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Abstract
In this article, we initiate the study of new concepts of conformable q-fractional calculus. The conformable fractional q-

derivative and q-integral are defined and their fundamental theorems are also proved. The uniform asymptotic stability of the
q-deformed conformable fractional system with constant delay is investigated by using the Lyapunov-Razumikhin method. For
application, a new asymptotic stability necessary condition for the conformable q-fractional linear system with constant delay is
obtained in term of linear matrix inequality (LMI). A numerical example is demonstrated for the results given to illustrate the
effectiveness.
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1. Introduction

Many related properties and formulas in different fields ranging from natural science to social science
of classical calculus are well-known to have been investigated extensively and intensively by Newton and
Leibniz. Dating in a sense back to the early eighteenth century, the well-known mathematician Leonhard
Euler (1707-1783) made pioneering discoveries in quantum calculus, which is focused on the study of infi-
nite series and is the only beginning to see more usefulness in many branches of mathematical analysis as
seen recently. With these fascinating ideas, Jackson [13, 14] introduced quantum derivative and quantum
integral in 1910. Moreover, Carmichael [6] published the general theory of linear quantum difference
equations which is devoted to an investigation of the existence and properties of solutions of linear quan-
tum difference equations, see [16] for more details. In particular, quantum calculus has been applied in
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physics such as q-coulomb, q-hydrogen atom, general relativity, molecular, nuclear spectroscopy, chemical
physics, and string theory.

In addition, Tariboon and Ntouyas [30] initiated the study of quantum calculus on finite intervals,
which defined the qk-derivative and qk-integral of a function. Fractional calculus was the study derivative
and integral of real or complex order. Recently, many researchers have been interested in this study and
expanded the field of applications such as engineering, physics, chemistry, and mechanics. Interesting
some recent articles on time-fractional equations can be found in [3–5, 22, 23]. The conformable fractional
implicated a limit instead of an integral, which can be found in [1, 17, 24] for more information. Khalil
[17] introduced the conformable fractional derivative to the product and quotient rules. We refer the
readers to see also [33, 34], and the references cited therein. Howsoever, no results on the uniform
asymptotic stability for q-deformed conformable fractional with delay have not been apprised to the best
of the creators’ knowledge. This is the driving force behind our current inquisition. The q-deformed
conformable fractional was first studied by Chung [7]. We observed that in this case α = 1 after that q-
deformed conformable fractional reduces to Jackson q-derivative. It also has special functions and applies
a deformed transform see in [11].

Time delay systems or delay differential equations [9] were often seen in many engineering systems,
chemistry, biology, and economics. At present, many authors [20, 35] established the stability of prob-
lems of nonlinear fractional systems. There are also many authors [19, 21] who introduced the finite-time
stability of fractional differential equations with time delay based on real problems considering the au-
tonomous and non-autonomous fractional differential systems. Moreover, many researchers have been
interested in studying about various stability criteria for a fractional neural network with time-delays
[10, 26–29]. In [15], Jarad et al. initiated stability of q-fractional non-autonomous systems by using Lya-
punov’s direct method. In [2], a Caputo type q-fractional initial value problem was solved, and its solution
was expressed by q-Mittag–Leffler function.

A few years later, Koca and Demirci [18] introduced local asymptotic stability of q-fractional nonlin-
ear dynamical systems, which are interested in q-fractional order nonlinear dynamical model. In 2017,
Abdourazek Souahi [25] introduced the stability and asymptotic stability of conformable fractional-order
nonlinear systems by using the Lyapunov function. Lyapunov-Razumikhin functional was born in the
framework of Teel [31] who studied input of state stability of time-delay systems in terms of the Lya-
punov functions. For other papers on the subject, see [8, 12].

In this article, the new definitions of conformable q-fractional calculus are proposed. Some funda-
mental basic properties of conformable fractional q-derivative and q-integration are proved. Moreover,
Lyapunov-Razumikhin stability theorem for q-deformed conformable fractional system with constant de-
lay is presented. The nonlinear inequalities and some inequalities are used in condition with a Lyapunov-
Razumikhin functional. Moreover, a delay-dependent asymptotic stability criterion for conformable q-
fractional linear system with constant delay is obtained and formulated in the form of linear matrix
inequality. Finally, an example is given to present that it is very convenient to check the stability of a
practical system by using our proposed method.

2. Preliminaries

In this section, we recommend some basic definitions of the conformable fractional calculus of order
0 < α 6 1.

Definition 2.1 ([24]). The conformable fractional derivative of a differentiable function ϑ : [s0,∞) → R is
given by

s0D
αϑ(s) = lim

ε→0

ϑ(s+ ε(s− s0)
1−α) − ϑ(s)

ε
, s > s0,

and s0D
αϑ(s) = (s− s0)

1−αϑ ′(s).
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Definition 2.2 ([24]). The conformable fractional integral of a integrable function ϑ : [s0,∞)→ R is given
by

s0I
αϑ(s) =

∫s
s0

(θ− s0)
α−1ϑ(θ)dθ, s > s0.

Next, we present the new definitions of conformable q-fractional calculus. The q-number of [n]q is
given by

[n]q =
1 − qn

1 − q
,

where 0 < q < 1 and n ∈ R. For example, [3]q = 1 + q+ q2.

Definition 2.3. Let ϑ be a continuous function on [s0,∞). Then the conformable fractional q-derivative of
order α ∈ (0, 1] is defined by

s0D
α
qϑ(s) =

[α]q(ϑ(s) − ϑ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α
= (s− s0)

1−α
s0Dqϑ(s), s > s0,

where

s0Dqϑ(s) =
ϑ(s) − ϑ(qs+ (1 − q)s0)

(1 − q)(s− s0)

and
s0D

α
qϑ(s0) = lim

s→s0
s0D

α
qϑ(s).

Definition 2.4. Let ϑ be a continuous function on [s0,∞). Then the conformable fractional q-integral of
order α ∈ (0, 1] is defined by∫s

s0

ϑ(θ)dαqθ =
1

[α]q
(1 − qα)(s− s0)

α
∞∑
i=0

qiαϑ(qis+ (1 − qi)s0) =

∫s
s0

(θ− s0)
α−1ϑ(θ)dqθ,

where
∫s
s0
ϑ(θ)dqθ = (1 − q)(s− s0)

∑∞
i=0 q

iϑ(qis+ (1 − qi)s).

Example 2.5. Let ϑ(s) = (s− s0)
β with s > s0, where β is a constant, then

s0D
α
qϑ(s) =s0 D

α
q(s− s0)

β =
[α]q

(
(s− s0)

β − (qs+ (1 − q)s0 − s0)
β
)

(1 − qα)(s− s0)α
= [α]q

(1 − qβ)

(1 − qα)
(s− s0)

β−α.

Example 2.6. Let ϑ(s) = (s− s0)
γ with s > s0, where γ is a constant, then∫s

s0

ϑ(θ)dαqθ =
1

[α]q
(1 − qα)(s− s0)

α
∞∑
i=0

qiα(qis+ (1 − qi)s0 − s0)
γ

=
1

[α]q
(1 − qα)(s− s0)

α+γ
∞∑
i=0

q(α+γ)i =
1

[α]q

(1 − qα)

(1 − q(α+γ))
(s− s0)

α+γ.

Theorem 2.7. Suppose that ϑ, ρ : [s0,∞)→ R is q-differentiable on [s0,∞). Then

(i) ϑ+ ρ : [s0,∞)→ R is q-differentiable on [s0,∞), and

s0D
α
q(ϑ(s) + ρ(s)) = s0D

α
qϑ(s) +s0 D

α
qρ(s);

(ii) λϑ : [s0,∞)→ R is q-differentiable on [s0,∞) for any constant λ, and

s0D
α
q(λϑ)(s) = λs0D

α
qϑ(s);
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(iii) ϑρ : [s0,∞)→ R is q-differentiable on [s0,∞), and

s0D
α
q(ϑρ)(s) = ϑ(qs+ (1 − q)s0)s0D

α
qρ(s) + ρ(s)s0D

α
qϑ(s);

(iv) if ρ(s) 6= 0, then ϑ
ρ is q-differentiable on [s0,∞) with

s0D
α
q

(
ϑ

ρ

)
(s) =

ρ(s)s0D
α
qϑ(s) − ϑ(s)s0D

α
qρ(s)

ρ(s)ρ(qs+ (1 − q)s0)
.

Proof. (i) and (ii) are easy to prove. Therefor, we omit it. To prove (iii), from Definition 2.3, we have

s0D
α
q(ϑρ)(s) =

[α]q (ϑ(s)ρ(s) − ϑ(qs+ (1 − q)s0)ρ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α
.

By adding the term ±ϑ(qs+ (1 − q)s0)ρ(s), we obtain

s0D
α
q(ϑρ)(s) =

[α]q (ϑ(s)ρ(s) − ϑ(qs+ (1 − q)s0)ρ(s))

(1 − qα)(s− s0)α

+
[α]q (ϑ(qs+ (1 − q)s0)ρ(s) − ϑ(qs+ (1 − q)s0)ρ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α

= ρ(s)

(
[α]q(ϑ(s) − ϑ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α

)
+ ϑ(qs+ (1 − q)s0)

(
[α]q(ρ(s) − ρ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α

)
= ϑ(qs+ (1 − q)s0)s0D

α
qρ(s) + ρ(s)s0D

α
qϑ(s).

To prove (iv), by using Definition 2.3, we obtain

s0D
α
q

(
ϑ

ρ

)
(s) =

[α]q

(
ϑ(s)
ρ(s) −

ϑ(qs+(1−q)s0)
ρ(qs+(1−q)s0)

)
(1 − qα)(s− s0)α

.

Adding the term ±ϑ(s)ρ(s), we get

s0D
α
q

(
ϑ

ρ

)
(s) =

[α]q(ϑ(s)ρ(qs+ (1 − q)s0) − ρ(s)ϑ(qs+ (1 − q)s0))

ρ(s)ρ(qs+ (1 − q)s0)(1 − qα)(s− s0)α

=
ρ(s)

ρ(s)ρ(qs+ (1 − q)s0)

[α]q(ϑ(s) − ϑ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α

−
ϑ(s)

ρ(s)ρ(qs+ (1 − q)s0)

[α]q(ρ(s) − ρ(qs+ (1 − q)s0))

(1 − qα)(s− s0)α

=
ρ(s)s0D

α
qϑ(s) − ϑ(s)s0D

α
qρ(s)

ρ(s)ρ(qs+ (1 − q)s0)
.

The proof is completed.

Theorem 2.8. Let ϑ, ρ : [s0,∞)→ R be a continuous function. The following formulas hold:

(i) s0D
α
q

∫s
s0
ϑ(θ)dαqθ = ϑ(s);

(ii)
∫s
s0 s0D

α
qϑ(θ)d

α
qθ = ϑ(s) − ϑ(s0);

(iii)
∫s
a s0D

α
qϑ(θ)d

α
qθ = ϑ(s) − ϑ(a), where a ∈ (s0, s).

Proof. To prove (i), by using Definitions 2.3 and 2.4, we get that

s0D
α
q

∫s
s0

ϑ(θ)dαqθ =s0 D
α
q

[
1

[α]q
(1 − qα)(s− s0)

α
∞∑
i=0

qiαϑ(qis+ (1 − qi)s0)

]
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=
(1 − qα)

(1 − qα)(s− s0)α

[
(s− s0)

α
∞∑
i=0

qiαϑ(qis+ (1 − qi)s0)

−(qs+ (1 − q)s0 − s0)
α

∞∑
i=0

qiαϑ(qi(qs+ (1 − q)s0) + (1 − qi)s0)

]

=

∞∑
i=0

qiαϑ(qis+ (1 − qi)s0) −

∞∑
i=0

q(1+i)αϑ(q1+is+ (1 − q1+i)s0) = ϑ(s).

To claim that (ii) from Definitions 2.3 and 2.4, we obtain∫s
s0

s0D
α
qϑ(θ)d

α
qθ =

∫s
s0

(
[α]q(ϑ(θ) − ϑ(qθ+ (1 − q)s0))

(1 − qα)(s− s0)α

)
dαqθ

= (1 − qα)(s− s0)
α

∞∑
i=0

qiα
(
ϑ(qis+ (1 − q)s0) − ϑ(q(q

is+ (1 − qi)s0) + (1 − q)s0)

(1 − qi)(qis+ (1 − qis0) − s0)α

)

=

∞∑
i=0

ϑ(qis+ (1 − q)s0) −

∞∑
i=0

ϑ(qi+1s+ (1 − qi+1s0)) = ϑ(s) − ϑ(s0).

The part (ii) of this theorem implies that∫s
a
s0D

α
qϑ(θ)d

α
qθ =

∫s
s0

s0D
α
qϑ(θ)d

α
qθ−

∫a
s0

s0D
α
qϑ(θ)d

α
qθ = ϑ(s) − ϑ(a).

Therefore, (iii) is proved.

Definition 2.9 ([32]). A function ϑ(x,y) is called a homogeneous equation of degree k if ϑ(rx, ry) =
rkϑ(x,y) for all x,y and r > 0.

Lemma 2.10. Given a function w : [s0,∞) → R be α-differentiable, where α ∈ (0, 1] and M is a symmetric
positive definite matrix, then s0D

α
qw

T (s)Mw(s) exists on [s0,∞) and

s0D
α
qw

T (s)Mw(s) = wT (qs+ (1 − q)s0)Ms0D
α
qw(s) +w

T (s)Ms0D
α
qw(s)

for all s > s0.

Proof. Applying the Theorem 2.7, we have

s0D
α
qw

T (s)Mw(s) = wT (qs+ (1 − q)s0)Ms0D
α
qw(s) +w

T (s)Ms0D
α
qw(s).

3. Main result

We assume C([a,b], Rn) is the set of functions mapping the interval [a,b] to Rn. In many cases,
we may have to analyze the maximum time delay ι of a system. In this situation, the set of continuous
functions mappings [−ι, 0] to Rn is attentive, for which we simplify the notation to C = C([−ι, 0], Rn). For
all J > 0 and continuous function of time Φ ∈ C([s0 − ι, s0 + J], Rn), s0 6 s 6 s0 + J, suppose that Φs ∈ C
is a segment of function Φ given by Φs(η) = Φs(s+ η), where −ι 6 η 6 0.

We investigate the Lyapunov-Razumikhin theorem of uniform stability and uniform asymptotical
stability for q-deformed conformable fractional system with constant delay of the form

s0D
α
qw(s) = f(s,w(s− ι)), (3.1)
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where s > s0, 0 < α 6 1,w(s) ∈ Rn is the state vector and f : R×C → Rn. For each the solution w(s) of
(3.1), we let the initial condition

w(s0 + θ) = Φ(θ),

where θ ∈ [−ι, 0] and Φ ∈ C.

Definition 3.1 ([32]). The trivial solution of a system (3.1) is said to be stable if for every ε > 0, there is
an ϑ = (s0, ε) > 0 such that ‖ws0‖ < ϑ implies ‖ws‖ < ε for all s > s0.

It is said to be asymptotically stable if it is stable and s0 ∈ R and for every ε > 0, there is an
ϑ0 = ϑ0(s0, ε) > 0 such that ‖ws0‖ < ϑ0 implies lims→∞w(s) = 0.

Theorem 3.2. Let κ1, κ2, κ3 : R+ → R+ be continuous non-decreasing functions, κ1 and κ2 be positive for all θ > 0
and κ1(0) = κ2(0) = 0 with κ2 being strictly increasing. If there is a differentiable functional ∇ : R×Rn → R+

such that
κ1(‖w‖) 6 ∇(s,w) 6 κ2(‖w‖), for s ∈ R,

the q-derivative of ∇ with the solution w(s) of conformable q-fractional systems (3.1) satisfies

s0D
α
q∇(s,w(s)) 6 −κ3(‖w(s)‖), (3.2)

for w ∈ Rn and for all s0 ∈ R and
∇(s+ ζ,w(s+ ζ)) 6 ∇(s,w(s)),

for all ζ ∈ [−ι, 0], then q-deformed conformable fractional system (3.1) is uniformly stable.
If κ3(θ) > 0 for all θ > 0, and there is a continuous non-decreasing function ϕ(θ) > θ for all θ > 0 such that

s0D
α
q∇(s,w(s)) 6 −κ3(‖w(s)‖),

and
∇(s+ ζ,w(s+ ζ)) 6 ϕ(∇(s,w(s))),

for all ζ ∈ [−ι, 0], then q-deformed conformable fractional system (3.1) is uniformly asymptotically stable.

Proof. We assume that w(s) = w(s, s0,Φ),∇(s) = ∇(s,w(s)) and

∇∗(s) = sup
−ι6ζ60

∇(s+ ζ,w(s+ ζ)),

are functions. There exists ζ̂ ∈ [−ι, 0] such that

∇∗ = ∇(s+ ζ̂,w(s+ ζ̂)),

and either ζ̂ = 0 or ζ̂ < 0, and

∇(s+ ζ,w(s, ζ)) 6 ∇(s+ ζ̂,w(s+ ζ̂)), for ζ̂ 6 ζ 6 0.

Now, we will show that
s0D

α
q∇∗(s,w(s)) 6 0. (3.3)

In the case ζ̂ < 0, then for a function ∇∗(s+∆s,w(s+∆s)) = ∇∗(s,w(s)), there exists a ∆s > 0, and thus
s0D

α
q∇∗(s,w(s)) = 0. From (3.2), if ζ̂ = 0, then for a function ∇∗(s) = ∇(s,w(s)) and s0D

α
q∇∗(s,w(s)) =s0

Dαq∇(s,w(s)) 6 0. Therefore, (3.3) holds and

κ1(‖w(s)‖) 6 ∇(s,w(s)) 6 ∇∗(s,w(s)) 6 ∇(s0,w(s0)) 6 κ2(‖w(s0)‖). (3.4)

For all ε > 0, there is ϑ > 0 such that κ2(ϑ) < κ1(ε). Suppose that ‖ws0‖ < ϑ. From (3.4), it follows that

κ1(‖w(t)‖) 6 κ2(‖w(s0)‖) 6 κ2(‖ws0‖) 6 κ2(ϑ) < κ1(ε).
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This implies ‖w(s)‖ < ε. Therefore, q-deformed conformable fractional system (3.1) is uniformly stable.
We assume that ϑ > 0 and G > 0 such that v(ϑ) = u(G). Since ‖Φ‖ 6 ϑ, it follows that ‖ws0‖ 6 G,
∇(s,w(s)) < v(ϑ) for s > s0 − ι. Let 0 < ψ 6 G be arbitrary. From the function ϕ(θ), there exists ζ > 0
such that ϕ(θ) − θ > ζ for u(ψ) 6 θ 6 v(ϑ). We let the smallest integer M such that u(ψ) +Mζ > v(ϑ)

and let T =
Mv(ϑ)
$ , where $ = infψ6θ6Gw(θ).

We will show that
∇(s,w(s)) 6 u(ψ) + (M− 1)ζ,

for all s > s0 + (
v(ϑ)
$ ). If u(ψ) + (M− 1)ζ < ∇(s,w(s)) for s0 − ι > s < s0 + (

v(ϑ)
$ ), then ∇(s,w(s)) 6 v(ϑ)

for all s > s0 − ι, we get

ϕ(∇(s,w(s))) > ∇(s,w(s)) + ζ > u(ψ) +Mζ > v(ϑ) > ∇(s+ ξ,w(s+ ξ)), s0 − ι > s > s0 +
v(ϑ)

$
,

where ξ ∈ [−ι, 0]. Consequently, we have

s0D
α
q∇(s,w(s)) 6 −w(|w(s)|) 6 −$,

for s0 > s < s0 + (
v(ϑ)
$ ), and

∇(s,w(s)) 6 ∇(s0,w(s0)) −$(s− s0) 6 v(ϑ) −$(s− s0).

Then for an inequality ∇(s,w(s)) 6 u(ψ) + (M− 1)ζ at s1 = s0 +
v(ϑ)
$ implies ∇(s,w(s)) 6 u(ψ) + (M−

1)ζ for all s > s0 +
v(ϑ)
$ since s0D

α
q∇(s,w(s)) is negative, when ∇(s,w(s)) = u(ψ) + (M− 1)ζ.

Next, let s̄j = j
v(ϑ)
$ , j = 1, 2, . . . ,M, s̄0 and for some integer k > 1, where s̄k−1 − r 6 s− s0 6 s̄k, we

have
u(ψ) + (M− k)ζ 6 ∇(s,w(s)) 6 u(ψ) + (M− k+ 1)ζ.

Thus
s0D

α
q∇(s,w(s)) 6 −$, s̄k−1 6 s− s0 6 s̄k,

and

∇(s,w(s)) 6 ∇(s0 + s̄k−1,w(s0 + s̄k−1)) −$(s− s0 − s̄k−1) 6 v(ϑ) −$(s− s0 − s̄k−1) 6 0,

where s− s0 − s̄k−1 > v(ϑ)
$ . Therefore, ∇(s0 + s̄k−1,w(s0 + s̄k−1)) 6 u(ψ) + (M− k)ζ, then ∇(s,w(s)) 6

u(ψ) + (M − k)ζ for all s > s0 + s̄k−1. Finally, ∇(s,w(s)) 6 u(ψ) for all s > s0 +M
v(ϑ)
$ . Therefore,

q-deformed conformable fractional system (3.1) is uniformly asymptotically stable.

Consider the q-deformed conformable fractional linear system with constant delay and w is a homo-
geneous function of the form

0D
α
qw(s) = −Aw(s) +Bf(w(s− ι)), s > 0, (3.5)

where 0 < α 6 1, w(s) ∈ Rn is the state vector, let A and B be known real constant matrices and let ι be
a positive real constant. For each solution w(s) of (3.5), we suppose the initial condition

w(s) = Φ(s), s ∈ [−ι, 0],

where Φ ∈ C([−ι, 0]; Rn).
The uncertainty f(.) is the non-linear parameter perturbation with respect to the statew(s) and satisfies

fT (w(s− ι))f(w(s− ι)) 6 ϑ2wT (s− ι)w(s− ι), (3.6)

where ϑ is a given real constant.
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Theorem 3.3. For a given positive real constant ϑ, (3.5) is asymptotically stable if there exists symmetric positive
definite matrix K and a positive real constant ε such that the following symmetric linear matrix inequality holds,−(1 + q)KA+ ιαK 0 KB

∗ εϑ2I− ιαK 0
∗ ∗ −εI

 < 0. (3.7)

Proof. We let the symmetric positive definite matrix K. Consider the Lyapunov functional of the form

∇(s) = wT (s)Kw(s).

Taking the q-derivative of ∇(s) along the trajectory solution of the system (3.5) yields

0D
α
q∇(s) = wT (qs)K0D

α
qw(s) +w(s)

TK0D
α
qw(s)

= (1 + q)wT (s)K0D
α
qw(s) = (1 + q)wT (s)K[−Aw(s) +Bf(w(s− ι))].

From (3.6), we get

0 6 εϑ2wT (s− ι)w(s− ι) − εf(w(s− ι))fT (w(s− ι)), for ε > 0.

When ∇(s+ ζ,w(s+ ζ)) 6 ∇(s,w(s)) for all ζ ∈ [−ι, 0], we get

0 6 ιαwT (s)Kw(s) − ιαwT (s− ι)Kw(s− ι).

According to (3.5) and (3.7), it is straightforward to see that

s0D
α
q∇(s) 6 ξT (s)

−(1 + q)KA+ ιαK 0 KB

∗ εϑ2I− ιαK 0
∗ ∗ −εI

Ω(s),

where Ω(s) = col{w(s),w(s− ι), f(w(s− ι))}. If (3.7) holds, then the system (3.5) is asymptotically stable.
The proof of the theorem is completed.

4. Numerical example

Example 4.1. Consider the following conformable q-fractional linear system of the form

s0D
α
qw(s) = −Aw(s) +Bf(w(s− ι)). (4.1)

We can solve the LMI (3.7) when

A =

[
1.9 0
0 0.8

]
,B =

[
−1 0
−1 −1

]
, ι = 0.3,α = 0.7,q = 0.3,

we obtain the parameters ε = 1957, K =

[
7176 −1924
−1924 1328

]
guaranteeing asymptotic stability of system

(4.1) with ϑ = 0.2.
Then, the maximum upper bound of the nonlinear parameter ϑ which guarantees the asymptotic

stability of system (4.1) is 0.2840.

Table 1 represents the least upper bounds of the nonlinear parameter ϑ of this example for various
values of ι, α, and q.
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Table 1: Least upper bounds of the nonlinear parameter ϑ in Example 4.1.
q = ι = 0.2 q = ι = 0.3 q = ι = 0.4

α = 0.6 0.2152 0.2673 0.3128
α = 0.7 0.2299 0.2840 0.3300
α = 0.8 0.2429 0.2984 0.3455

5. Conclusion

In this paper, we introduced the new definitions of conformable q-fractional calculus. The basic
properties such as the conformable fractional q-derivative of a sum and of a product or quotient of
two functions, q-integration by parts, and fundamental theorems were derived. We presented uniform
asymptotic stability theorem for the q-deformed conformable fractional system with delay using the
Lyapunov-Razumikhin method. We used the nonlinear inequality and some inequalities in condition with
a Lyapunov-Razumikhin functional. Thus, new asymptotic stability necessary condition is constructed in
terms of linear matrix inequality to guarantee asymptotic stability for q-deformed conformable fractional
linear system with constant delay. Moreover, a numerical example illustrated our obtained result.
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