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Abstract
In this article, we establish new traveling wave solutions for the loaded Boussinesq equation and the loaded modified

Boussinesq equation by the functional variable method. The performance of this method is reliable and effective and gives
the exact solitary wave solutions and periodic wave solutions of the loaded Boussinesq equation and its modifications. The
traveling wave solutions obtained via this method are expressed by hyperbolic functions and the trigonometric functions. The
graphical representations of some obtained solutions are demonstrated to better understand their physical features, including
bell-shaped solitary wave solutions, singular soliton solutions and solitary wave solutions of kink type. This method presents a
wider applicability for handling nonlinear wave equations.
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1. Introduction

Boussinesq equation(BE) has wide range of usage in wide variety of physical systems, chemistry,
hydrodynamics, mechanics, biology, solid state physics, long wave and engineering [13, 26]. In 1872,
Josseph Boussinesq formulated model equation for the propagation of long waves on the surface of water
with a small amplitude which is expressed in the following basic form

utt −αuxx −β(u
2)xx + γuxxxx = 0.

This equation is usually distinguished as good (γ > 0) and bad (γ < 0) ones based on its well-posedness
[14]. By adding nonlinear term of the form λ(u2ux)x to BE, their new modified form is obtained as follows

utt −αuxx −β(u
2)xx + γuxxxx + λ(u

2ux)x = 0.

BE has been exactly and numerically solved using different approaches as well as the modified de-
composition method is applied to develop soliton solutions and periodic solutions [20, 33], where as a
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simplified version of the Hirota technique [17] is used to extract several exact solutions for the BE [32], the
solitary wave ansatze method is employed to get solitary wave solution of the BE with power law nonlin-
earity [11], the extended homoclinic test method is applied to obtain a homoclinic breather-wave solution
with convective effect [12], the Hirota direct bilinear method and the variational iteration techniques have
employed to find the soliton solution of the good BE [30, 35], the exp(−ϕ(ξ))-expansion method is ap-
plied to find exact traveling wave solutions of the (1+1)-dimensional and (2+1)-dimensional BE [3, 18], the
soliton solutions of the (2+1)-dimensional BE are obtained by using (G/G’)-expansion method [10], exact
traveling wave solutions of the (2+1)-dimensional BE are derived by homogeneous balance method [1],
exact periodic solitary wave solutions for the (2+1)-dimensional BE are obtained by using the extended
ansatz function method [24]. In [19, 29], the BE is solved numerically and discovered that the used tech-
nique is unconditionally stable. These methods are also applicable to obtain soliton solutions of many
non-linear evolutionary equations as well as the non-linear Schrödinger equation [36], the fuzzy Burgers
equation [16], KdV and Fornberg-Witham equations [2], modified KdV equation [15] and so on.

In this article, we consider the following the loaded BE and the loaded modified BE:

utt −αuxx −β(u
2)xx − γuxxxx +ϕ(t)u(0, t)uxx = 0, (1.1)

utt −αuxx −β(u
2)xx − γuxxxx + λ(u

2ux)x +ϕ(t)u(0, t)uxx = 0, (1.2)

where u(x, t) is an unknown function, x ∈ R, t > 0, α, β, γ and λ are any constants, ϕ(t) is the given real
continuous function.

We construct exact traveling wave solutions of the loaded BE and the loaded modified BE by the
functional variable method. These solutions will be extremely useful in carrying out further analysis in
the context of shallow water waves that arises in the context of oceanography. The performance of this
method is reliable and effective and gives the exact solitary wave solutions and periodic wave solutions of
the loaded BE and its modifications. The traveling wave solutions obtained via this method are expressed
by hyperbolic functions and the trigonometric functions. The graphical representations of some obtained
solutions are demonstrated to better understand their physical features, including bell-shaped solitary
wave solutions, singular soliton solutions and solitary wave solutions of kink type. This method presents
a wider applicability for handling nonlinear wave equations.

In recent years, in connection with intensive research of problems optimal management of the agroe-
cosystem, for example, the problem of long-term forecasting and regulation of the level of groundwater
and soil moisture, there has been a significant increase in interest in loaded equations. Among the
works devoted to loaded equations, one should especially note the works of Kneser [22], Lichtenstein
[25], Nakhushev [28], and others. It is known that the loaded differential equations contain some of the
traces of an unknown function. In [9, 27], the term of “loaded equation” was used for the first time, the
most general definitions of the loaded differential equation were given and also a detailed classifications
of the differential loaded equations as well as their numerous applications were presented. A complete
description of solutions of the nonlinear loaded equations and their applications can be found in papers
[4–8, 21, 23, 31, 34].

The article is organized as follows. In Section 2, we present some basic information about the de-
scription of the functional variable method. Section 3 is devoted to solutions of the loaded Boussinesq
equation. In Section 4, we present the graphical representation of the loaded Boussinesq equation. Solu-
tions of the loaded modified Boussinesq equation are given in Section 5. In Section 6, we give the physical
interpretations of the loaded modified Boussinesq equation. Finally, conclusions are presented in Section
7.

2. Description of the functional variable method

Consider nonlinear evolution equations with independent variables x, y and t is of the form

F(u,ux,uy,ut,uxx,utt,uyy,uxy,uxt,uyt, . . .) = 0, (2.1)
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where F is a polynomial in u = u(x,y, t) and its partial derivatives. In [37, 38], Zerarka and others have
summarized the functional variable method in the following.

Step 1. We use the wave transformation

ξ = px+ qy− kt,

where p and q are constants, k is the speed of the traveling wave.
Next, we can introduce the following transformation for a traveling wave solution of Eq. (2.1):

u(x,y, t) = u(ξ), (2.2)

and the chain
∂u

∂x
= p

du

dξ
,
∂u

∂y
= q

du

dξ
,
∂u

∂t
= −k

du

dξ
, . . . . (2.3)

Using (2.2) and (2.3), the nonlinear partial differential (2.1) can be transformed into an ordinary differential
equation of the form

P(u, u ′,u ′′,u ′′′, . . .) = 0, (2.4)

where P is a polynomial in u(ξ) and its total derivatives, while u ′ = du
dξ .

Step 2. Then we make a transformation in which the unknown function u is considered as a functional
variable in the form

u ′ = F(u), (2.5)

then, the solution can be found by the relation∫
du

F(u)
= ξ+ ξ0, (2.6)

here ξ0 is a constant of integration which is set equal to zero for convenience. Some successive differenti-
ations of u in terms of F are given as

u ′′ =
1
2
d
(
F2(u)

)
du

,

u ′′′ =
1
2
d2
(
F2(u)

)
du2

√
F2(u),

u ′′′′ =
1
2

[
d3
(
F2(u)

)
du3 F2(u) +

d2
(
F2(u)

)
du2

d
(
F2(u)

)
du

]
,

...

(2.7)

Step 3. The ordinary differential Eq. (2.4) can be reduced in terms of u, F and its derivatives upon using
the expressions of (2.6) and (2.7) into (2.1) gives

H(u,
dF(u)

du
,
d2F(u)

du2 ,
d3F(u)

du3 , . . .) = 0. (2.8)

The key idea of this particular form Eq. (2.8) is of special interest because it admits analytical solutions
for a large class of nonlinear wave type equations. After integration, Eq. (2.8) provides the expression of
F and this, together with Eq. (2.5), give appropriate solutions to the original problem.

3. Solutions of the loaded Boussinesq equation

We will show how to find the exact solution of the loaded BE by the functional variable method. Using
the wave variable

u(x, t) = u(ξ), ξ = px− kt,

that will convert Eq. (1.1) to an ordinary differential equation
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k2u ′′ −αp2u ′′ −βp2(u2) ′′ − γp4u(IV) + p2ϕ(t)u(0, t)u ′′ = 0, (3.1)

integrating twice Eq. (3.1) with respect to ξ, and putting the constant of integration zero, we have

u ′′ =
1
γp2

((
k2 −αp2

p2 +ϕ(t)u(0, t)
)
u−βu2

)
. (3.2)

Following Eq. (2.7), it is easy to deduce from Eq. (3.2) an expression for the function F(u)

1
2
d
(
F2(u)

)
du

=
1
γp2

((
k2 −αp2

p2 +ϕ(t)u(0, t)
)
u−βu2

)
. (3.3)

Integrating Eq. (3.3) and setting the constant of integration to zero yields

F(u) =
u

p

√
2β
3γ

√
µ(t) − u, (3.4)

where µ(t) = 3
2β

(
k2−αp2

p2 +ϕ(t)u(0, t)
)

. From (2.5) and (3.4) we deduce that

du

u
√
µ(t) − u

=

√
2β
3γ
dξ

p
. (3.5)

After integrating Eq. (3.5), with zero constant of integration, we have following exact solution

u(x, t) = −
6
β

(
k2 −αp2

p2 +ϕ(t)u(0, t)
)

e

√
1
γ

(
k2−αp2

p2 +ϕ(t)u(0,t)
)
px−kt
p(

1 − e

√
1
γ

(
k2−αp2

p2 +ϕ(t)u(0, t)
)
px−kt
p

)2 . (3.6)

It is obvious that the function u(0, t) can be easily found based on expression (3.6).
We have several types of traveling wave solutions of the loaded BE (1.1) as follows.

1) When 1
γ

(
k2−αp2

p2 +ϕ(t)u(0, t)
)
> 0, we have the solitary wave solution

u(x, t) = −
3

2β

(
k2 −αp2

p2 +ϕ(t)u(0, t)
)(

cth2

(√
1
γ

(
k2 −αp2

p2 +ϕ(t)u(0, t)
)
px− kt

2p

)
− 1

)
. (3.7)

2) When 1
γ

(
k2−αp2

p2 +ϕ(t)u(0, t)
)
< 0, we have the periodic wave solution

u(x, t) =
3

2β

(
k2 −αp2

p2 +ϕ(t)u(0, t)
)(

ctg2

(√
1
γ

(
k2 −αp2

p2 +ϕ(t)u(0, t)
)
px− kt

2p

)
+ 1

)
. (3.8)

If k = −1, α = 1, β = −6, γ = 1, p = 1 and ϕ(t) = t, we obtain from (3.7) the following solitary wave
solution

u(x, t) =
tu(0, t)

4

(
cth2

(√
tu(0, t)(x+ t)

2

)
− 1

)
,

where u(0, t) = 1
t3 ln2

(
t+2±

√
t2+4t

2

)
.

If k = −1, α = 1, β = 3
2 , γ = 1, p = 1 and ϕ(t) = −t2, we obtain from (3.8) the following the periodic

wave solution

u(x, t) = t2u(0, t)
(
ctg2

(
t
√
u(0, t)

x+ t

2

)
+ 1
)

,

where u(0, t) =
6(12−t2±

√
144−24t2−3t4)
t6 .
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4. Graphical representation of the loaded Boussinesq equation

We present some graphs of solitary and periodic waves constructed by taking suitable values of the
involved unknown parameters to visualize the underlying mechanism to the original physical phenom-
ena. Using mathematical software Matlab, three-dimensional plots of the obtained solutions have been
shown in Figures 1 and 2. A soliton or solitary wave in the concept of mathematical physics defined as
a self-reinforcing wave package that retains its shape. It propagates at a constant amplitude and velocity.
Solitons are solutions of a common class of nonlinearly partially differential equations with weak linearity
describing physical systems. The existence of periodic traveling waves usually depends on the parameter
values in a mathematical equation. If there is a periodic traveling wave solution, then there is typically a
family of such solutions, with different wave speeds.

Figure 1: Solitary wave solution of the loaded BE for k = −1, α = 1, β = −6, γ = 1, p = 1, and ϕ(t) = t.

Figure 2: Periodic wave solution of the loaded BE for k = −1, α = 1, β = 3
2 , γ = 1, p = 1, and ϕ(t) = −t2.

5. Solutions of the loaded modified Boussinesq equation

Assume that Eq. (1.2) has an exact solution in the form of a traveling wave

u(x, t) = u(ξ), ξ = px− kt,

the Eq. (1.2) can be converted to an ordinary differential equation

k2u ′′ −αp2u ′′ −βp2(u2) ′′ − γp4u(IV) + λp2(u2u ′) ′ + p2ϕ(t)u(0, t)u ′′ = 0. (5.1)

Twice integrating (5.1), setting the constant of integrating to zero, we obtain

u ′′ =
1
γp4

(
k2u−αp2u−βp2u2 +

λp2

3
u3 + p2ϕ(t)u(0, t)u

)
. (5.2)
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Following Eq. (2.7), it is easy to deduce from Eq. (5.2) an expression for the function F(u)

1
2
d
(
F2(u)

)
du

=
1
γp4

(
k2u−αp2u−βp2u2 +

λp2

3
u3 + p2ϕ(t)u(0, t)u

)
. (5.3)

Integrating Eq. (5.3) with respect to u and after the mathematical manipulations, we have

F(u) =
u

p2

√
Au2 +Bu+C, (5.4)

where A = λp2

6γ , B = −2βp2

3γ , C =
k2−αp2+p2ϕ(t)u(0,t)

γ .
From (2.5) and (5.4), we deduce that

du

u
√
Au2 +Bu+C

=
dξ

p2 . (5.5)

After integrating Eq. (5.5), with zero constant of integration, we have following exact solution

u(x, t) =
2(k2−αp2+p2ϕ(t)u(0,t))

γ e
−px−kt

p2

√
k2−αp2+p2ϕ(t)u(0,t)

γ(
e
−px−kt

p2

√
k2−αp2+p2ϕ(t)u(0,t)

γ + βp2

3γ

)2

−
λp2(k2−αp2+p2ϕ(t)u(0,t))

6γ2

. (5.6)

It is obvious that the function u(0, t) can be easily found based on expression (5.6).
If k = 1, α = 1, β = 3, γ = 1, p = −1, λ = 24, and ϕ(t) = 1, we obtain from (5.6) the following solitary

wave solution

u(x, t) = 2u(0, t)
e(x+t)

√
u(0,t)(

e(x+t)
√
u(0,t) + 1

)2
− 4u(0, t)

,

where u(0, t) =
(
t±
√

8−3t2

2(2−t2)

)2
.

If k = 1, α = 1, β = −3, γ = 1, p = −1, λ = −6, and ϕ(t) = −1, we obtain from (5.6) the following
periodic wave solution

u(x, t) =
−2u(0, t)e(x+t)i

√
u(0,t)(

e(x+t)i
√
u(0,t) − 1

)2
+ u(0, t)

,

where u(0, t) = 2
2t2−1 .

6. Physical interpretations of the loaded modified Boussinesq equation

We show how to find the solutions of the loaded modified BE in 3D plot formats to make it easier
to imagine. Graphical representation is an effective tool for communication and it exemplifies evidently
the solutions of the problems. The graphical illustrations of the solutions are depicted in the Figures 3
and 4. Solitary and periodic wave solutions represent an important type of solutions for nonlinear partial
differential equations as many nonlinear partial differential equations have been found to have a variety
of solitary wave solutions. The solitary wave solutions obtained in this article are encouraging, applicable,
and could be helpful in analyzing long wave propagation on the surface of a fluid layer under the action
of gravity, iron sound waves in plasma, and vibrations in a nonlinear string.
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Figure 3: Solitary wave solution of the loaded modified BE for k = 1, α = 1, β = 3, γ = 1, p = −1, λ = 24, and ϕ(t) = 1.

Figure 4: Real part of periodic wave solution of the loaded BE for k = 1, α = 1, β = −3, γ = 1, p = −1, λ = −6, and ϕ(t) = −1.

7. Conclusions

The functional variable method has been successfully used to obtain several traveling wave solutions
of the loaded BE and loaded modified BE. In this article, we have shown that, this method can provide
a useful way to efficiently find the exact structures of solutions to a variety of nonlinear wave equations.
The method yields a general solution with free parameters which can be identified by the above con-
ditions. The solution procedure can be easily implemented in Matlab program. We conclude that the
functional variable method is significant and important for finding the exact traveling wave solutions of
nonlinear evolution equations which can be converted to a second-order ODE through the traveling wave
transformation. The proposed method can be applied to many other nonlinear evolution equations in
mathematical physics.
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