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1. Introduction

In 1960, Opial in [23] proved that∫b
a

∣∣f (x) f′ (x)∣∣dx 6 b− a

4

∫b
a

(
f′ (x)

)2
dx, (1.1)

where f ∈ C1 [a, b] and f (x) > 0, f (a) = f (b) = 0. The constant 1/4 is the best constant. Also he proved
that ∫b

0

∣∣f (x) f′ (x)∣∣dx 6 b

2

∫b
0

(
f′ (x)

)2
dx,

where f (0) = 0.
In 1962, Beesack in [5] generalized (1.1) and proved that∫b

a

|f (x)|
∣∣f′ (x)∣∣dx 6 1

2

∫b
a

1
h (x)

dx

∫b
a

h (x)
(
f′ (x)

)2
dx, (1.2)

where f is an absolutely continuous function on [a, b], f(a) = 0 and h is a continuous and positive
function such that

∫b
a

(
1

h(x)

)
dx <∞.
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In 1966, Yang in [27] presented a simple proof of inequality (1.2) and obtained an extension of the
form ∫b

a

s (x) |f (x)|
∣∣f′ (x)∣∣dx 6 1

2

∫b
a

1
h (x)

dx

∫b
a

s (x)h (x)
(
f′ (x)

)2
dx,

where f is an absolutely continuous function on [a, b] and f(a) = 0, and s is a bounded, nonincreasing
and positive function on [a, b], and h is a positive and continuous function such that

∫b
a

(
1

h(x)

)
dx < ∞.

Also, Yong in [27] proved that∫b
a

|f (x)|λ
∣∣f′ (x)∣∣µ dx 6 µ

λ+ µ
(b− a)λ

∫b
a

∣∣f′ (x)∣∣λ+µ dx, for λ, µ > 1,

where f is an absolutely continuous function on [a, b] with f (a) = 0.
In 1967, Boyd and Wong in [8] proved that∫a

0
s (x) |f (x)|λ

∣∣f′ (x)∣∣dx 6 1
β0 (λ+ 1)

∫a
0
r (x)

∣∣f′ (x)∣∣λ+1
dx,

where β0 is the smallest eigenvalue of the boundary value problem(
r (x)

(
g′ (x)

)λ)′
= λs′ (x)gλ (x) ,

where r, s ∈ C1 [0, a] are nonnegative functions such that

r (a)
(
g′ (a)

)λ
= λs′ (a)gλ (a) and g (0) = 0 for 0 < g′ ∈ [0,a] .

In 1968, Beesack and Das in [6] proved the following inequality∫a
0
v (x) |f (x)|λ

∣∣f′ (x)∣∣µ dx 6 K (a, λ, µ)
∫a

0
h (x)

∣∣f′ (x)∣∣λ+µ dx, (1.3)

where f is an absolutely continuous function on [0, a], f(0) = 0, f′ is of constant sign, λ, µ are real
numbers with λµ > 0 and either λ+ µ < 0 or λ+ µ > 1, h, v are nonnegative measurable functions with∫a

0 h
−1

λ+µ−1 (t)dt <∞, and

K (a, λ, µ) =
(

µ

λ+ µ

) µ
λ+µ

(∫a
0
s
λ+µ
λ (x) r

−µ
λ (x)

(∫x
0
r

−1
λ+µ−1 (u)du

)λ+µ−1

dx

) λ
λ+µ

.

In 1983, Yong in [28] proved that∫b
a

r (x) |f (x)|λ
∣∣f′ (x)∣∣µ dx 6 µ

λ+ µ
(b− a)λ

∫b
a

r (x)
∣∣f′ (x)∣∣λ+µ dx,

for λ > 0, µ > 1, f is absolutely continuous on the interval [a, b] such that f (a) = 0 and r is a bounded
and positive function. For more details about Opial type inequalities, we refer readers to [3, 8, 13, 22, 23].

Various integral inequalities and their extensions are important in the study of qualitative behavior of
differential equations (see, e.g., [7, 9, 10, 18, 19] for more details) and partial differential equations (see,
e.g., [17, 20] for more details). Recently, Opial type inequalities and their extensions have become an
important tool for all types of differential equations by using it to prove the uniqueness and existence of
initial and boundary value problems.

By utilizing the conformable calculus, many authors proved some integral inequalities like Cheby-
shev’s type [21, 26], Hardy’s type [24], Hermite-Hadamard’s type [2, 15, 16], and Iyengar’s type [25].

The paper is organized as follows. In Section 2, we present some concepts on conformable calculus.
In Section 3, we prove some Opial type inequalities for α-fractional differentiable functions and obtain
the classical ones as special cases when α = 1.
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2. Preliminaries and basic lemmas

In this section, we present some basic definitions and lemmas on conformable calculus. The results
are adapted from [14], for more details, we refer the reader to [1, 4, 14].

Definition 2.1. The conformable derivative of order α of a function w : [0, ∞) → R is defined by

Dαw (s) = lim
ε→0

w
(
s+ εs1−α

)
−w (s)

ε
, for all s > 0, α ∈ (0, 1) .

Definition 2.2. The conformable integral of order α of a function w : [0, ∞) → R is defined by

(Iaαw) (x) =

∫x
a

w (s)dαs =

∫x
a

sα−1w (s)ds, 0 < α 6 1.

Theorem 2.3. Let w and v be α-differentiable such that x > 0. Then for α ∈ (0, 1],

1. Dα (aw+ bv) (x) = aDαw (x) + bDαv (x) ;
2. Dα

(
xλ
)
= λxλ−α for all λ ∈ R;

3. Dα (θ) = 0, for all constant functions w (x) = θ;
4. Dα (wv) (x) = wDαv (x) + vDαw (x) ;
5. Dα

(
w
v

)
(x) = vDαw(x)−wDαv(x)

v2 ;

6. if w is differentiable, then Dαw (x) = x1−αdw(x)
dx .

Lemma 2.4. Let v (x) be α-differentiable with respect to x and w be α-differentiable with respect to v. Then the
chain rule by using conformable derivative is defined by

Dαw (v (x)) = vα−1 (x) (Dαw (v (x)))Dαv (x) . (2.1)

Lemma 2.5. Let w and v be α-differentiable with respect to x on [a, b]. Then the integration by parts using
conformable calculus is defined as∫b

a

Daαw (x) v (x)dαx = w (x) v (x) |ba −

∫b
a

w (x) (Daαv (x))dαx.

Lemma 2.6. Let 0 < α 6 1 and w, v : [a, b] → R. Then the Hölder inequality by using conformable integral is
defined by ∫b

a

|w (x) v (x)|dαx 6

(∫b
a

|w (x)|β dαx

) 1
β
(∫b
a

|v (x)|γ dαx

) 1
γ

, (2.2)

for 1
β + 1

γ = 1 and β > 1.

3. Main results

Theorem 3.1. Let λ, µ ∈ R+ such that λ+ µ > 1, a, x ∈ R, g, h be nonnegative continuous functions on (a, x)
with

∫x
a g

−1
λ+µ−1 (s)dαs < ∞, and Φ : [a, x] → R be αth differentiable with DαΦ of constant sign in (a, x) and

Φ(a) = 0. Then ∫x
a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt 6 K1 (a, x, λ, µ)
∫x
a

g (t) |DαΦ (t)|λ+µ dαt, (3.1)

where

K1 (a, x, λ, µ) =
(

µ

λ+ µ

) µ
λ+µ

∫x
a

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1

dαt

 λ
λ+µ

.
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Proof. Suppose that

|Φ (t)| =

∫t
a

|DαΦ (s)|dαs =

∫t
a

1

g
1
λ+µ (s)

g
1
λ+µ (s) |DαΦ (s)|dαs.

Since g is nonnegative on (a, x), then by using the Hölder inequality (2.2) such that β = λ + µ and
γ = λ+µ

λ+µ−1 and

w (s) = g
1
λ+µ (s) |DαΦ (s)| , and v (s) =

1

g
1
λ+µ (s)

,

where that ∫t
a

|DαΦ (s)|dαs 6

(∫t
a

g (s) |DαΦ (s)|λ+µ dαs

) 1
λ+µ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1
λ+µ

.

This leads to

|Φ (t)|λ 6

(∫t
a

g (s) |DαΦ (s)|λ+µ dαs

) λ
λ+µ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

.

Let

Ω (t) :=

∫t
a

g (s) |DαΦ (s)|λ+µ dαs.

Then Ω (a) = 0, and
DαΩ (t) = g (t) |DαΦ (t)|λ+µ > 0.

Hence, we have that

|DαΦ (t)|µ =

(
DαΩ (t)

g (t)

) µ
λ+µ

and |DαΦ (t)|λ+µ =
DαΩ (t)

g (t)
. (3.2)

Since h is a nonnegative function on (a, x), then by using (3.2) we find that

h (t) |Φ (t)|λ |DαΦ (t)|µ 6 h (t) |DαΦ (t)|µ
(∫t
a

g (s) |DαΦ (s)|λ+µ dαs

) λ
λ+µ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

= Ω
λ
λ+µ (t) (DαΩ (t))

µ
λ+µ h (t)

(
1
g (t)

) µ
λ+µ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

.

Integrating the above inequality from a to x, we have∫x
a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt

6
∫x
a

Ω
λ
λ+µ (t) (DαΩ (t))

µ
λ+µ h (t)

(
1
g (t)

) µ
λ+µ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

dαt.

(3.3)

By employing the Hölder inequality (2.2) on the right side of integral of (3.3) with β = (λ+ µ)/µ and
γ = (λ+ µ)/λ, we have∫x

a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt

6

[∫x
a

Ω
λ
µ (t) (DαΩ (t))dαt

] µ
λ+µ

∫x
a

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1

dαt

 λ
λ+µ

.
(3.4)
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By using the chain rule (2.1), we get that

Dα

(
Ω
λ+µ
µ (t)

)
= Dα

(
Ω
λ+µ
µ

)
(Ω (t))Dα (Ω (t))Ωα−1 (t)

=
λ+ µ

µ
Ω
λ+µ
µ −α (t)Dα (Ω (t))Ωα−1 (t) =

λ+ µ

µ
Ω

λ
µ (t)Dα (Ω (t)) .

Then we have
Ω

λ
µ (t)Dα (Ω (t)) =

µ

λ+ µ
Dα

(
Ω
λ+µ
µ (t)

)
. (3.5)

Since Ω(a) = 0 and from (3.4) and (3.5), we deduce that∫x
a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt

6

(
µ

λ+ µ

) µ
λ+µ

[∫x
a

Dα

(
Ω
λ+µ
µ (t)

)
dαt

] µ
λ+µ

∫x
a

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫t
a

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1

dαt

 λ
λ+µ

= K1 (a, x, λ, µ)
∫x
a

g (t) |DαΦ (t)|λ+µ dαt,

which is the inequality (3.1). The proof is complete.

Corollary 3.2. In Theorem 3.1, if α = 1 and a = 0, then we get∫x
0
h (t) |Φ (t)|λ

∣∣Φ′ (t)∣∣µ dt 6 K2 (x, λ, µ)
∫x

0
g (t)

∣∣Φ′ (t)∣∣λ+µ dt,
where

K2 (x, λ, µ) =
(

µ

λ+ µ

) µ
λ+µ

∫x
0
h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫t
0

1

g
1

λ+µ−1 (s)
ds

)λ+µ−1

dt

 λ
λ+µ

,

which is the inequality of (1.3).

Theorem 3.3. Let λ, µ ∈ R+ such that λ+ µ > 1, x, b ∈ R, g, h be nonnegative continuous functions on (x,b)
with

∫b
x g

−1
λ+µ−1 (s)dαs < ∞, and Φ : [x,b] → R be αth differentiable with DαΦ of constant sign in (x,b) and

Φ(b) = 0. Then ∫b
x

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt 6 K3 (x, b, λ, µ)
∫b
x

g (t) |DαΦ (t)|λ+µ dαt, (3.6)

where

K3 (x, b, λ, µ) =
(

µ

λ+ µ

) µ
λ+µ

∫b
x

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1

dαt

 λ
λ+µ

.

Proof. Suppose that

|Φ (t)| =

∫b
t

|DαΦ (s)|dαs =

∫b
t

1

g
1
λ+µ (s)

g
1
λ+µ (s) |DαΦ (s)|dαs.
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Since h is nonnegative on (x, b), then by using the Hölder inequality (2.2) such that β = λ + µ and
γ = λ+µ

λ+µ−1 and

w (s) = g
1
λ+µ (s) |DαΦ (s)| , and v (s) =

1

r
1
λ+µ (s)

,

where that ∫b
t

|DαΦ (s)|dαs 6

(∫b
t

g (s) |DαΦ (s)|λ+µ dαs

) 1
λ+µ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1
λ+µ

.

This gets us that

|Φ (t)|λ 6

(∫b
t

g (s) |DαΦ (s)|λ+µ dαs

) λ
λ+µ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

.

Letting

Ω (t) :=

∫b
t

g (s) |DαΦ (s)|λ+µ dαs,

then we see that Ω (b) = 0, and

DαΩ (t) = −g (t) |DαΦ (t)|λ+µ < 0.

Hence we have that

|DαΦ (t)|µ =

(
−DαΩ (t)

g (t)

) µ
λ+µ

and |DαΦ (t)|λ+µ =
−DαΩ (t)

g (t)
. (3.7)

Since h is a nonnegative function on (x, b), then by using (3.7) we find that

h (t) |Φ (t)|λ |DαΦ (t)|µ 6 h (t) |DαΦ (t)|µ
(∫b
t

g (s) |DαΦ (s)|λ+µ dαs

) λ
λ+µ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

= Ω
λ
λ+µ (t) (−DαΩ (t))

µ
λ+µ h (t)

(
1
g (t)

) µ
λ+µ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

.

Integrating the above inequality from x to b, we have∫b
x

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt

6
∫b
x

Ω
λ
λ+µ (t) (−DαΩ (t))

µ
λ+µ h (t)

(
1
g (t)

) µ
λ+µ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ(λ+µ−1)
λ+µ

dαt.

(3.8)

By using the Hölder inequality (2.2) on the right side of integral of (3.8) such that β = (λ+ µ)/µ and
γ = (λ+ µ)/λ, we have∫b
x

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt

6

[∫b
x

Ω
λ
µ (t) (−DαΩ (t))dαt

] µ
λ+µ

∫b
x

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1

dαt

 λ
λ+µ

.

(3.9)
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Using the chain rule (2.1), we get that

Dα

(
Ω
λ+µ
µ (t)

)
= Dα

(
Ω
λ+µ
µ

)
(Ω (t))Dα (Ω (t))Ωα−1 (t)

=
λ+ µ

µ
Ω
λ+µ
µ −α (t)Dα (Ω (t))Ωα−1 (t) =

λ+ µ

µ
Ω

λ
µ (t)Dα (Ω (t)) .

Then we have
Ω

λ
µ (t)Dα (Ω (t)) =

µ

λ+ µ
Dα

(
Ω
λ+µ
µ (t)

)
. (3.10)

Since Ω(b) = 0 and from (3.9) and (3.10), we deduce that∫b
x

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt

6

(
µ

λ+ µ

) µ
λ+µ

[
−

∫b
x

Dα

(
Ω
λ+µ
µ (t)

)
dαt

] µ
λ+µ

∫b
x

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫b
t

1

g
1

λ+µ−1 (s)
dαs

)λ+µ−1

dαt

 λ
λ+µ

= K3 (x, b, λ, µ)
∫b
x

g (t) |DαΦ (t)|λ+µ dαt,

which is the inequality (3.6). The proof is complete.

Corollary 3.4. In Theorem 3.3, if α = 1, then we have the following inequality∫b
x

h (t) |Φ (t)|λ
∣∣Φ′ (t)∣∣µ dt 6 K4 (x, b, λ, µ)

∫b
x

g (t)
∣∣Φ′ (t)∣∣λ+µ dt,

where

K4 (x, b, λ, µ) =
(

µ

λ+ µ

) µ
λ+µ

∫b
x

h
λ+µ
λ (t)

(
1
g (t)

)µ
λ

(∫b
t

1

g
1

λ+µ−1 (s)
ds

)λ+µ−1

dt

 λ
λ+µ

.

Assume that there exists x ∈ (a, b) which is the unique solution of the equation

K (λ, µ) = K1(a, x, λ, µ) = K3(x, b, λ, µ) <∞,

where K1(a, x, λ, µ) and K3(x, b, λ, µ) are given in Theorems 3.1 and 3.3, now since∫b
a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt =

∫x
a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt+

∫b
x

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt,

then we have the following theorem.

Theorem 3.5. Let λ, µ ∈ R+such that λµ > 0 and λ+µ > 1, a,b ∈ R, g, h be nonnegative continuous functions
on (a, b) with

∫b
a g

−1
λ+µ−1 (s)dαs <∞, and Φ : [a, b] → R be αth differentiable thus DαΦ of constant sign in (a,

b), and Φ(a) = 0 = Φ(b). Then∫b
a

h (t) |Φ (t)|λ |DαΦ (t)|µ dαt 6 K (λ, µ)
∫b
a

g (t) |DαΦ (t)|λ+µ dαt.

Proof. The proof can be obtained by making a combination of the proof of Theorems 3.1 and 3.3.



S. H. Saker, G. M. Ashry, M. R. Kenawy, J. Math. Computer Sci., 30 (2023), 30–37 37

References

[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. 2
[2] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-

Hadamard type with applications, J. Funct. Spaces, 2020 (2020), 14 pages. 1
[3] R. P. Agarwal, P. Y. H. Pang, Opial inequalities with applications in differential and difference equations, Kluwer Aca-

demic Publishers, Dordrecht, 320 (1995). 1
[4] D. R. Anderson, Taylor’s formula and integral inequalities for conformable fractional derivatives, Contrib. Math. Eng.

Springer. Cham., (2016), 25–43. 2
[5] P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc., 104 (1962), 470–475. 1
[6] P. R. Beesack, K. M. Das, Extensions of Opial’s inequality, Pacific J. Math., 26 (1968), 215–232. 1
[7] M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations

with deviating arguments, Indag. Math. (N.S.), 29 (2018), 548–560. 1
[8] D. W. Boyd, J. S. W. Wong, An extension of Opial’s inequality, J. Math. Anal. Appl., 19 (1967), 100–102. 1, 1
[9] K.-S. Chiu, T. Li, Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed

arguments, Math. Nachr., 292 (2019), 2153–2164. 1
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