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1. Introduction

After the introduction of fuzzy sets by Zadeh [13], there have been a number of generalizations of
this fundamental concept. The theory of fuzzy sets has several applications in real-life situations, and
many scholars have researched fuzzy set theory. After the introduction of the concept of fuzzy sets,
several research studies were conducted on the generalizations of fuzzy sets. The integration between
fuzzy sets and some uncertainty approaches such as soft sets and rough sets has been discussed in
[2, 4, 5]. The idea of intuitionistic fuzzy sets suggested by Atanassov [3] is one of the extensions of fuzzy
sets with better applicability. Applications of intuitionistic fuzzy sets appear in various fields, including
medical diagnosis, optimization problems, and multi-criteria decision making [8–10]. Using the notion of
intuitionistic fuzzy sets, Coker [6] introduced the notion of intuitionistic smooth fuzzy topological spaces.
Samanta and Mondal [11, 12] introduced the definitions of the intuitionistic smooth fuzzy topological
space in Sǒstak sense. The aim of this paper is to introduce and study the concepts of generalization of
intuitionistic fuzzy continuous functions via intuitionistic r-fuzzy regular open sets.
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2. Preliminaries

Throughout this paper, let X be a non-empty set, I the unit interval [0, 1], and I0 = (0, 1]. The family
of all intuitionistic fuzzy sets on X is denoted by IX. By 0 and 1, we denote the smallest and the greatest
intuitionistic fuzzy sets on X. For an intuitionistic fuzzy set λ ∈ IX, 1 − λ denotes its complement.

Definition 2.1 ([3]). Let X be a nonempty set and I the closed interval [0, 1]. An intuitionistic fuzzy set
A is an object of the following form A = {〈x,µA(x),γA(x)〉 : x ∈ X}, where the mappings µA : X → I

and γA : X → I denote the degree of membership (namely µA(x)) and the degree of nonmembership
(namely γA(x)) for each x ∈ X to the set A, respectively, and 0 6 µA(x) + γA(x) 6 1 for each x ∈ X.
Obviously, every fuzzy set A on a nonempty set X is an intuitionistic fuzzy set of the following form
A = {〈x,µA(x), 1 − µA(x)〉 : x ∈ X}.

Definition 2.2 ([3]). Let A and B be intuitionistic fuzzy sets of the form A = {〈x,µA(x),γA(x)〉 : x ∈ X}
and B = {〈x,µB(x),γB(x)〉 : x ∈ X}. Then

1. A 6 B if and only if µA(x) 6 µB(x) and γA(x) > γB(x);
2. Ā = {〈x,γA(x),µA(x)〉 : x ∈ X};
3. A∧B = {〈x,µA(x)∧ µB(x),γA(x)∨ γB(x)〉 : x ∈ X};
4. A∨B = {〈x,µA(x)∨ µB(x),γA(x)∧ γB(x)〉 : x ∈ X}.

We will use the notation A = 〈x,µA,γA〉 instead of A = {〈x,µA(x),γA(x)〉 : x ∈ X}. A constant fuzzy
set α taking value α ∈ [0, 1] will be denoted by α. The intuitionistic fuzzy sets 0 and 1 are defined by
0 = {〈x, 0, 1〉 : x ∈ X} and 1 = {〈x, 1, 0〉 : x ∈ X}. Let f be a mapping from an ordinary set X into an
ordinary set Y. If B = {〈y,µB(y),γB(y)〉 : y ∈ Y} is an intuitionistic fuzzy set in Y, then the inverse
image of B under f is intuitionistic fuzzy set defined by f−1(B) = {〈x, f−1(µB)(x), f−1(γB)(x)〉 : x ∈ X}.
The image of intuitionistic fuzzy set A = {〈x,µA(x),γA(x)〉 : x ∈ X} under f is an intuitionistic fuzzy set

defined by f(A) = {〈y, f(µA)(y), f(γA)(y)〉 : y ∈ Y}, where f(µA)(y) =

 sup
x∈f−1(y)

µA(x), f−1(y) 6= 0,

0, otherwise,

and f(γA)(y) =

{
inf

x∈f−1(y)
γA(x), f−1(y) 6= 0,

1, otherwise,
for each y ∈ Y.

Definition 2.3 ([11, 12]). An intuitionistic gradation of openness on X is an ordered pair (τ, τ?) of functions
from IX to I such that

1. τ(λ) + τ?(λ) 6 1 for all λ ∈ IX;
2. τ(0) = τ(1) = 1, τ?(0) = τ?(1) = 0;
3. τ(λ1 ∧ λ2) > τ(λ1)∧ τ(λ2) and τ?(λ1 ∧ λ2) 6 τ?(λ1)∨ τ

?(λ2) for each λ1, λ2 ∈ IX;
4. τ(

∨
i∈Γ

λi) >
∧
i∈Γ

τ(λi) and τ?(
∨
i∈Γ

λi) 6
∨
i∈Γ

τ?(λi) for each λi ∈ IX, i ∈ Γ .

The triplet (X, τ, τ?) is called an intuitionistic smooth fuzzy topological space.

Definition 2.4. An intuitionistic fuzzy set λ in an intuitionistic smooth fuzzy topological space (X, τ, τ?)
is called an intuitionistic r-fuzzy open if τ(λ) > r and τ?(λ) 6 1 − r for each r ∈ I0, λ is called an
intuitionistic r-fuzzy closed if and only if 1 − λ is an intuitionistic r-fuzzy open set. We set τr = {λ ∈ IX :
τ(λ) > r, τ?(λ) 6 1 − r}.

Theorem 2.5 ([11, 12]). Let (X, τ, τ?) be an intuitionistic smooth fuzzy topological space. Then for each r ∈ I0,
λ ∈ IX we define operators Cl, Int : IX × I0 → IX as follows

Cl(λ, r) =
∧

{µ ∈ IX | λ 6 µ, τ(1 − µ) > r, τ?(1 − µ) 6 1 − r},

Int(λ, r) =
∨

{µ ∈ IX | µ 6 λ, τ(µ) > r, τ?(µ) 6 1 − r}.



T. Menahadevi, et al., J. Math. Computer Sci., 30 (2023), 10–18 12

Definition 2.6 ([7]). Let X be a nonempty set and c ∈ X a fixed element in X. If a ∈ (0, 1] and b ∈ [0, 1)
are two fixed real numbers such that a+ b 6 1, then the intuitionistic fuzzy set c(a,b) = 〈x, ca, 1 − c1−b〉
is called an intuitionistic fuzzy point in X, where a denotes the degree of membership of c(a,b), b the
degree of non-membership of c(a,b), and c ∈ X the support of c(a,b).

Definition 2.7. Let (X, τ) be an intuitionistic fuzzy topological space on X and c(a,b) an intuitionis-
tic fuzzy point in X. An intuitionistic fuzzy set A is called q-neighbourhood of c(a,b), denoted by
Nq(c(a,b)), if there exists an intuitionistic fuzzy open set U in X such that c(a,b) q U and U 6 A.

Definition 2.8. An intuitionistic fuzzy set λ of an intuitionistic fuzzy topological space (X, τ, τ?) is said to
be intuitionistic r-fuzzy semiopen [1] if λ 6 Cl(Int(λ, r), r).

3. Intuitionistic smooth fuzzy open/closed mappings

Definition 3.1. An intuitionistic fuzzy mapping f : X → Y is called an intuitionistic r-fuzzy weakly
continuous if for each intuitionistic r-fuzzy open set µ of Y, f−1(µ) 6 Int(f−1(Cl(µ, r)), r).

Theorem 3.2. If f : X → Y is an intuitionistic r-fuzzy weakly continuous, intuitionistic r-fuzzy open mapping,
then f is intuitionistic r-fuzzy almost continuous.

Proof. Since f is intuitionistic r-fuzzy weakly continuous, for every intuitionistic r-fuzzy open set µ in Y,
f−1(µ) 6 Int(f−1(Cl(µ, r)), r). Since f is intuitionistic r-fuzzy open, there is an intuitionistic r-fuzzy open
set ν in X such that f(ν) 6 µ or ν 6 f−1(µ) 6 Int(f−1(Cl(µ, r)), r). Again, since µ is an intuitionistic
r-fuzzy open set, f(ν) 6 Int(Cl(µ, r), r), or ν 6 f−1(Int(Cl(µ, r)), r), or ν 6 Int(f−1(Int(Cl(µ, r), r)), r),
that is, Int(f−1(Cl(µ, r)), r) 6 Int(f−1(Int(Cl(µ, r), r)), r). Hence ν 6 f−1(µ) 6 Int(f−1(Cl(µ, r)), r) 6
Int(f−1(Int(Cl(µ, r), r)), r). Hence f is intuitionistic r-fuzzy almost continuous.

Theorem 3.3. If f : X → Y is an intuitionistic r-fuzzy open and intuitionistic r-fuzzy continuous mapping and
g : Y → Z is an intuitionistic fuzzy mapping, then g ◦ f is intuitionistic r-fuzzy almost continuous if and only if g
is intuitionistic r-fuzzy almost continuous.

Proof. Straightforward.

Definition 3.4. An intuitionistic fuzzy mapping f : X → Y is intuitionistic r-fuzzy almost open (closed)
if for every intuitionistic r-fuzzy regularly open (closed) set µ in X, f(µ) is intuitionistic r-fuzzy open
(closed) in Y.

Obviously, an intuitionistic r-fuzzy open mapping is intuitionistic r-fuzzy almost open, but the con-
verse is not true, which is shown by the following example:

Example 3.5. An intuitionistic fuzzy mapping f : X→ Y, which is intuitionistic r-fuzzy almost open, need
not to be intuitionistic r-fuzzy open. Let X = [0, 1]. The intuitionistic fuzzy subsets λ1, λ2, λ3 ∈ IX are
defined as follows:

λ1 = {〈x,µλ1(x),γλ1(x)〉 : x ∈ X}, λ2 = {〈x,µλ2(x),γλ2(x)〉 : x ∈ X}, λ3 = {〈x,µλ3(x),γλ3(x)〉 : x ∈ X},

where

µλ1(x) =

{
x, if 0 6 x 6 1

2 ,
1 − x, if 1

2 6 x 6 1,
γλ1(x) =

{
1 − x, if 0 6 x 6 1

2 ,
x, if 1

2 6 x 6 1,

µλ2(x) =

{
2x, if 0 6 x 6 1

2 ,
0, if 1

2 < x 6 1,
γλ2(x) =

{
1 − 2x, if 0 6 x 6 1

2 ,
1, if 1

2 < x 6 1,

µλ3(x) =

{
1, if 0 6 x 6 1

2 ,
0, if 1

2 < x 6 1,
γλ3(x) =

{
0, if 0 6 x 6 1

2 ,
1, if 1

2 < x 6 1.
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We define τ, τ? : IX → I as

τ(λ) =


1, if λ = 0̄ or 1̄,
1
2 , if λ ∈ {λ2, λ3},
0, otherwise,

τ?(λ) =


0, if λ = 0̄ or 1̄,
1
2 , if λ ∈ {λ2, λ3},
1, otherwise.

We define σ,σ? : IX → I as

σ(λ) =


1, if λ = 0̄ or 1̄,
1
2 , if λ = λ1,
0, otherwise,

σ?(λ) =


0, if λ = 0̄ or 1̄,
1
2 , if λ = λ1,
1, otherwise.

Consider the mapping f : (X, τ, τ?)→ (X,σ,σ?) defined as f(x) = 2x for x ∈ [0, 1]. Then f(0) = 0, f(1) = 1,
f(b) and f(c) are not intuitionistic r-fuzzy open. Hence f is not intuitionistic r-fuzzy open, but it is
intuitionistic r-fuzzy almost open, since the images of intuitionistic r-fuzzy regular open sets 0 and 1 are
intuitionistic r-fuzzy open.

Theorem 3.6. If f : X→ Y is an intuitionistic r-fuzzy almost closed mapping of X onto Y, then for every intuition-
istic r-fuzzy regularly open set σ in X and for all intuitionistic r-fuzzy singletons π in Y such that f−1(π) 6 σ, we
have π 6 Int(f(σ), r).

Proof. Since σ is intuitionistic r-fuzzy regularly open, 1−σ is intuitionistic r-fuzzy regularly closed. Now,
f(1 − σ) is intuitionistic r-fuzzy closed in Y. Since f−1(π) 6 σ, π 6 f(σ), which implies 1 − π > f(1 − σ)
and therefore there exists an intuitionistic r-fuzzy open set µ such that π 6 µ and µ < 1 − f(1 − σ) or
π 6 µ 6 f(σ). Hence π 6 Int(f(σ), r).

Theorem 3.7. If f : X→ Y is an intuitionistic fuzzy bijective mapping, then following statements are equivalent:

1. f is intuitionistic r-fuzzy almost open;
2. f is intuitionistic r-fuzzy almost closed;
3. f−1 is intuitionistic r-fuzzy almost continuous.

Proof.

(1)⇒ (2): Let σ be an intuitionistic r-fuzzy regularly closed set in X. Then 1 − σ is intuitionistic r-fuzzy
regularly open, and f(1 − σ) is intuitionistic r-fuzzy open in Y, or 1 − f(σ) is intuitionistic r-fuzzy open in
Y. Hence f(σ) is intuitionistic r-fuzzy closed in Y.

(2)⇒ (3): Let σ be an intuitionistic r-fuzzy regularly closed set in X. Then f(σ) is intuitionistic r-fuzzy
closed in Y. Since f(σ) = (f−1)−1(σ) and f−1 : Y → X, we find that the inverse image of intuitionistic
r-fuzzy regularly closed set σ in X is intuitionistic r-fuzzy closed in Y. Hence f−1 is intuitionistic r-fuzzy
almost continuous.

(3)⇒ (1): Let σ be an intuitionistic r-fuzzy regularly open set in X, then since f−1 is intuitionistic r-fuzzy
almost continuous, (f−1)−1(σ) = f(σ) is intuitionistic r-fuzzy open in Y and hence f is intuitionistic r-fuzzy
almost open.

Theorem 3.8. Suppose that f : X → Y and g : Y → Z are two intuitionistic fuzzy surjective maps. Then if f is
intuitionistic r-fuzzy almost continuous and if g ◦ f is intuitionistic r-fuzzy open (resp. fuzzy closed), then g is also
intuitionistic r-fuzzy almost open (resp. intuitionistic r-fuzzy almost closed).

Proof. Let f be intuitionistic r-fuzzy almost continuous and let g ◦ f be intuitionistic r-fuzzy open (resp.
fuzzy closed). Let σ be any intuitionistic r-fuzzy regularly open (resp. intuitionistic r-fuzzy regularly
closed) set in Y. Then f−1(σ) is intuitionistic r-fuzzy open (resp. closed) in X. Now g ◦ f is intuitionistic
r-fuzzy open (resp. closed) so that (g ◦ f)(f−1(σ)) is intuitionistic r-fuzzy open (resp. closed) in Z. But
(g ◦ f)(f−1(σ)) = g(σ). Thus g(σ) is intuitionistic r-fuzzy open (resp. closed) in Z. Hence the map g is
intuitionistic r-fuzzy almost open (resp. almost closed).
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Lemma 3.9. If f : X → Y is an intuitionistic r-fuzzy almost continuous, intuitionistic r-fuzzy almost open map,
then the inverse image of every intuitionistic r-fuzzy regularly open (closed) set is intuitionistic r-fuzzy regularly
open (resp. closed).

Proof. Let µ be any intuitionistic r-fuzzy regularly open set in Y. Then f−1(µ) is intuitionistic r-fuzzy
open in X, and therefore f−1(µ) 6 Int(Cl(f−1(µ), r), r). Since f is intuitionistic r-fuzzy almost continu-
ous, and Cl(µ, r) is intuitionistic r-fuzzy regularly closed set, then f−1(Cl(µ, r)) is intuitionistic r-fuzzy
closed and Int(Cl(f−1(µ), r), r) 6 Cl(f−1(µ), r) 6 f−1(Cl(µ, r)). Also f is intuitionistic r-fuzzy almost open,
so that Int(Cl(f−1(µ), r), r) being intuitionistic r-fuzzy regularly open in X, f(Int(Cl(f−1(µ), r), r)) is intu-
itionistic r-fuzzy open. Hence f(Int(Cl(f−1(µ), r), r)) 6 Int(Cl(f(f−1(µ)), r), r) = Int(Cl(µ, r), r) = µ. Thus
Int(Cl(f−1(µ), r), r) 6 f−1(µ). Hence Int(Cl(f−1(µ), r), r) = f−1(µ). For the case of an intuitionistic r-fuzzy
regularly closed set, we obtain the result by considering that 1 − µ is an intuitionistic r-fuzzy regularly
closed set in X, and f−1(1 − µ) = 1 − f−1(µ).

Definition 3.10. An intuitionistic r-fuzzy topological space (X, τ, τ?) is said to be intuitionistic r-fuzzy
almost regular if for every pair consisting of an intuitionistic fuzzy singleton π and an intuitionistic fuzzy
r-regularly closed fuzzy set σ such that π 6 1 − σ, there exist two intuitionistic r-fuzzy open sets µ and γ
such that π 6 µ, σ 6 γ and µ 6 1 − γ.

Theorem 3.11. For an intuitionistic fuzzy topological space the following are equivalent:

1. (X, τ, τ?) is intuitionistic r-fuzzy almost regular;
2. for each intuitionistic r-fuzzy singleton π and each intuitionistic r-fuzzy regularly open set γ containing π,

there exists an intuitionistic r-fuzzy regularly open set µ such that π 6 µ 6 Cl(µ, r) 6 γ;
3. for each intuitionistic fuzzy singleton π and each intuitionistic r-fuzzy neighbourhood θ of π, there exists an

intuitionistic r-fuzzy regularly open neighbourhood γ of π such that Cl(γ, r) 6 Int(Cl(θ, r), r);
4. for each intuitionistic fuzzy singleton π and each intuitionistic r-fuzzy neighbourhood θ of π, there exists an

intuitionistic r-fuzzy open neighbourhood γ of π such that Cl(γ, r) 6 Int(Cl(θ, r), r);
5. for every intuitionistic r-fuzzy regularly closed set σ and each intuitionistic fuzzy singleton π such that π 6

1−σ, there exist intuitionistic r-fuzzy open sets µ and γ such that π 6 µ, σ 6 γ and Cl(µ, r) 6 1−Cl(γ, r).

Proof.

(1)⇒ (2): If γ is an intuitionistic r-fuzzy regularly open set such that π 6 γ, then π 6 1 − (1 − γ),
1 − γ is a intuitionistic r-fuzzy regularly closed set. Then there exist intuitionistic r-fuzzy open sets θ
and ν such that π 6 θ, 1 − γ 6 ν and θ 6 1 − ν, and then Cl(θ, r) 6 1 − ν 6 1 − (1 − γ) = γ. Thus
π 6 θ 6 Cl(θ, r) 6 γ. Again, θ 6 Int(Cl(θ, r), r) 6 Cl(θ, r) 6 γ. Therefore, if we put Int(Cl(θ, r), r) = ν,
then θ 6 ν 6 Cl(µ, r) 6 γ. Hence π 6 ν 6 Cl(µ, r) 6 γ, where ν is an intuitionistic r-fuzzy regularly open
set.

(2)⇒ (3) and (3)⇒ (4): Obvious.

(4)⇒ (5): Let σ be an intuitionistic r-fuzzy regularly closed set and π be an intuitionistic fuzzy singleton
such that π 6 1−σ, that is, 1−σ is a neighbourhood of π. Then there exists an intuitionistic r-fuzzy open
set γ such that π 6 γ 6 Cl(γ, r) 6 1 − σ. Again γ is a neighbourhood of π, there exists an intuitionistic
r-fuzzy open set ν such that π 6 ν 6 Cl(µ, r) 6 γ. Then ν and γ are intuitionistic r-fuzzy open sets such
that π 6 ν, σ 6 γ and Cl(µ, r) 6 1 − Cl(γ, r).

(5)⇒ (1): Let σ be an intuitionistic r-fuzzy regularly closed set and π be an intuitionistic r-fuzzy singleton
such that π 6 1 − σ. Then there exist intuitionistic r-fuzzy open sets ν and γ such π 6 ν, σ 6 γ and
Cl(µ, r) 6 1 − Cl(γ, r) or ν 6 Cl(µ, r) 6 1 − Cl(γ, r) 6 1 − γ, that is, ν 6 1 − γ. Hence (X, τ, τ?) is
intuitionistic r-fuzzy almost regular.

Lemma 3.12. Let σ and θ be two intuitionistic fuzzy subsets of (X, τ, τ?). If σ and θ can be separated by disjoint
intuitionistic r-fuzzy open sets, then they can be separated by disjoint intuitionistic r-fuzzy regularly open sets.
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Proof. Let ν and γ be two intuitionistic r-fuzzy open sets such that σ 6 ν, θ 6 γ and ν 6 1 − γ.
Then Cl(µ, r) 6 1 − γ, or Int(Cl(ν, r), r) 6 1 − γ, or 1 − Int(Cl(ν, r), r) > γ implies that Cl(γ, r) 6
1 − Int(Cl(ν, r), r), or Int(Cl(γ, r), r) 6 1 − Int(Cl(ν, r), r), or Int(Cl(ν, r), r) 6 1 − Int(Cl(γ, r), r). Hence
σ and θ can be separated by disjoint intuitionistic r-fuzzy regularly open sets.

Theorem 3.13. If f : (X, τ, τ?) → (Y,σ,σ?) is an intuitionistic r-fuzzy almost continuous, intuitionistic r-fuzzy
open and injective map, then (Y,σ,σ?) is intuitionistic r-fuzzy almost regular if (X, τ, τ?) is intuitionistic r-fuzzy
almost regular.

Proof. Let π be an intuitionistic r-fuzzy singleton and ρ be an intuitionistic r-fuzzy regularly open set in Y,
and π 6 ρ. Then f−1(π) and f−1(ρ) are respectively, an intuitionistic fuzzy singleton and an intuitionistic r-
fuzzy regularly open set in X. Since X is intuitionistic r-fuzzy almost regular, there exists an intuitionistic
r-fuzzy open set µ in X such that f−1(π) 6 µ 6 Cl(µ, r) 6 f−1(ρ), or π 6 f(µ) 6 f(Cl(µ, r)) 6 ρ, or
π 6 f(µ) 6 Cl(f(µ), r) 6 ρ, where f(µ) is an intuitionistic r-fuzzy open set in Y. Hence the space (Y,σ,σ?)
is intuitionistic r-fuzzy almost regular.

Definition 3.14. An intuitionistic fuzzy topological space (X, τ, τ?) is said to be intuitionistic r-fuzzy
almost normal if for every pair of intuitionistic fuzzy sets σ and θ, σ 6 1− θ in X, where σ is intuitionistic
r-fuzzy closed and θ is intuitionistic r-fuzzy regularly closed, there exist intuitionistic r-fuzzy open sets µ
and γ such that σ 6 µ, θ 6 γ and µ 6 1 − γ.

Remark 3.15. Every intuitionistic r-fuzzy almost normal space is intuitionistic r-fuzzy almost regular. That
the converse does not hold, is shown by the following example.
Example 3.16. Let X = {a,b} and the intuitionistic fuzzy sets defined by

λ1 = 〈x, (
a

0.1
,
b

0.1
), (

a

0.9
,
b

0.9
)〉, λ2 = 〈x, (

a

0.1
,
b

0.2
), (

a

0.9
,
b

0.8
)〉, λ3 = 〈x, (

a

0.3
,
b

0.1
), (

a

0.7
,
b

0.9
)〉,

λ4 = 〈x, (
a

0.7
,
b

0.2
), (

a

0.3
,
b

0.8
)〉, λ5 = 〈x, (

a

0.3
,
b

0.2
), (

a

0.7
,
b

0.8
)〉, λ6 = 〈x, (

a

0.4
,
b

0.4
), (

a

0.6
,
b

0.6
)〉,

λ7 = 〈x, (
a

0.3
,
b

0.9
), (

a

0.7
,
b

0.1
)〉, λ8 = 〈x, (

a

0.9
,
b

0.7
), (

a

0.1
,
b

0.3
)〉, λ9 = 〈x, (

a

0.9
,
b

0.2
), (

a

0.1
,
b

0.8
)〉.

We define τ, τ? : IX → I as

τ(λ) =


1, if λ = 0̄ or 1̄,
1
2 , if λ ∈ {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9},
0, otherwise,

τ?(λ) =


0, if λ = 0̄ or 1̄,
1
2 , if λ ∈ {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9},
1, otherwise.

Then except λ4 all the intuitionistic r-fuzzy open sets are intuitionistic r-fuzzy regularly open. Then
(X, τ, τ?) is intuitionistic r-fuzzy almost regular but not intuitionistic r-fuzzy almost normal.

Theorem 3.17. For an intuitionistic fuzzy space (X, τ, τ?) the following are equivalent.
1. (X, τ, τ?) is intuitionistic r-fuzzy almost normal.
2. For every intuitionistic r-fuzzy closed set σ and every intuitionistic regularly open set θ containing σ, there

exists an intuitionistic r-fuzzy open set µ such that σ 6 µ 6 Cl(µ, r) 6 θ.
3. For every intuitionistic r-fuzzy regularly closed set σ and intuitionistic r-fuzzy open set θ containing σ, there

exists an intuitionistic r-fuzzy open set µ such that σ 6 µ 6 Cl(µ, r) 6 θ.
4. For every pair of intuitionistic r-fuzzy sets consisting of an intuitionistic r-fuzzy closed set σ and an intu-

itionistic r-fuzzy regularly closed set θ, there exist intuitionistic r-fuzzy open sets µ and γ such that σ 6 µ,
θ 6 γ and µ 6 1 − γ.

Proof.

(1)⇒ (2): Let σ 6 θ, that is, σ 6 1 − (1 − θ), where 1 − θ is an intuitionistic r-fuzzy regularly closed set.
Since (X, τ, τ?) is intuitionistic r-fuzzy almost normal, there exist intuitionistic r-fuzzy open sets µ and γ
such that σ 6 µ, 1 − θ 6 γ and µ 6 1 − γ. Then σ 6 γ 6 1 − γ 6 θ but 1 − γ is an intuitionistic r-fuzzy
closed set, so that σ 6 µ 6 Cl(µ, r) 6 θ.
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(2)⇒ (3): Obvious.

(3)⇒ (4): If σ and θ are two intuitionistic r-fuzzy regularly closed sets such that σ 6 1 − θ, then 1 − θ is
an intuitionistic r-fuzzy regularly open set containing σ, and by hypothesis there exists an intuitionistic
r-fuzzy open set µ such that σ 6 µ 6 Cl(µ, r) 6 1 − θ. Again since µ is an intuitionistic r-fuzzy regularly
open set containing an intuitionistic r-fuzzy regularly closed set σ, there exists an intuitionistic r-fuzzy
regularly open set ω such that σ 6 ω 6 Cl(ω, r) 6 µ. Now let 1 − Cl(µ, r) = γ, then σ 6 ω, θ 6 γ and
Cl(ω, r) 6 1 − Cl(γ, r).

(4)⇒ (1): Let σ and θ be two intuitionistic r-fuzzy sets in X, where σ is intuitionistic r-fuzzy closed and
θ is intuitionistic r-fuzzy regularly closed, and σ 6 1 − θ. By hypothesis, there exist two intuitionistic
r-fuzzy open sets µ and γ such that σ 6 µ, θ 6 γ and Cl(µ, r) 6 1 − Cl(γ, r). We have µ 6 Cl(µ, r) 6
1 − Cl(γ, r) 6 1 − γ, that is, µ 6 1 − γ. Hence (X, τ, τ?) is intuitionistic r-fuzzy almost normal.

Theorem 3.18. Every intuitionistic r-fuzzy semi-normal, intuitionistic r-fuzzy almost normal space is intuitionistic
r-fuzzy normal.

Proof. Let µ be any intuitionistic r-fuzzy open set containing an intuitionistic r-fuzzy closed set ρ. Then by
intuitionistic r-fuzzy semi-normality, there exists an intuitionistic r-fuzzy semi-open set ω such that ρ 6
ω 6 Int(Cl(ω, r), r) 6 µ. Since Int(Cl(ω, r), r) is an intuitionistic r-fuzzy regularly open set containing the
intuitionistic r-fuzzy closed set ρ, therefore by intuitionistic almost normality there exists an intuitionistic
r-fuzzy open set γ such that ρ 6 γ 6 Cl(γ, r) 6 Int(Cl(µ, r), r) 6 µ. Thus the space is intuitionistic r-fuzzy
normal.

Corollary 3.19. An intuitionistic r-fuzzy almost normal space is intuitionistic r-fuzzy normal if and only if it is
intuitionistic r-fuzzy semi-normal.

Theorem 3.20. Let f : X → Y be an intuitionistic r-fuzzy open and intuitionistic r-fuzzy continuous mapping
from an intuitionistic r-fuzzy almost normal space X to an intuitionistic fuzzy space Y. Then Y is also intuitionistic
r-fuzzy almost normal.

Proof. Let σ and θ be intuitionistic fuzzy subsets of Y, where σ is intuitionistic r-fuzzy closed, θ is intu-
itionistic r-fuzzy regularly open and σ 6 θ. Then f−1(σ) and f−1(θ) are respectively intuitionistic r-fuzzy
closed and intuitionistic r-fuzzy regularly open sets in Y, and f−1(σ) 6 f−1(θ). Since X is intuitionistic
r-fuzzy almost normal, there exists an intuitionistic r-fuzzy open set µ such that f−1(σ) 6 µ 6 Cl(µ, r) 6
f−1(θ), or σ 6 f(µ) 6 Cl(µ, r) 6 f(Cl(µ, r)) 6 θ. Thus we have σ 6 f(µ) 6 Cl(f(µ), r) 6 θ, where f(µ) is an
intuitionistic r-fuzzy open set in Y. Hence (Y,σ,σ?) is intuitionistic r-fuzzy almost normal.

Definition 3.21. An intuitionistic fuzzy space (X, τ, τ?) is said to be intuitionistic r-fuzzy mildly normal
if for every pair of intuitionistic r-fuzzy regularly closed sets ρ and σ such that ρ 6 1 − σ, there exist
intuitionistic r-fuzzy open sets µ and γ such that ρ 6 1 − µ, σ 6 1 − γ and µ 6 1 − γ.

Every intuitionistic r-fuzzy almost normal space is intuitionistic r-fuzzy mildly normal but the con-
verse does not hold. Consider the following counter example.

Example 3.22. Let X = [0, 1]. The intuitionistic r-fuzzy subsets λ1, λ2, λ3 ∈ IX are defined as follows:

λ1 = {〈x,µλ1(x),γλ1(x)〉 : x ∈ X}, λ2 = {〈x,µλ2(x),γλ2(x)〉 : x ∈ X}, λ3 = {〈x,µλ3(x),γλ3(x)〉 : x ∈ X},

where

µλ1(x) =

{ 1
8 , if x = 0,
1
2 , if 0 < x 6 1,

γλ1(x) =

{ 7
8 , if x = 0,
1
2 , if 0 < x 6 1,

µλ2(x) =

{ 7
8 , if x = 0,
1
2 , if 0 < x 6 1,

γλ2(x) =

{ 1
8 , if x = 0,
1
2 , if 0 < x 6 1,
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µλ3(x) =

{ 3
4 , if x = 0,
1
2 , if 0 < x 6 1,

γλ3(x) =

{ 1
4 , if x = 0,
1
2 , if 0 < x 6 1.

We define τ, τ? : IX → I as

τ(λ) =


1, if λ = 0̄ or 1̄,
1
2 , if λ ∈ {λ1, λ2},
0, otherwise,

τ?(λ) =


0, if λ = 0̄ or 1̄,
1
2 , if λ ∈ {λ1, λ2},
1, otherwise.

Consider λ1 and λ2 are intuitionistic r-fuzzy regularly open as well as intuitionistic r-fuzzy regularly
closed, but λ3 is not intuitionistic r-fuzzy regularly open. Clearly the space (X, τ, τ?) is intuitionistic
r-fuzzy mildly normal but not intuitionistic r-fuzzy almost mildly normal.

Theorem 3.23. For an intuitionistic fuzzy space (X, τ, τ?) the following are equivalent.

1. X is intuitionistic r-fuzzy mildly normal.
2. For every intuitionistic r-fuzzy regularly closed set σ and every intuitionistic r-fuzzy regularly open set µ

containing σ, there exists an intuitionistic r-fuzzy open set γ such that σ 6 γ 6 Cl(γ, r) 6 µ.
3. For every intuitionistic r-fuzzy regularly open set µ containing an intuitionistic r-fuzzy regularly closed set
σ, there exists an intuitionistic r-fuzzy regularly open set γ such that σ 6 γ 6 Cl(γ, r) 6 µ.

4. For every pair of intuitionistic r-fuzzy regularly closed sets σ and θ, there exist intuitionistic r-fuzzy open
sets µ and γ such that σ 6 µ, θ 6 γ and Cl(µ, r) 6 1 − Cl(γ, r).

Proof.

(1)⇒ (2): Since σ 6 µ or σ 6 1 − (1 − µ), where 1 − µ is an intuitionistic r-fuzzy regularly closed set, and
X is intuitionistic r-fuzzy mildly normal, there exist intuitionistic r-fuzzy open sets γ and ω such that
σ 6 γ, 1 − µ 6 ω and γ 6 1 −ω or Cl(γ, r) 6 1 −ω. We have σ 6 γ 6 Cl(γ, r) 6 1 −ω 6 θ.

(2)⇒ (3): Since σ 6 µ, where µ is an intuitionistic r-fuzzy regularly open and σ is an intuitionistic r-fuzzy
regularly closed set, there exists a fuzzy open set γ with σ 6 γ 6 Cl(γ, r) 6 µ. Since γ is intuitionistic
r-fuzzy open, we have σ 6 γ 6 Int(Cl(γ, r), r) 6 θ. Let Int(Cl(γ, r), r) = ω. Then σ 6 ω 6 Cl(ω, r) 6 θ,
where ω is an intuitionistic r-fuzzy regularly open set.

(3)⇒ (4) and (4)⇒ (1): Are simple.

Theorem 3.24. Every intuitionistic r-fuzzy almost continuous, intuitionistic r-fuzzy almost closed and intuition-
istic r-fuzzy open image of an intuitionistic r-fuzzy mildly normal space is intuitionistic r-fuzzy mildly normal.

Proof. Let f : X → Y be an intuitionistic r-fuzzy almost continuous, intuitionistic r-fuzzy open and intu-
itionistic r-fuzzy almost closed mapping and let X be intuitionistic r-fuzzy mildly normal. Let σ and θ be
intuitionistic r-fuzzy regularly closed sets and σ 6 1− θ. Then f−1(σ) and f−1(θ) are intuitionistic r-fuzzy
regularly closed sets in X. Since X is intuitionistic r-fuzzy mildly normal, there exist intuitionistic r-fuzzy
open sets µ and γ such that f−1(σ) 6 µ 6 f−1(θ) 6 γ and µ 6 1−γ, where f(µ) and f(γ) are intuitionistic
r-fuzzy open sets in Y. Hence the space Y is also intuitionistic r-fuzzy mildly normal.

Theorem 3.25. An intuitionistic r-fuzzy almost continuous, intuitionistic r-fuzzy closed image of an intuitionistic
r-fuzzy normal space is intuitionistic r-fuzzy mildly normal.

Proof. Let f : X → Y be an intuitionistic r-fuzzy almost continuous and intuitionistic r-fuzzy closed
mapping and let X be intuitionistic r-fuzzy normal space. Let σ and θ be two intuitionistic r-fuzzy
regularly closed subsets of Y such that σ 6 1 − θ. Then f−1(σ) and f−1(θ) are intuitionistic r-fuzzy closed
sets in X. Since X is intuitionistic r-fuzzy normal, there exist intuitionistic r-fuzzy open sets µ and γ in X,
such that f−1(σ) 6 µ, f−1(θ) 6 γ and µ 6 1 − γ. Now let ω = {p : f−1(p) 6 µ, where π is an intuitionistic
r-fuzzy singleton} and γ = {q : f−1(q) 6 γ, where q is an intuitionistic r-fuzzy singleton}. Then σ 6 ω,
θ 6 γ and m 6 1 − θ. Hence the space Y is intuitionistic r-fuzzy mildly normal.
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[5] N. C. ağman, S. Enginoğlu, F. C. itak, Fuzzy soft set theory and its application, Iran. J. Fuzzy Syst., 8 (2011), 137–147. 1
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