t+ et!=%) — f(t)

e—0 €

for t > 0 and « € (0,1]. Moreover, if f is « differentiable in a certain (0,a),a > 0 and lim¢_,o; Ty (f)(t)
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exists, we define

Ta(f)(0) == lim Ta(f)(t).

Definition 2.2 ([44]). Let x € (0,1] and 0 < a < b. A function f : [a,b] — R is «-fractional integral on
[a, b] if the integral

Jb f(x)dox = Jb f(x)x* 1dx

exists and it is finite.
In order to prove the main results, we need the following technical lemmas.
Lemma 2.3 ([44]). Let f: (a,b) — R be differentiable and 0 < o« < 1. Then for all t > a, we have
ISTE(F)(1) = F(+) — (a).

Lemma 2.4. Let us assume that x(t) is a positive solution of equation (1.1). Then, the corresponding function z(t)
satisfies one of the following two cases for all sufficiently large t:

(1) 2(t) > 0, Ta,2(1) <0, Tay (4()Ta,2(8)) > 0, T (P(1) (T, (@(6)To2(6))®)
() 2(t) > 0, Ta,2(1) > 0, Tay (4()Ta,2(1)) > 0, T (PI1) (T, (@(6)To2(8))P)

4

<0
< 0.
The proof of the lemma above follows from well-known results of Kiguradze and Chanturia [24].

Lemma 2.5. Let us assume that x(t) is a positive solution of equation (1.1) and let z(t) satisfies Case (II) of Lemma
2.4. Then

x(t) = (1 —c(t))z(5(t)) (2.1)
for all sufficiently large t.
Proof. Taking into account the definition of z(t), we have z(t) > x(t) and
x(t) > z(t) —c(t)z(8(t)) = (1 —c(t))z(3(t)),
since z is increasing. O

Lemma 2.6. Let us suppose that x(t) is a positive solution of equation (1.1) with z(t) satisfying Case (I) of Lemma

2.4 and assume that x(t) = S(ST(’ﬁ (tt))) —c(t) >0 fort > T. Then, z(t)S(T, t) is increasing and

x(t) = x(t)z(8(t)), fort=>T. (2.2)

Proof. Suppose that x(t) is a positive solution of (1.1) with z(t) satisfying Case (I) of Lemma 2.4 for all t
T, for some T > tg. Then it is easy to see that lim_,, q(t)T«,z(t) = 0 and lim¢_, p(t) (Tazq(t)T(xlz(t))ﬁ
0. Taking I, integration of (1.1) from t to co, we get

>

Loy Tos (PO (T (a(0Tag20)]1) = = [~ (51xP(5) s,
that is,

() (Tay (1) Tay2(£))P < L
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Taking I, integration of the above inequality from t to co, we obtain

00 00 B
Lo T (40T 2(0) < 2(6) | <1 | f(u)da3u> deos,

v \pls)Js
that is,
© /1 (oo B
alt)Teg2(t) > (1) | (p(S)J f(u)da3u> duos,
hence
Toy2(t) = —z(t)t!1™R(T, 1).
Therefore,

T (2(1)S(T, 1)) = Te, z(t)S(T, 1) + 2(t) T, S(T, t) = z(t) (T, S(T, 1) — tIm*S(T,)R(T, 1)) =0,

which implies that z(t)S(T, t) is increasing. Using the fact that the z(t)S(T, t) is increasing and definition
of z, we have

z(t)S(T,t)

x(t) = z(t) —c(t)z(5(t)) = ST

—c(t)z(5(t))

WV
N
»
.
on
=

This completes the proof. O

Lemma 2.7. Let us suppose that x(t) is a positive solution of equation (1.1) and that z(t) satisfies Case (II) of
Lemma 2.4 for all t > T. Then

pe(t)
Too2(t) 2 £ T (40T 2(1)) PIT, 1,
2(t) > pB ()T, (q(1)Tay2(1) Q(T, 1), 2.3)
2(5(1) > Q(T,5() AT, @.4)

forallt > T.

Proof. Since Tq, (p(t) (To (q(t)Talz(t)))B> < 0, we get that p(t) (Ty, (q(t)T(xlz(t)))B) is nondecreasing.
Then

Vv

q(t)T(le(t) = Q(t)Tqu(t) - CI(t)Tqu(t)

¢ P(8)Tay [() T 2(201° ]

- 1 dass > PP (6T (0T, (0] PIT, 1),
T pF(s)
that is,
Toz(t) > q(lt)pé(tmz [q(t) Te,z(t)] P(T, 1). (2.5)

Taking the I, integration of the inequality (2.5) from T to t, we get

=

t
2(t) > p¥ () Ta, [q(t)Tmz(t)]J P(T, s)

oS-
T q(s)

The proof follows as in the lines from Lemma 4 in [45]. O
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3. Main results
Theorem 3.1. Let Ty, 5(t) > 0 and assume that there exists a function t(t) € C*1[tg, 0o) such that

ToyT(t) >0, T(t) >t and ((t) =0(t(T(t))) < t. (3.1)
If both the first order delay differential equations

T0(1W(t) +

1 T(t) o 1 T(s2) L 6 o
q(t)J S p(52) J s; f(s1)xP(s1)dsy | dsadsz | t° T UW((t)) =0  (3.2)
t s

and
To, W(t) +f(t)(1—c(t))PQP [T, 5(t)IW(5(t)) = 0 (3.3)
are oscillatory, then (1.1) is oscillatory.

Proof. Let x(t) be a positive solution of (1.1). Then there exists T > to such that x(t) > 0 and x(5(t) > 0)
for all t > T. From the definition of z(t), we infer that z(t) > 0 for all t > T, where t is also chosen so that
Lemmas 2.4-2.7 hold for all t > T. Therefore, we have following two cases.

Case (I). Substituting equation (2.2) in equation (1.1), we get

Tas (V) (e (a(0Te ()P ) + (0P (012 (5(1)) <0,

Taking I, integration from t to t(t), we get

T(t)

PO (Tog (G(0)To 2(1)))® > j

t f(sl)xﬁ(sl)zﬁ(a(smd%sl>zﬁ(6(r(t)))J Fs1)x® (51)des1.

t
Hence,

T T > z(5 LM (s %
o ((0)Ta2(0)) > 2(8(x(1) {1 L (s0)xP(s1)deast | -

Taking I, integration from t to t(t), we get

T(t)

5 1 T(s7) 8 %
2(5(x(52))) <p(52)J fls1)x (sl)dm) oz

T(t) T(s2) B
Tag2lt) 2 220) s | (p(;) J. f(snxﬁ(sl)d%sl) dass2

Finally, taking I, integration from t to co, we get

Cq(O)Taz(t) > J

t

1

0 T(s3) T(s2) B
z(t)}J sé_“lz(C(SS))J’ séo‘Z( L J s%_"”f(sl)xﬁ(sl)dsl) dspdss. (3.4)

t q(SB) s3 p(SZ) S2

For the sake of brevity, we denote the right side of equation (3.4) by W(t). Then W(t) > 0 is decreasing,
W(t) < z(t) and it is clear that W(t) is a positive solution of the following conformable differential
inequality:

1

1 () a 1 T(s2) . B 201 )
To, W(t) + q(t),[ Sy 7 (52) J h 3f(s1)xP (s1)ds; dspdss | 79 T*W((L(t)) < 0.
t s2

We conclude that the corresponding conformable differential equation (3.2) also has a positive solution
by Theorem 1 in [36], which is a contradiction.
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Case (II). Substituting (2.1) in (1.1), we get

Tao (P() (T ((6) T 2(00))P ) +(8) (1 —c(t)P 2P (5(1)) <0, t > T. (3.5)
From (2.3),
285(t) > p(5(1) (Tay (4(5(6) T 2(8(6))))* QF(T,8(1)), £ > T. (3.6)

Using the inequality (3.6) in inequality (3.5), we obtain

Tas () (o (4(6)Te2()))P ) + £(8) (1 e(6))P p(8(1)) (Tag (q(8(4)) Te 2(8(4)))® QP (T, 8(1)) < 0, t> T,

Let
W(t) = (p(t) (T, (q(1) Ty 2(1)))P > 0.

Then w(t) is a positive solution of the inequality
Ta, W(t) + (1) (1—c(t))P QP (T, 8(t))W(5(t)) < 0.

We conclude that the corresponding conformable differential equation (3.3) also has a positive solution
by Theorem 1 in [36], which is a contradiction. This completes the proof. O

Corollary 3.2. Let the conditions of Theorem 3.1 hold. If

c t 1 T(s3) 1 T(s2) ’ % 1
.. 3 1 '
htrgg; Lm a(s3) Ls (s2) LZ f(s1)xP(s1)da;s1 | dayS2dua;s3 > . (3.7)
and
t 1
limian f(s) (1 —c(s))f5 QB(T,é(t))dalsl > — (3.8)
t—o0 5(t) (4

are fulfilled, then (1.1) is oscillatory.

Theorem 3.3. Let Ty, 8(t) > 0 and let T(t) € C*[ty, 00) satisfy (3.1) and (3.7). If there exists a real valued
nondecreasing differentiable function p(t) such that

: ¢ QPF(T,5(s)) (s'*2)Pp(s)(p'(s))P !
h{cn—iljp LO [p(s)f(s) (1— c(s))B PB(Ts) BT DPHR(s) ds = oo, (3.9)

then (1.1) is oscillatory.

Proof. Let x(t) be a positive solution of equation (1.1). Proceeding as in the proof of Theorem 3.1, we see
that z(t) satisfies one of cases in Lemma 2.4. Case (I) can be proved by using condition (3.7) as in the
proof of Theorem 3.1. Now, let us consider Case (II). Let us define

p(1)p(t) (Ta, (q() Ty 2(1)))
(q() Toy2(t))P

then W(t) > 0 for all t > T. Differentiating (3.10) and using (3.5), we obtain

B
W(t) = fort>T, (3.10)

. e 2P
p(t)W(t) f(t)p(t)(1—c(t)) (Q(0Ter2(1)P
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(Teo (q(6) T, 2(1)))P (q(t) Ty 2(t))’

_ tl—as
¢ PRl () Teq () P!

7

that is,

(q(t) T 2(1))P
(Toy (q(t) Tey2z(1)))PH
(q(t) Teyz(£))PT

foW(1) < 17 (‘)/(:)W(t) — () p(t)(1 - c(t))BZB(é(t))>

— 't gp(t)p(t)

7

which implies that

B5() e IBWE (1)
(@W)Tazt)?  pF()pF(t)

W(t) — % (t)p(t) (1 —c(t))P ,t>T. (3.11)

ﬂ&?,s:: lrst“zj ,and v = W(t) in equation
pB(t)

t)p P (t)

Using the inequality Av — BvﬁT B APT ith A =

= B+1RHT BB

(3.11), we get

W) < —p(0)f(t) (1 —c(t))® 2 — 220 Pllp ()Pt

(q(1) T z(1)P (B+1)B+1pf3(t)(tcxz DN

(3.12)

At last, we use (2.4) in (3.12) and then integrating the resulting inequality from T to t, yields

‘ s QF(T,5(s)) p(t)(p’(t)P+!
L [p(s)f(s) (1—c(s)) pB(T,s)  (B+1)FripB(t)(ta1)B ds < W(t) < oo.

This contradicts (3.9) and completes the proof. O

4. Example
In this section, we present an example to illustrate the effectiveness of the main results.

Example 4.1. Let us consider the following conformable neutral delay differential equation

1

T, <tT% (tT% (x(t) + cx(ut)))) Fox(t =0, t>1 (4.1)

Here, we have p(t) = q(t) = t,f(t) = %,oq =0 =03 = %, B =1,5(t) = ut with 0 < n < 1 and we take
t2

¢ < u2. We can easily check that

t 1 _ tll |
P@ﬂ_Lphﬂgg_L s 2(vVt—1),
t
QLY = Jl 2(\/1_1)51 2ds = 2(vVi—1)?,
t2 [ 11 1 1
R(llt):tJ't SZSJS uzmdltdszfl
t
S(1,1t) :exp<J1 %ds) =12,
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Choose T(t) = kt with k > 1 and pk? < 1. Then ((t) = puk*t < t) and (3.7) becomes

and

t 1 kss3 1 ksy 1 1
limian J J ——(uz—c)dalsldazszd%s?,

t—=oo Jr(t) S3Js; S2Js, VS1 S%
tooq (ks g 1 1
zlimian J —(uz—c)—(l—f)daZSZd%%
t—oo Jr(t) $3Jsy; S2 S2 k
t o1 1 1.2
zliminfj (2 —c)(1— 31— —=)—=du,s
minf| 08— cll- (1= ) dass
1 1 1
=2 —c)(1—)(1— —=)In—,
(=)= )= )

Q(T, 5(t)) = Jtzws%ds =2(Vit —2vt— /i —2).

1 S

Condition (3.8) becomes

lim inf
t—o0

Jt 2(1—c¢)

1 1
wt W(\/ES—Z\/E—\/E—Z)S2dS = 2(1—(‘,)\/}111'1 a

Hence, by Corollary 3.2, (4.1) is oscillatory if 2(1 —¢),/pIn ﬁ > % and 2(p? —c)(1— %)(1 —1)In ui > %
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