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Abstract
We investigate the Peterson hit problem for the polynomial algebra Pd, viewed as a graded left module over the mod-2

Steenrod algebra, A. For d > 4, this problem is still unsolved, even in the case of d = 5 with the help of computers. In this
article, we study the hit problem for the case d = 6 in the generic degree 6(2r − 1) + 6.2r, with r an arbitrary non-negative
integer. Furthermore, the behavior of the sixth Singer algebraic transfer in degree 6(2r − 1) + 6.2r is also discussed at the end of
this paper.
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1. Introduction

Let X be a topological space. Cohomology operations are generated by the natural transformations of
degree i which are so-called Steenrod squares

Sqi : H∗(X, F2) −→ H∗+i(X, F2),

where H∗(X, F2) is the singular cohomology of X with coefficients in the two-element field F2, and i is
arbitrary non-negative integers. In 1952, Serre [13] proved that the Steenrod squares generate all stable
cohomology operations with the usual addition and the composition of maps. The algebra of stable
cohomology operations with coefficients in F2 is known as the modulo 2 Steenrod algebra, A. Then, for
each topological space X, H∗(X, F2) is an A-module.

Hence, the Steenrod algebra is able to be defined algebraically as a quotient algebra of F2-free graded
associative algebra generated by the symbols Sqi of degree i where i is a non-negative integer, by the
two-sided ideal generated by the relation Sq0 = 1 and the Adem’s relations

SqaSqb =

[a/2]∑
j=0

(
b− 1 − j

a− 2j

)
Sqa+b−jSqj, 0 < a < 2b.
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Let Ed be an elementary abelian 2-group of rank d. Let us denote by BEd the classifying space of
Ed. It may be thought of as the product of d copies of real project space RP∞. Then, using the Künneth
formula for cohomology, one has an isomorphism of F2-algebras

Pd := H∗
(
BEd; F2

)
∼= F2[x1]⊗F2 . . .⊗F2 F2[xd] ∼= F2[x1, x2, . . . , xd],

where xi ∈ H1
(
BEd; F2

)
for every i.

As is well-known, Pd is a module over the mod-2 Steenrod algebra A. The action of A on Pd is
determined by the formula

Sqk(xj) =


xj, k = 0,
x2
j , k = 1,

0, k > 1,

and the Cartan formula Sqk(uv) =
∑k
i=0 Sq

i(u)Sqk−i(v), where u, v ∈ Pd (see Steenrod and Epstein [16]).
The Peterson hit problem is to find a minimal generating set for Pd regarded as a module over the

mod-2 Steenrod algebra. If we treat F2 as a trivial A-module, the hit problem is analogous to the problem
of finding a basis for the F2-graded vector space F2⊗APd.

This issue has first been studied by Peterson [7], Singer [14], Wood [29], Priddy [11], who show its
relationship to several classical problems in cobordism theory, modular respresentation theory, Adams
spectral sequence for the stable homotopy of spheres, stable homotopy type of the classifying space of
finite groups.

Let α(n) be the number of digits 1 in the binary expansion of a natural n. The function µ : N −→ N is
defined as follows:

µ(0) = 0, and µ(n) = min{m ∈ N : n =

m∑
i=1

(2ni − 1),ni > 0} = min{m ∈ N : α(n+m) 6 m}.

Peterson [7] hypothesized that as a module over the Steenrod algebra A, Pd is generated by monomials
of degree m obeying the inequality α(m+ d) 6 d, and proved it for d 6 2. After then, Wood [29] proved
this in general. This is a fantastic tool for figuring out A-generators for Pd.

The squaring operation of Kameko is one of the most essential tools in the study of the hit problem

S̃q
0
∗ := S̃

d
d+2m : (F2⊗APd)2m+d → (F2⊗APd)m,

which is induced by an F2-linear map Sd : Pd → Pd, given by

Sd(x) =

{
y, if x = x1x2 · · · xky2,
0, otherwise,

for any monomial x ∈ Pd. Clearly, S̃dd+2m is an F2-epimorphism.
From the results of Wood [29], Kameko [4], and Sum [18], the hit problem is reduced to the case of

degree n of the form n = r(2t − 1) + 2tm, where r,m, t are non-negative integers such that 0 6 µ(m) <
r 6 d.

Recently, the hit problem and its applications have been interested and studied by many authors
(see Silverman [15], Repka-Selick [12], Janfada-Wood [2, 3], Nam [6], Sum [17, 18], Mothebe-Kaelo-
Ramatebele [5], Phuc-Sum [8], Sum-Tin [20], Tin-Sum [22], Tin [23–26] and others).

The F2-vector space F2⊗A(Pd was entirely calculated for d 6 4 (see Peterson [7] for d = 1, 2, Kameko [4]
for d = 3, Sum [18] for d = 4), but it remains unresolved for d > 5, even with the aid of computers in the
case of d = 5.

In this paper, we study the hit problem for the case d = 6 in the generic degree 6(2r − 1) + 6.2r, with
r an arbitrary non-negative integer. The main goal of the current paper is to explicitly determine an
admissible monomial basis of the F2-vector space F2⊗AP6 in these degrees.
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One of the primary applications of the hit problem is in surveying a homomorphism proposed by
Singer [14], which is a homomorphism from the homology of the Steenrod algebra to the subspace of
F2⊗APd consisting of all the GL(d; F2)-invariant classes.

Noting that the general linear group GL(d; F2) acts naturally on Pd by matrix substitution. Due to the
fact that the two actions of A and GL(d; F2) upon Pd commute with each other, there is an inherited action
of GL(d; F2) on F2 ⊗A Pd.

Recall that P̃1 is the submodule of F2[x1, x−1
1 ] spanned by all powers xi1 with i > −1. The usual A-

action on P1 = F2[x1] is cannonically extended to an A-action on F2[x1, x−1
1 ]. Hence, P̃1 is an A-submodule

of F2[x1, x−1
1 ]. The inclusion P1 ⊂ P̃1 gives rise to a short exact sequence of A-modules:

0 −→ P1 −→ P̃1 −→
∑

−1F2 −→ 0.

Let e1 be the corresponding element in Ext1
A(
∑

−1F2,P1). Using the cross and Yoneda products, Singer
set

ed := (e1 ×Pd−1) ◦ (e1 ×Pd−2) ◦ . . . (e1 ×P1) ◦ e1 ∈ ExtdA(
∑

−dF2,Pd).

Then, he defined

ϕ̃d : TorAd (F2,
∑

−1F2) −→ TorA0 (F2,Pd) = F2 ⊗A Pd,

z 7−→ ed ∩ z.

Remarkably, Imϕ̃d is a submodule of (F2 ⊗A Pd)
GL(d;F2). So, ϕ̃d induces the homomorphism

ϕd : TorAd (F2,
∑

−1F2) −→ (F2 ⊗A Pd)
GL(d;F2).

Let F2⊗GL(d;F2)PHm((RP∞)d) be dual to (F2 ⊗A Pd)
GL(d;F2)
m . By passing to the dual, we have an alge-

braic homomorphism called Singer’s algebraic transfer

ψd : F2⊗GL(d;F2)PH∗((RP
∞)d) −→ Extd,d+∗

A (F2, F2).

This is a useful tool in describing the cohomology groups of the Steenrod algebra, Extd,d+∗
A (F2, F2). At

the conclusion of this article, the behavior of the sixth Singer algebraic transfer in degree 6(2r − 1) + 6.2r

is also discussed.
Next, in Section 2, we recall some needed information on admissible monomials in Pd. The main

results are presented in Section 3.

2. Preliminaries

We will review some key facts from Sum [18], Kameko [4], and Singer [14] in this section, which will
be used in the next section. Let us denote by Nd = {1, 2, . . . ,d} and

XJ = X{j1,j2,...,js} =
∏

j∈Nd\J

xj, J = {j1, j2, . . . , js} ⊂ Nd.

In particular, XNd = 1, X∅ = x1x2 . . . xd, Xj = x1 . . . x̂j . . . xd, 1 6 j 6 d, and X := Xd ∈ Pd−1.
Let αt(n) be the t-th coefficient in dyadic expansion of n. Then, n =

∑
t>0 αt(n).2

t where αt(n) ∈
{0, 1}. Let x = xa1

1 x
a2
2 . . . xadd ∈ Pd. Denote νj(x) = aj, 1 6 j 6 d. Set

Jt(x) = {j ∈ Nd : αt(νj(x)) = 0},

for t > 0. Then, we have x =
∏
t>0 X

2t
Jt(x)

.
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Definition 2.1. For a monomial x belongs to Pd, define two sequences associated with x by

ω(x) = (ω1(x),ω2(x), . . . ,ωi(x), . . .), σ(x) = (ν1(x),ν2(x), . . . ,νd(x)),

where ωi(x) =
∑

16j6d αi−1(νj(x)) = degXJi−1(x), i > 1. The sequences ω(x) and σ(x) are, respectively
called the weight vector and the exponent vector of x.

The sets of all the weight vectors and the exponent vectors are given the left lexicographical order.
Let ω = (ω1,ω2, . . . ,ωi, . . .) be a sequence of non-negative integers. The sequence ω is called the weight
vector if ωi = 0 for i � 0. Then, we define degω =

∑
i>0 2i−1ωi. Denote by Pd(ω) the subspace of

Pd spanned by all monomials y such that degy = degω, ω(y) 6 ω, and by P−
d (ω) the subspace of Pd

spanned by all monomials y ∈ Pd(ω) such that ω(y) < ω.

Definition 2.2. Let A+ be an ideal of A generated by all Steenrod squares of positive degrees, and u, v
two polynomials of the same degree in Pd. We define the equivalence relations “ ≡ ” and “ ≡ω ” on Pd
by stating that

(i) u ≡ v if and only if u− v ∈ A+Pd;
(ii) u ≡ω v if and only if u, v ∈ Pd(ω) and u− v ∈

(
A+Pd ∩Pd(ω) +P−

d (ω)
)
.

Then, we have an F2-qoutient space of Pd by the equivalence relation “ ≡ω ” as follows:

APd(ω) = Pd(ω)/((A+Pd ∩Pd(ω)) +P−
d (ω)).

If a polynomial u in Pd can be expressed as a finite sum u =
∑
i>0 Sq

2i(fi) for suitable polynomials
fi ∈ Pd, it is called a hit. That means u belongs to A+Pd.

Definition 2.3. Let u, v be monomials of the same degree in Pd. We say that u < v if one of the following
holds:

(i) ω(u) < ω(v);
(ii) ω(u) = ω(v), and and σ(u) < σ(v).

Definition 2.4. Let u be a monomial in Pd. The monomial u is said to be inadmissible if there exist mono-
mials v1, v2, . . . , vm such that vi < u for i = 1, 2, . . . ,m and u−

∑m
i=1 vi ∈ A+Pd. If u is not inadmissible,

we say it is admissible.

It is crucial to note that the set of all admissible monomials of degree n in Pd is a minimal set of
A-generators for Pd in degree n. And therefore, (F2⊗APd)n is an F2-vector space with a basis consisting
of all the classes represent by the elements in (Pd)n.

Definition 2.5. Let u be a monomial in Pd. We say u is strictly inadmissible if there exist monomials
v1, v2, . . . , vm such that vj < u, for j = 1, 2, . . . ,m and u =

∑m
j=1 vj +

∑2s−1
i=1 Sq

i(fi) with s = max{k :
ωk(u) > 0}, fi ∈ Pd.

Observe that if u is strictly inadmissible monomial, then it is inadmissible monomial, as defined by
the Definitions 2.4 and 2.5. In general, the inverse is not true.

Theorem 2.6 (Kameko [4], Sum [18]). Let u, v,w be monomials in Pd such that ωt(u) = 0 for t > k > 0,
ωr(w) 6= 0 and ωt(w) = 0 for t > r > 0. Then,

(i) uw2k is inadmissible if w is inadmissible;
(ii) wv2r is strictly inadmissible if w is strictly inadmissible.

Definition 2.7. Let z = xa1
1 x

a2
2 . . . xadd in Pd. The monomial z is called a spike if aj = 2tj − 1 for tj a

non-negative integer and j = 1, 2, . . . ,d. Moreover, z is called the minimal spike, if it is a spike such that
t1 > t2 > . . . > tr−1 > tr > 0 and tj = 0 for j > r.
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The following is a Singer’s criterion on the hit monomials in Pd.

Theorem 2.8 (Singer [14]). Assume that z is the minimal spike of degree n in Pd, and u ∈ (Pd)n satisfying the
condition µ(n) 6 d. If ω(u) < ω(z), then u is hit.

The A-submodules of Pd that spanned all the monomials xs1
1 x
s2
2 . . . xsdd such that s1 . . . sd = 0, and

s1 . . . sd > 0, respectively, will be denoted by P0
d and P+

d . It is easy to check that P0
d and P+

d are the
A-submodules of Pd. Then, we have a direct summand decomposition of the F2-vector spaces:

F2⊗APd = (F2⊗AP0
d)⊕ (F2⊗AP+

d ).

From now on, we set APd := F2⊗APd, AP0
d := F2⊗AP0

d, AP+
d := F2⊗AP+

d . Let us denote by D⊗d (m)
the set of all admissible monomials of degree m in Pd. For f an element of Pd, we denote by [f] the class
in APd represented by f. The cardinality of a set U is denoted by |U|.

3. The main results

First, we study the hit problem for the polynomial algebra of six variables in the generic degree
mr := 6(2r − 1) + 6.2r, with r an arbitrary non-negative integer. For r = 0, and 1 6 i, j,k, `, t,m, s, r 6 6,
we set

F =

{
6∏
i=1

xi; x3
ix

3
j ; xixjxkx

3
`; xjxkx`xtx

2
m; xtxmx2

sx
2
r : t < m, s < r

}
.

An easy computation shows that the following proposition, which is an immediate consequence of
the result in [18].

Proposition 3.1. The set M = {[ai] : ai ∈ F, 1 6 i 6 190} is a basis of F2-vector space (AP6)6(20−1)+6.20 .
Consequently, |M| = 190.

For r = 1, then m1 = 6(21 − 1) + 6.21. Consider the homomorphism Tj : P5 → P6, for 1 6 j 6 6 by
substituting:

Tj(xi) =

{
xi, if 1 6 i 6 j− 1,
xi+1, if j 6 i < 6.

Then, the F2-vector space (AP6)6(21−1)+6.21 is explicitly determined by the following theorem.

Theorem 3.2. Let ω̃1 := (2, 2, 1, 1), ω̃2 := (2, 2, 3), ω̃3 := (2, 4, 2), ω̃4 := (4, 1, 1, 1), ω̃5 := (4, 1, 3), ω̃6 :=
(4, 5, 1), ω̃7 := (4, 3, 2). Then :

(i) ImS̃6
m1

is isomorphic to a subspace of (AP6)m1 generated by all the classes represented by the admissible

monomials of the form
∏6
i=1 xia

2
j , for all 1 6 j 6 190. Consequently, dim ImS̃6

m1
= 190.

(ii) The set
{
[bi] : bi ∈

⋃6
j=1 Tj(C

⊗
5 (18)), 1 6 i 6 2865

}
is a basis of the F2-vector space (AP0

6)m1 . This implies
that (AP0

6)m1 has dimension 2865.

(iii) We have
(
KerS̃6

m1
∩ (AP+

6 )m1

)
∼=
⊕7
i=1 AP+

6 (ω̃i). Moreover, the space
(
KerS̃6

m1
∩ (AP+

6 )m1

)
is 886-

dimensional.

Proof. Since Pd = ⊕m>0(Pd)m is the graded polynomial algebra, and the homomorphism S̃6
m1

is an
F2-epimorphism, it follows that

(AP6)m1
∼= (AP0

6)m1

⊕(
KerS̃6

m1
∩ (AP+

6 )m1

)⊕
ImS̃6

m1
.

The proof of Part (i) of the above theorem is straightforward. It is an immediate consequence of
Proposition 3.1.
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Recall that, Phuc [9] demonstrated that the space (AP5)6(21−1)+6.21 is an F2-vector space of dimension
730 with a basis consisting of all the classes represented by the monomials ak, 1 6 k 6 730. Consequently,
|D⊗5 (6(21 − 1) + 6.21)| = 730. An easy computation shows that∣∣∣∣∣∣

6⋃
j=1

Tj(D
⊗
5 (6(21 − 1) + 6.21))

∣∣∣∣∣∣ = 2865,

and the set

{bi : bi ∈
6⋃
j=1

Tj(at), 1 6 t 6 730, 1 6 i 6 2865}

is a minimal set of generators for A-modules P0
6 in degree 6(21 − 1) + 6.21. This implies (AP0

6)6(21−1)+6.21

has dimension 2865. Part (ii) is proved.

Remark 3.3. We set H(6,t) =
{
I = (i1, i2, . . . , it) : 1 6 i1 < . . . < it 6 6

}
, with 1 6 t < 6. For H ∈ H(6,t),

consider the homomorphism ϕH : Pt → P6 of algebras by substituting ϕH(x`) = xi` with 1 6 ` 6 t. Then,
ϕH is an A-modules monomorphism. From the result in [5], one has

AP0
6 =

⊕
16t65

⊕
H∈H(6,t)

(QϕH(P
+
t )),

where QϕH(P+
t ) = F2 ⊗A ϕH(P

+
t ). Then, dim(QϕH(P

+
t ))n = dim(AP+

t )n, and |H(6,t)| =
(6
t

)
. Combining

with the results in Wood [29], one gets

dim(AP0
6)n =

∑
µ(n)6t66

(
6
t

)
dim(AP+

t )n.

Since µ(6(21 − 1) + 6.21) = 2, the vector space (AP1)6(21−1)+6.21 is trivial. Using the results in Peterson
[7], Kameko [4], Sum [18], and Phuc [9], we have

dim(AP+
t )6(21−1)+6.21 =


3, if t = 2,
12, if t = 3,
60, if t = 4,
280, if t = 5.

From the above results, we get

dim(AP0
6)6(21−1)+6.21 =

(
6
2

)
.3 +

(
6
3

)
.12 +

(
6
4

)
.60 +

(
6
5

)
.280 = 2865.

Next, we prove Part (iii) of the theorem by explicitly determining the admissible monomial basis of
the F2-vector space

(
KerS̃6

m1
∩ (AP+

6 )m1

)
.

Denote D⊗6 (ω) := D⊗6 (m)∩P6(ω). It is easy to see that D⊗6 (m) =
⋃

degω=m

D⊗6 (ω). Put

QPω6 := 〈{[x] ∈ AP6 : ω(x) = ω, and x ∈ D⊗6 (ω)}〉.

It is simple to verify that the map AP6(ω) −→ QPω6 , [x]ω −→ [x] is an isomorphism of F2-vector
spaces. Hence, QPω6 ⊂ AP6 can be used to identify the vector space AP6(ω). As a result of this, one
obtains
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(AP6)m =
⊕

degω=m

QPω6
∼=

⊕
degω=m

AP6(ω).

From this, it follows that (AP+
6 )m1 =

⊕
degω=m1

AP+
6 (ω).

Assume that x belongs to (D⊗6 (6(21 − 1) + 6.21)∩ P+
6 ) such that [x] does not an element of ImS̃6

18. It is
easy to check that y = x15

1 x
3
2 is the minimal spike of degree eighteen in P6 and ω(y) = (2, 2, 1, 1). Since

x is an admissible monomial, by Theorem 2.8 it shows that ω1(x) > ω1(y). Moreover, deg(x) is an even
number, it implies ω1(x) = 2, or ω1(x) = 4, or ω1(x) = 6.

If ω1(x) = 2, then x = xixju2 with u a monomial of degree eight in P6 and 1 6 i < j 6 6. By Theorem
2.6, u is an admissible monomial. Moreover, using Theorem 2.8, we also have ω1(u) > ω2(y) = 2. Hence,
ω1(u) = 6, or ω1(u) = 4, or ω1(u) = 2.

If ω1(u) = 6, then ω2(x) = 6. Using the results in Sum [17], we see that x is strictly inadmissible. And
therefore, x is inadmissible. This contradicts the fact that x belongs to D⊗6 (18). In case of ω1(u) = 4, then
u = xmxrxsxtv

2 with 1 6 m < r < s < t 6 6, where v ∈ D⊗6 (2), and ω(v) = (2, 0). From this, we obtain
ω(x) = ω̃3.

If ω1(u) = 2, then u = xnxmw
2 with 1 6 n < m 6 6, where w ∈ D⊗6 (3). Since w ∈ D⊗6 (3), yields

ω(w) = (3, 0) or ω(w) = (1, 1). So, either ω(x) = ω̃1, or ω(x) = ω̃2.
If ω1(x) = 4, then u = xixjxkx`f

2, where f is an admissible monomial of degree seven in P6 and
1 6 i < j < k < ` 6 6. An easy computation, using the result in [21], we obtain the set

{
[xixjxkx`xtx

2
m] : 1 6 i, j,k, `, t,m 6 6, t < m

}
∪
{
[q] : q ∈

6⋃
m=1

Tm(D⊗5 (7))
}

is a basis of F2-vector space (AP6)7. Since f ∈ D⊗6 (7), it yields that ω(f) = (5, 1) or ω(f) = (3, 2), or
ω(f) = (1, 3), or ω(f) = (1, 1, 1). So, ω(x) = ω̃i for 4 6 i 6 7.

If ω1(x) = 6, then x =
∏6
i=1 xig

2 with g an admissible monomial of degree six in P6. By Theorem 2.6,

g is an admissible monomial, and therefore [g] 6= 0. Thus, we have [g] = S̃6
18

(
[x]
)
6= 0. This contradicts the

fact that [x] belongs to KerS̃6
18.

From the above results, we get ω(x) = ω̃i, for all 1 6 i 6 7. Furthermore, one gets

KerS̃6
18 ∩ (AP+

6 )18 ∼=

7⊕
i=1

AP+
6 (ω̃i).

We will denote by D+
d (ω) the set of all admissible monomials in P+

d (ω). In order to explicitly deter-

mine the space KerS̃6
18 ∩ (AP+

6 )18, we show all admissible monomials in P+
6 (ω̃(i)), for all 1 6 i 6 7. The

proof is divided into the following steps.

Step 1. Consider the weight vector ω = ω̃1. Assume that x is an admissible monomial in P6 such that
ω(x) = ω̃1, then x = xixjy2, where y ∈ D⊗6 (1, 1, 1), and 1 6 i < j 6 6. We set

M1
6 := {xixjy

2 : ω(y) = (1, 1, 1), 1 6 i < j 6 6} ∩ P+
6 .

It is easy to see that Span{M1
6} = P+

6 (ω̃1), and if u is an element in M1
6, then u has the form

xixjx
2
kx

4
`x

8
mx

2
n, with k < ` < m, where (i, j,k, `,m,n) is an permutation of (1, 2, 3, 4, 5, 6).

Clearly, the monomials x2
1xixjx

2
`x

4
kx

8
m are inadmissible (more precisely by Sq1), where (i, j,k, `,m) is

an arbitrary permutation of (2, 3, 4, 5, 6). Furthermore, for 1 < i; j < `, one has

x1x
2
ix

2
jx`x

4
kx

8
m = Sq8(x1xix

2
jx`x

2
kx

4
m) + Sq1(x2

1xixjx`x
4
kx

8
m) + smaller than.

From this, the monomials x1x
2
ix

2
jx`x

4
kx

8
m are inadmissible.
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As may be seen from the preceding findings, P+
6 (ω̃1) is generated by 9 elements ci;1, with 1 6 i 6 9,

as follows:

1. x1
1x

1
2x

2
3x

2
4x

4
5x

8
6, 2. x1

1x
1
2x

2
3x

4
4x

2
5x

8
6, 3. x1

1x
1
2x

2
3x

4
4x

8
5x

2
6, 4. x1

1x
2
2x

1
3x

2
4x

4
5x

8
6

5. x1
1x

2
2x

1
3x

4
4x

2
5x

8
6, 6. x1

1x
2
2x

1
3x

4
4x

8
5x

2
6, 7. x1

1x
2
2x

4
3x

1
4x

2
5x

8
6, 8. x1

1x
2
2x

4
3x

1
4x

8
5x

2
6, r9. x1

1x
2
2x

4
3x

8
4x

1
5x

2
6.

We then prove the set
{
[ci;1] : 1 6 i 6 9

}
is linearly independent in AP6(ω̃1). Denote Nd =

{
(i; I) : I =

(i1, i2, . . . , it), 1 6 i < i1 < . . . < it 6 d, 0 6 t < d
}

, where by convention I = ∅ if t = 0. Write t = `(I) for
the length of I.

For each (i; I) ∈ N6, consider the homomorphism Ω(i;I) : P6 → P5 which is defined as:

Ω(i;I)(xk) =


xi, if 1 6 k 6 i− 1,∑
s∈I xs−1, if k = i,

xk−1, if i < k 6 6.

We use them to prove that a given set of monomials is the set of admissible monomials in P6 by
showing that they are linearly independent in AP6.

Assume that there is a linear relation

S1 =
∑

16i69

γici;1 ≡ 0, where γi ∈ F2. (3.1)

From a result in [9], one has dimAP+
5 (ω̃1) = 25, with a basis consisting of all the classes represented

by the monomials ak, 1 6 k 6 25, which are determined as follows:

1. x1
1x

1
2x

2
3x

2
4x

12
5 , 2. x1

1x
1
2x

2
3x

12
4 x

2
5, 3. x1

1x
2
2x

1
3x

2
4x

12
5 , 4. x1

1x
2
2x

1
3x

12
4 x

2
5,

5. x1
1x

2
2x

12
3 x

1
4x

2
5, 6. x1

1x
1
2x

2
3x

4
4x

10
5 , 7. x1

1x
2
2x

1
3x

4
4x

10
5 , 8. x1

1x
2
2x

4
3x

1
4x

10
5 ,

9. x1
1x

1
2x

2
3x

6
4x

8
5, 10. x1

1x
1
2x

6
3x

2
4x

8
5, 11. x1

1x
2
2x

1
3x

6
4x

8
5, 12. x1

1x
6
2x

1
3x

2
4x

8
5,

13. x1
1x

2
2x

5
3x

2
4x

8
5, 14. x1

1x
2
2x

5
3x

8
4x

2
5, 15. x1

1x
2
2x

3
3x

4
4x

8
5, 16. x1

1x
3
2x

2
3x

4
4x

8
5,

17. x1
1x

3
2x

4
3x

2
4x

8
5, 18. x1

1x
3
2x

4
3x

8
4x

2
5, 19. x3

1x
1
2x

2
3x

4
4x

8
5, 20. x3

1x
1
2x

4
3x

2
4x

8
5,

21. x3
1x

1
2x

4
3x

8
4x

2
5, 22. x1

1x
2
2x

4
3x

3
4x

8
5, 23. x1

1x
2
2x

4
3x

8
4x

3
5, 24. x3

1x
4
2x

1
3x

2
4x

8
5, 25. x1

1x
2
2x

4
3x

9
4x

2
5.

Acting the homomorphism Ω(5;6) on both sides of (3.1), and explicitly computing Ω(5;6)(S1) in terms
of ak, 1 6 k 6 25 in P5(mod(A+P5)), we obtain

Ω(5;6)(S1) ≡ω̃1
γ1a1 + (γ2 + γ3)a6 + γ4a3 + (γ5 + γ6)a7 + (γ7 + γ8)a8 + γ9a23 ≡ω̃1

0.

From the above equation, we can derive that γ1 = γ4 = γ9 = 0.
Similarly, the homomorphismΩ(4;5) sends the relation (3.1) to the following relation in P5(mod (A+P5))

Ω(4;5)(S1) ≡ω̃1
γ2a9 + γ3a2 + γ5a11 + γ6a4 + γ7a22 + γ8a25 ≡ω̃1

0.

From the above results, one gets γi = 0, for all 1 6 i 6 9.
In summary, the set

{
[ci;1] : 1 6 i 6 9

}
is a basis of the F2-vector space AP+

6 (ω̃1). Consequently,
|D+

6 (ω̃1)| = 9.

Step 2. Consider the weight vector ω = (4, 1, 1, 1). Let us denote by

M2
6 :=
{
xixjxkx`z

2 : ω(z) = (1, 1, 1), 1 6 i < j < k < ` 6 6
}
∩ P+

6 .

It is easy to see that P+
6 (ω̃4) = Span {M2

6}, and if v is an element in M2
6, then v has the form:

xixjx
2
kx

4
`x

4
mx

6
n, xix

3
jx

2
kx

4
`x

4
mx

4
n, xix

2
jx

5
kx

2
`x

4
mx

4
n, where (i, j,k, `,m,n) is an permutation of (1, 2, 3, 4, 5, 6).
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By direct calculations, using Theorem 2.6, we remove the inadmissible monomials in M2
6, and we see

that P+
6 (ω̃4) is generated by 50 elements ci;4, 1 6 i 6 50, as follows:

1. x1
1x

1
2x

1
3x

1
4x

2
5x

12
6 , 2. x3

1x
1
2x

1
3x

1
4x

4
5x

8
6, 3. x1

1x
3
2x

1
3x

1
4x

4
5x

8
6, 4. x1

1x
1
2x

3
3x

1
4x

4
5x

8
6, 5. x1

1x
1
2x

1
3x

3
4x

4
5x

8
6,

6. x1
1x

1
2x

1
3x

2
4x

1
5x

12
6 , 7. x3

1x
1
2x

1
3x

4
4x

1
5x

8
6, 8. x1

1x
3
2x

1
3x

4
4x

1
5x

8
6, 9. x1

1x
1
2x

3
3x

4
4x

1
5x

8
6, 10. x1

1x
1
2x

1
3x

2
4x

5
5x

8
6,

11. x1
1x

1
2x

1
3x

2
4x

12
5 x

1
6, 12. x3

1x
1
2x

1
3x

4
4x

8
5x

1
6, 13. x1

1x
3
2x

1
3x

4
4x

8
5x

1
6, 14. x1

1x
1
2x

3
3x

4
4x

8
5x

1
6, 15. x1

1x
1
2x

1
3x

2
4x

4
5x

9
6,

16. x1
1x

1
2x

2
3x

1
4x

1
5x

12
6 , 17. x3

1x
1
2x

4
3x

1
4x

1
5x

8
6, 18. x1

1x
3
2x

4
3x

1
4x

1
5x

8
6, 19. x1

1x
1
2x

2
3x

5
4x

1
5x

8
6, 20. x1

1x
1
2x

2
3x

1
4x

5
5x

8
6,

21. x1
1x

1
2x

2
3x

1
4x

12
5 x

1
6, 22. x3

1x
1
2x

4
3x

1
4x

8
5x

1
6, 23. x1

1x
3
2x

4
3x

1
4x

8
5x

1
6, 24. x1

1x
1
2x

2
3x

5
4x

8
5x

1
6, 25. x1

1x
1
2x

2
3x

1
4x

4
5x

9
6,

26. x1
1x

1
2x

2
3x

12
4 x

1
5x

1
6, 27. x3

1x
1
2x

4
3x

8
4x

1
5x

1
6, 28. x1

1x
3
2x

4
3x

8
4x

1
5x

1
6, 29. x1

1x
1
2x

2
3x

4
4x

9
5x

1
6, 30. x1

1x
1
2x

2
3x

4
4x

1
5x

9
6,

31. x1
1x

2
2x

1
3x

1
4x

1
5x

12
6 , 32. x3

1x
4
2x

1
3x

1
4x

1
5x

8
6, 33. x1

1x
2
2x

5
3x

1
4x

1
5x

8
6, 34. x1

1x
2
2x

1
3x

5
4x

1
5x

8
6, 35. x1

1x
2
2x

1
3x

1
4x

5
5x

8
6,

36. x1
1x

2
2x

1
3x

1
4x

12
5 x

1
6, 37. x3

1x
4
2x

1
3x

1
4x

8
5x

1
6, 38. x1

1x
2
2x

5
3x

1
4x

8
5x

1
6, 39. x1

1x
2
2x

1
3x

5
4x

8
5x

1
6, 40. x1

1x
2
2x

1
3x

1
4x

4
5x

9
6,

41. x1
1x

2
2x

1
3x

12
4 x

1
5x

1
6, 42. x3

1x
4
2x

1
3x

8
4x

1
5x

1
6, 43. x1

1x
2
2x

5
3x

8
4x

1
5x

1
6, 44. x1

1x
2
2x

1
3x

4
4x

9
5x

1
6, 45. x1

1x
2
2x

1
3x

4
4x

1
5x

9
6,

46. x1
1x

2
2x

12
3 x

1
4x

1
5x

1
6, 47. x3

1x
4
2x

8
3x

1
4x

1
5x

1
6, 48. x1

1x
2
2x

4
3x

9
4x

1
5x

1
6, 49. x1

1x
2
2x

4
3x

1
4x

9
5x

1
6, 50. x1

1x
2
2x

4
3x

1
4x

1
5x

9
6.

We now show that the set
{
[ci;4] : 1 6 i 6 50

}
is linearly independent in AP6(ω̃4). Assume that there

is a linear relation

S2 =
∑

16i650

γici;4 ≡ 0, where γi ∈ F2, i ∈ N50. (3.2)

Recall that dimAP+
5 (ω̃4) = 40, with a basis consisting of all the classes represented by the monomials

ak, 26 6 k 6 65, which are determined as follows:

26. x1
1x

1
2x

1
3x

1
4x

14
5 , 27. x1

1x
1
2x

1
3x

14
4 x

1
5, 28. x1

1x
1
2x

14
3 x

1
4x

1
5, 29. x1

1x
14
2 x

1
3x

1
4x

1
5, 30. x1

1x
1
2x

1
3x

2
4x

13
5 ,

31. x1
1x

1
2x

2
3x

1
4x

13
5 , 32. x1

1x
1
2x

2
3x

13
4 x

1
5, 33. x1

1x
2
2x

1
3x

1
4x

13
5 , 34. x1

1x
2
2x

1
3x

13
4 x

1
5, 35. x1

1x
2
2x

13
3 x

1
4x

1
5,

36. x1
1x

1
2x

1
3x

3
4x

12
5 , 37. x1

1x
1
2x

3
3x

1
4x

12
5 , 38. x1

1x
1
2x

3
3x

12
4 x

1
5, 39. x1

1x
3
2x

1
3x

1
4x

12
5 , 40. x1

1x
3
2x

1
3x

12
4 x

1
5,

41. x1
1x

3
2x

12
3 x

1
4x

1
5, 42. x3

1x
1
2x

1
3x

1
4x

12
5 , 43. x3

1x
1
2x

1
3x

12
4 x

1
5, 44. x3

1x
1
2x

12
3 x

1
4x

1
5, 45. x1

1x
1
2x

2
3x

5
4x

9
5,

46. x1
1x

2
2x

1
3x

5
4x

9
5, 47. x1

1x
2
2x

5
3x

1
4x

9
5, 48. x1

1x
2
2x

5
3x

9
4x

1
5, 49. x1

1x
1
2x

3
3x

4
4x

9
5, 50. x1

1x
3
2x

1
3x

4
4x

9
5,

51. x1
1x

3
2x

4
3x

1
4x

9
5, 52. x1

1x
3
2x

4
3x

9
4x

1
5, 53. x3

1x
1
2x

1
3x

4
4x

9
5, 54. x2

1x
1
2x

4
3x

1
4x

9
5, 55. x3

1x
1
2x

4
3x

9
4x

1
5,

56. x1
1x

1
2x

3
3x

5
4x

8
5, 57. x1

1x
3
2x

1
3x

5
4x

8
5, 58. x1

1x
3
2x

5
3x

1
4x

8
5, 59. x1

1x
3
2x

5
3x

8
4x

1
5, 60. x3

1x
1
2x

1
3x

5
4x

8
5,

61. x3
1x

1
2x

5
3x

1
4x

8
5, 62. x3

1x
1
2x

5
3x

8
4x

1
5, 63. x3

1x
5
2x

1
3x

1
4x

8
5, 64. x3

1x
5
2x

1
3x

8
4x

1
5, 65. x3

1x
5
2x

8
3x

1
4x

1
5.

Acting the homomorphism Ω(4;5) on both sides of (3.2), and explicitly computing Ω(4;5)(S2) in terms
of ak, 26 6 k 6 65 in P5(mod(A+P5)), we obtain γi = 0, for all i ∈ L = {11, 12, 13, 14}. Therefore, the
relation (3.2) becomes

U =
∑

i∈N50\L

γici;4 ≡ 0, (3.3)

By the same calculation as above, we explicitly compute Ω(j;I)(S), (j; I) ∈ N6, in terms of ak, 26 6 k 6 65
in P5(mod(A+P5)), and from the relation ϕ(j;I)(U) ≡ 0, with `(I) = 1, we get γi = 0 for all i ∈ N50 \L. That
means, the set

{
[ci;4] : 1 6 i 6 50

}
is a basis of the F2-vector space AP+

6 (ω̃4). Consequently, |D+
6 (ω̃4)| = 50.

Step 3. Consider the weight vector ω = ω̃i, with i ∈ J = {2, 3, 5, 6, 7}. Let us denote by D+
6 (ωJ) :=

∪i∈JD+
6 (ω̃i). For each i ∈ J, by the same method as in the previous section, we explicitly determine the F2-

vector spaces AP+
6 (ω̃i). By direct calculations, using Theorem 2.6, one gets |D+

6 (ωJ)| =
∑
i∈J

dimAP+
6 (ω̃i) =

827.
Hence, one gets dim

(
KerS̃6

m1
∩ (AP+

6 )m1

)
= 886. Part (iii) has been established. So, the theorem is

proved.
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From the above results, we obtain the following corollary.

Corollary 3.4. There exist exactly 3941 admissible monomials in P6 of degree 6(21 − 1) + 6.21. Consequently,
|D⊗6 (6(21 − 1) + 6.21)| = 3941.

Next, we consider the degree mr := 6(2r − 1) + 6.2r, for any r > 2. Since the homomorphism S̃6
m2

:
(AP6)m2 −→ (AP6)m1 is an F2-epimorphism, it shows that

(AP6)42 ∼= (AP0
6)42

⊕(
KerS̃6

42 ∩ (AP+
6 )42

)⊕
ImS̃6

42.

Consider the homomorphism Γ : P6 → P6 is an F2-homomorphism determined by Γ(x) =
∏6
i=1 xix

2,
for x ∈ P6. Thus, we have the following theorem.

Theorem 3.5. The following statements are true.

(i) ImS̃6
m2

is isomorphic to a subspace of (AP6)m2 generated by all the classes represented by the admissible

monomials of the form Γ(u) for every u belongs to D⊗6 (18). Consequently, dim ImS̃6
42 = 3941.

(ii) The set
{
[di] : di ∈

⋃6
j=1 Tj(D

⊗
5 (42)), 1 6 i 6 13020

}
is a basis of the F2-vector space (AP0

6)m2 . This
implies that (AP0

6)42 has dimension 13020.

Proof. The proof of Part (i) of the above theorem is straightforward. It occurs as a direct result of Corollary
3.4. Observe, from the result in Corollary 3.4, it shows that

dim ImS̃6
42 =

∣∣∣∣∣
{

6∏
i=1

xix
2 : x ∈ D⊗6 (18)

}∣∣∣∣∣ = 3941.

Consider the degree mr := 6(2r − 1) + 6.2r, for r = 2. By using the MAGMA computer algebra
system, Phuc showed in [10] that the F2-vector space (AP5)42 has 2520-dimensional (see [10], pp.4), where
dim(AP0

5)42 = 700, and dim(AP+
5 )42 = 1820. Assume that the set

{
ei ∈ (P5)42 : 1 6 i 6 2520

}
is a minimal

set of generators for A-modules P5 in degree forty-two.
That means, D⊗5 (42) =

{
ei ∈ (P5)42 : 1 6 i 6 2520

}
. It is easy to check that

∣∣⋃6
j=1 Tj(C

⊗
5 (42))

∣∣ = 13020,
and the set ui : ui ∈

6⋃
j=1

Tj(ek), 1 6 k 6 2520, 1 6 i 6 13020


is a minimal set of generators for A-module P0

6 in degree forty-two. This implies that (AP0
6)42 has dimen-

sion 13020. The second part has been established.

Remark 3.6. By the same argument as the previous part, we set

H(d,t) =
{
I = (i1, i2, . . . , it) : 1 6 i1 < . . . < it 6 d

}
, with 1 6 t < d.

For each H ∈ H(d,t), consider the homomorphism FH : Pt → Pd of algebras by substituting FH(x`) =
xi` with 1 6 ` 6 t. Then, FH is an A-modules monomorphism. From the result in [5], we have a direct
summand decomposition of the F2-vector subspaces:

AP0
d =

⊕
16t6d−1

⊕
H∈H(d,t)

(QFH(P
+
t )),

where QFH(P+
t ) = F2⊗A FH(P

+
t ). Hence, dim(QFH(P

+
t ))m = dim(AP+

t )m and |H(d,t)| =
(
d
t

)
. Combining

with the results in Wood [29], one gets
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dim(AP0
d)m =

∑
µ(m)6t6d

(
d

t

)
dim(AP+

t )m.

Since µ(6(22 − 1) + 6.22) = 4, then for t < 4 the vector space (APt)6(22−1)+6.22 is trivial. On the other
hand, using the result in Sum [18] we have dim(AP+

4 )42 = 140.

From the above results, one obtains

dim(AP0
6)42 =

(
6
4

)
. dim(AP+

4 )42 +

(
6
5

)
. dim(AP+

5 )42 = 13020.

The theorem has been established.

Putting ω̃[1] := (4, 3, 2, 1, 1), ω̃[2] := (4, 3, 2, 3), ω̃[3] := (4, 3, 4, 2), ω̃[4] := (4, 5, 5, 1), ω̃[5] := (4, 5, 3, 2),
ω̃[6] := (4, 5, 1, 3), ω̃[7] := (4, 5, 1, 1, 1), then we have the following theorem.

Theorem 3.7. Suppose that u belongs to (D⊗6 (42) ∩ P+
6 ) such that S̃6

42([u]) is not an element of ImS̃6
42. Then

ω(u) = ω̃[i] for 1 6 i 6 7. Furthermore, we have an isomorphism of the F2-vector spaces:

(
KerS̃6

42 ∩ (AP+
6 )42

)
∼=

7⊕
i=1

AP+
6

(
ω̃[i]

)
.

Proof. Let ω be a weight vector of degree m, we set

QPωd := Span
{
[u] ∈ APd : ω(u) = ω, and u ∈ D⊗6 (ω)

}
.

By the same arguments as in the proof of the previous theorem, it is easy to check that the map
APd(ω) −→ QPωd , [u]ω −→ [u] is an isomorphism of F2-vector spaces. Thus, QPωd ⊂ APd can be used
to identify the vector space APd(ω). As a result of this, one gets

(APd)m =
⊕

degω=m

QPωd
∼=

⊕
degω=m

APd(ω).

Hence, it follows that (AP+
6 )42 =

⊕
degω=42 AP+

6 (ω).

Assume that u is an admissible monomial of degree forty-two in P6 such that [u] belongs to KerS̃6
42.

Observe that v = x31
1 x

7
2x

3
3x4 is the minimal spike of degree forty-two in P6, and ω(v) = ω̃[1]. Using

Theorem 2.8, one obtains ω1(u) > ω1(v) = 4. Since the degree of u is even, one gets either ω1(u) = 4, or
ω1(u) = 6.

If ω1(u) = 4 then u = X{i,j}w
2, with w a monomial of degree nineteen in P6, and 1 6 i < j 6 6. By

Theorem 2.6, it shows that w is admissible. Clearly, y = x15
1 x

3
2x3 is the minimal spike of degree nineteen

in P6, and ω(y) = (3, 2, 1, 1). Using Theorem 2.8, we have ω1(w) > 3. Since the degree of w is even, one
gets either ω1(w) = 3, or ω1(w) = 5.

Case 1. If ω1(w) = 3 then w = xkx`xtf
2, where f is an admissible monomial of degree eight in P6,

and 1 6 k < ` < t 6 6. Since f ∈ D⊗6 (8), and using the result in [5], one has ω(f) belongs to
{(2, 1, 1), (2, 3), (4, 2), (6, 1)}.

Remarkably, if w is a monomial in P6 such that ω(w) = (3, 6, 1) then w is strictly inadmissible (see
Sum [17], Prop. 4.3). Hence, w is inadmissible. Thus, ω(w) belongs to {(3, 2, 1, 1), (3, 2, 3), (3, 4, 2)}. So
ω(u) = ω̃[i] for i = 1, 2, 3.
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Case 2. If ω1(w) = 5 then w = X{k}g
2, with g a monomial of degree seven in P6, 1 6 k 6 6. Us-

ing the results in the previous section, we see that if g belongs to D⊗6 (7), one has ω(g) belongs to
{(5, 1), (3, 2), (1, 3), (1, 1, 1)}. Then, ω(w) belongs to {(5, 5, 1), (5, 3, 2), (5, 1, 3), (5, 1, 1, 1)}. So ω(u) = ω̃[i]

for i = 4, 5, 6, 7.
If ω1(u) = 6 then x = X∅h

2, with h a monomial of degree eighteen in P6. Since u is admissible, by

Theorem 2.6, it shows that h is also admissible, and [h] 6= 0. From this, it implies [h] = KerS̃6
42([u]) 6= 0.

This contradicts the fact that [x] ∈ KerS̃6
42.

In summary, ω(u) = ω̃[i] for all 1 6 i 6 7. From the above results, one obtains

KerS̃6
42 ∩ (AP+

6 )42 ∼=

7⊕
i=1

AP+
6

(
ω̃[i]

)
.

The theorem has been established.

For each integer r > 2, we consider the degreemr = 6(2r−1)+6.2r. Letm be an arbitrary non-negative
integer, and let ξ(m) be the greatest integer v such that m is divisible by 2v. That means m = 2vk, with k
an odd integer. Put

λ(d,m) = max{0,d−α(d+m) − ξ(d+m)}.

Then, the map

(S̃q
0
∗)
s−t : (APd)d(2s−1)+2sm −→ (APd)d(2t−1)+2tm

is an isomorphism of GL(d; F2)-modules for every s > t if and only if t > λ(d,m) (see Tin-Sum [22]).
For d = m = 6, mr = 6(2r − 1) + 6.2r, then α(d+m) = α(12) = 2, and ξ(d+m) = ξ(22.3) = 2. And

therefore λ(n,d) = 2. Using the above result, we have an isomorphism of F2-vector space

(AP6)6(2r−1)+2r6
∼= (AP6)m2

for all r > 2. Hence, the set
{
[x] : x ∈ Γr−2

(
D⊗6 (m2)

)}
is a basis of the F2-vector space AP6 in degree

6(2r − 1) + 6.2r for any interger r > 2. So, we obtain the following theorem.

Theorem 3.8. The set
{
[x] : x ∈ Γr−2

(
D⊗6 (m2)

)}
is a basis of the F2-vector space AP6 in degree 6(2r − 1) + 6.2r,

for any r > 2.

Remark. It could be seen from the work of Singer the meaning and necessity of the hit problem. In [14],
Singer defined the algebraic transfer, which is a homomorphism

ψd : F2⊗GL(d;F2)PH∗((RP
∞)d) −→ Extd,d+∗

A (F2, F2),

where F2⊗GL(d;F2)PHm((RP∞)d) is dual to (APd)
GL(d;F2)
m , and Extd,d+∗

A (F2, F2) is the cohomology groups
of the Steenrod algebra.

Singer has indicated the importance of the algebraic transfer by showing that ψd is an isomorphism
with d = 1, 2 and at some other degrees with d = 3, 4, but he also disproved this for ψ5 at degree 9, and
then gave the following conjecture.

Conjecture 3.9. The algebraic transfer ψd is a monomorphism for any d > 0.

Boardman [1] then corroborated this by demonstrating that ψ3 is likewise an isomorphism using the
modular representation theory of linear groups. Singer’s conjecture, however, remains open for d > 4.

In [19] and [24], we based on the results for the hit problem to verify Singer’s conjecture is true for
n = 5 and the generic degrees ds = 5(2s − 1) + 2sm, where m ∈ {1, 2, 3}. Continuing this work, using
the results of the hit problem, we will investigate and validate Singer’s conjecture for the sixth algebraic
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transfer in the aforementioned degrees by combining the computations of the cohomology groups of the
Steenrod algebra Ext6,6(2s−1)+6.2s+6

A (F2, F2).
Remarkably, by using the result in Tin-Sum [22] (see Theorem 3, pp. 2), we also obtain an isomorphism

of GL(6; F2)-modules
(AP6)

GL(6;F2)
6(2r−1)+6.2r

∼= (AP6)
GL(6;F2)

6(22−1)+2.22 , for all r > 2.

Hence, one obtains

F2⊗GL(6;F2)PH6(2r−1)+6.2r((RP
∞)6) ∼= (F2⊗GL(6;F2)PH6(22−1)+6.22((RP∞)6)),

for all r > 2.
And therefore, we need only to compute the dimension of spaces F2⊗GL(6;F2)PH6(2r−1)+6.2r((RP

∞)6)
for r 6 2. This is an open problem.

Furthermore, Walker and Wood have recently published volumes on the hit problem and its applica-
tions to representations of general linear groups in the books [27] and [28]. This is yet another application
of the hit problem that has to be investigated further in the future.

4. Conclusion

In the article, we study the hit problem for the polynomial algebra of six variables, viewed as a module
over the Steenrod algebra in the generic degree 6(2r− 1)+ 6.2r with r an arbitrary positive integer, and its
application to the sixth algebraic transfer of Singer. In the future, we will verify the Singer conjecture for
the sixth algebraic transfer in degree 6(2r − 1) + 6.2r, with r an arbitrary positive integer, by combining
the computations of the cohomology groups of the Steenrod algebra in these cases.
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[6] T. N. Nam, A-générateurs génériques pour l’algèbre polynomiale, Adv. Math., 186 (2004), 334–362. 1
[7] F. P. Peterson, Generators of H∗(RP∞ × RP∞) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., 833

(1987), 55–89. 1, 3
[8] D. V. Phuc, N. Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the

Steenrod algebra, Acta Math. Vietnam., 42 (2017), 149–162. 1
[9] D. V. Phuc, A-generators for the polynomial algebra of five variables in degree 5(2t − 1) + 6.2t, Commun. Korean Math.

Soc., 35 (2020), 371–399. 3, 3, 3
[10] D. V. Phuc, On Peterson’s open problem and representations of the general linear groups, J. Korean Math. Soc., 58 (2021),

643–702. 3
[11] S. Priddy, On characterizing summands in the classifying space of a group. I, Amer. J. Math., 112 (1990), 737–748. 1
[12] J. Repka, P. Selick, On the subalgebra of H∗((RP∞)n; F2) annihilated by Steenrod operations, J. Pure Appl. Algebra, 127

(1998), 273–288. 1

https://doi.org/10.1090/conm/146/01215
https://doi.org/10.1090/conm/146/01215
https://doi.org/10.1017/S0305004102006059
https://doi.org/10.1017/S0305004102006059
https://doi.org/10.1017/S0305004103006662
https://doi.org/10.1017/S0305004103006662
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9030208
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9030208
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%7BDimension+formulae+for+the+polynomial+algebra+as+a+module+over+the+Steenrod+algebra+in+degrees+less+than+or+equal+to+12&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%7BDimension+formulae+for+the+polynomial+algebra+as+a+module+over+the+Steenrod+algebra+in+degrees+less+than+or+equal+to+12&btnG=
https://doi.org/10.1016/j.aim.2003.08.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F.P.+PetersonGENERATORS+OF+H%E2%88%97%28RP+%28INFINITY%29%E2%88%A7+RP+%28INFINITY%29%29+AS+A+MODULE+OVER+THE+STEENROD+ALGEBRA&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F.P.+PetersonGENERATORS+OF+H%E2%88%97%28RP+%28INFINITY%29%E2%88%A7+RP+%28INFINITY%29%29+AS+A+MODULE+OVER+THE+STEENROD+ALGEBRA&btnG=
https://doi.org/10.1007/s40306-016-0190-z
https://doi.org/10.1007/s40306-016-0190-z
https://doi.org/10.4134/CKMS.c190076
https://doi.org/10.4134/CKMS.c190076
https://doi.org/10.4134/JKMS.j200219
https://doi.org/10.4134/JKMS.j200219
https://doi.org/10.2307/2374805
https://core.ac.uk/download/pdf/82279501.pdf
https://core.ac.uk/download/pdf/82279501.pdf


D. P. Phan, L. N. Hoang, T. K. Nguyen, J. Math. Computer Sci., 30 (2023), 75–88 88

[13] J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv., 27 (1953), 198–232. 1
[14] W. M. Singer, The transfer in homological algebra, Math. Z., 202 (1989), 493–523. 1, 2, 2.8, 3
[15] J. H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc.,

123 (1995), 627–637. 1
[16] N. E. Steenrod, D. B. A. Epstein, Cohomology operations, Princeton University Press, Princeton, N.J., (1962). 1
[17] N. Sum, The negative answer to Kameko’s conjecture on the hit problem, Adv. Math. 225 (2010), 2365–2390. 1, 3, 3
[18] N. Sum, On the Peterson hit problem, Adv. Math., 274 (2015), 432–489. 1, 2, 2.6, 3, 3, 3.6
[19] N. Sum, N. K. Tin, Some results on the fifth Singer transfer, East-West J. Math. 17 (2015), 70–84. 3
[20] N. Sum, N. K. Tin, The hit problem for the polynomial algebra in some weight vectors, Topology Appl., 290 (2021), 17

pages. 1
[21] N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree 2s+1 + 2s − 5, East-West J.

Math., 16 (2014), 34–46. 3
[22] N. K. Tı́n, N. Sum, Kameko’s homomorphism and the algebraic transfer, C. R. Math. Acad. Sci. Paris, 354 (2016),

940–943. 1, 3, 3
[23] N. K. Tin, A note on the Peterson hit problem for the Steenrod algebra, Proc. Japan Acad. Ser. A Math. Sci., 97 (2021),

25–28. 1
[24] N. K. Tı́n, Hit problem for the polynomial algebra as a module over Steenrod algebra in some degrees, Asian-Eur. J. Math.,

15 (2022), 21 pages. 3
[25] N. K. Tin, A note on the A-generators of the polynomial algebra of six variables and applications, Turkish J. Math., 46

(2022), 1911–1926.
[26] N. K. Tin, On the hit problem for the Steenrod algebra in the generic degree and its applications, Rev. R. Acad. Cienc.

Exactas Fı́s. Nat. Ser. A Mat. RACSAM, 116 (2022), 12 pages. 1
[27] G. Walker, R. M. W. Wood, Polynomials and the mod 2 Steenrod algebra. Vol. 1. The Peterson hit problem, Cambridge

University Press, Cambridge, (2018). 3
[28] G. Walker, R. M. W. Wood, Polynomials and the mod 2 Steenrod algebra. Vol. 2. Representations ofGL(n, F2),, Cambridge

University Press, Cambridge, (2018). 3
[29] R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., 105

(1989) 307–309. 1, 3.3, 3.6

https://doi.org/10.1007/BF02564562
https://doi.org/10.1007/BF01221587
https://doi.org/10.2307/2160923
https://doi.org/10.2307/2160923
https://books.google.fr/books?hl=en&lr=&id=_V-YDwAAQBAJ&oi=fnd&pg=PA1&dq=Cohomology+operations&ots=P23bpo15kd&sig=oAlt3EB0iQGeyA1g58o6-UFsN-I&redir_esc=y#v=onepage&q=Cohomology%20operations&f=false
https://doi.org/10.1016/j.aim.2010.04.026
https://doi.org/10.1016/j.aim.2015.01.010
http://eastwestmath.org/index.php/ewm/article/view/54/54
https://doi.org/10.1016/j.topol.2020.107579
https://doi.org/10.1016/j.topol.2020.107579
http://eastwestmath.org/index.php/ewm/article/view/68/68
http://eastwestmath.org/index.php/ewm/article/view/68/68
https://doi.org/10.1016/j.crma.2016.06.005
https://doi.org/10.1016/j.crma.2016.06.005
https://doi.org/10.3792/pjaa.97.005
https://doi.org/10.3792/pjaa.97.005
https://doi.org/10.1142/S1793557122500073
https://doi.org/10.1142/S1793557122500073
https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=3241&context=math
https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=3241&context=math
https://doi.org/10.1007/s13398-022-01221-9
https://doi.org/10.1007/s13398-022-01221-9
https://books.google.fr/books?hl=en&lr=&id=FLdADwAAQBAJ&oi=fnd&pg=PP1&dq=Polynomials+and+the+mod+2+Steenrod+algebra.+Vol.+1.+The+Peterson+hit+problem&ots=uFYAd0ar5-&sig=6wOQsAT4BKiKaVLl_CjMx1m_rl8&redir_esc=y#v=onepage&q=Polynomials%20and%20the%20mod%202%20Steenrod%20algebra.%20Vol.%201.%20The%20Peterson%20hit%20problem&f=false
https://books.google.fr/books?hl=en&lr=&id=FLdADwAAQBAJ&oi=fnd&pg=PP1&dq=Polynomials+and+the+mod+2+Steenrod+algebra.+Vol.+1.+The+Peterson+hit+problem&ots=uFYAd0ar5-&sig=6wOQsAT4BKiKaVLl_CjMx1m_rl8&redir_esc=y#v=onepage&q=Polynomials%20and%20the%20mod%202%20Steenrod%20algebra.%20Vol.%201.%20The%20Peterson%20hit%20problem&f=false
https://books.google.fr/books?hl=en&lr=&id=FLdADwAAQBAJ&oi=fnd&pg=PP1&dq=Polynomials+and+the+mod+2+Steenrod+algebra.+Vol.+2.+Representations+of+%24GL(n,+F_2),%24&ots=uFYAd0bo_8&sig=nEF77FsRcVtF4Uz1Y-A-4gIii7w&redir_esc=y#v=onepage&q=Polynomials%20and%20the%20mod%202%20Steenrod%20algebra.%20Vol.%202.%20Representations%20of%20%24GL(n%2C%20F_2)%2C%24&f=false
https://books.google.fr/books?hl=en&lr=&id=FLdADwAAQBAJ&oi=fnd&pg=PP1&dq=Polynomials+and+the+mod+2+Steenrod+algebra.+Vol.+2.+Representations+of+%24GL(n,+F_2),%24&ots=uFYAd0bo_8&sig=nEF77FsRcVtF4Uz1Y-A-4gIii7w&redir_esc=y#v=onepage&q=Polynomials%20and%20the%20mod%202%20Steenrod%20algebra.%20Vol.%202.%20Representations%20of%20%24GL(n%2C%20F_2)%2C%24&f=false
https://doi.org/10.1017/S0305004100067797
https://doi.org/10.1017/S0305004100067797

	Introduction
	Preliminaries
	The main results
	Conclusion

